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Abstract The high-pace rise in advanced computing and

imaging systems has given rise to a new research dimen-

sion called computer-aided diagnosis (CAD) system for

various biomedical purposes. CAD-based diabetic

retinopathy (DR) can be of paramount significance to

enable early disease detection and diagnosis decision.

Considering the robustness of deep neural networks

(DNNs) to solve highly intricate classification problems, in

this paper, AlexNet DNN, which functions on the basis of

convolutional neural network (CNN), has been applied to

enable an optimal DR CAD solution. The DR model

applies a multilevel optimization measure that incorporates

pre-processing, adaptive-learning-based Gaussian mixture

model (GMM)-based concept region segmentation, con-

nected component-analysis-based region of interest (ROI)

localization, AlexNet DNN-based highly dimensional fea-

ture extraction, principle component analysis (PCA)- and

linear discriminant analysis (LDA)-based feature selection,

and support-vector-machine-based classification to ensure

optimal five-class DR classification. The simulation results

with standard KAGGLE fundus datasets reveal that the

proposed AlexNet DNN-based DR exhibits a better per-

formance with LDA feature selection, where it exhibits a

DR classification accuracy of 97.93% with FC7 features,

whereas with PCA, it shows 95.26% accuracy. Compara-

tive analysis with spatial invariant feature transform (SIFT)

technique (accuracy—94.40%) based DR feature extrac-

tion also confirms that AlexNet DNN-based DR outper-

forms SIFT-based DR.

Keywords Computer-aided diagnosis � Diabetic
retinopathy � Deep neural network � AlexNet DNN �
Convolutional neural network � Gaussian mixture model �
Linear discriminant analysis � SVM

1 Introduction

Science and technology can be stated as a ‘‘blessing for

human society’’ only when it makes human life more

secure, healthier, livable, and comfortable. The immense

anticipations for robust CAD systems have been witnessed

globally. To meet global healthcare demands, CAD sys-

tems have emerged as vital technologies to assist earlier

disease detection and diagnosis decision. Diabetes has

become one of the most common and widespread health

issues globally that occurs when the key functional organ,

pancreas, malfunctions by secreting insufficient insulin,

gradually influencing the human retina. Recently, the

World Health Organization (WHO) has released a report

which predicts that diabetes would become the 7th major

death-causing health issue by 2030. The malfunctions

caused by diabetes result into a disease called diabetic

retinopathy (DR). Diabetic retinopathy has emerged

exponentially globally, which can be annotated by futile

glucose metabolism that increases the probability of long-

term infection, especially in human retina. DR is one of the

most generic and common diabetic eye issues or diseases,

which emerges because of the damages in the retinal blood

vessels. In major cases, blood vessels swell and leak fluid.

In some cases, it blocks blood vessels completely, and as a

result, certain abnormal blood vessels emerge over the

retina during proliferation, which eventually causes loss of

vision. Primarily, these malfunctions result in complete

blindness and visual impairments. The vital information on
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retinal pathological transformation can be identified by

means of ocular fundus images. Exudates are the pre-

dominant and generic symptoms of DR. Typically, micro-

aneurysms and hemorrhages take place in the human retina,

and exudates are secreted on it. The shape, size, and overall

appearance of these features signify the level of disease.

Proliferative diabetic retinopathy (PDR) represents a

phase of retinopathy where blood vessels grow. On the

other hand, non-proliferative diabetic retinopathies

(NPDR) refer to the initial phase of the DR and are cate-

gorized into three prime phases, namely, mild, moderate,

and sever NPDR. Generally, mild NPDR is characterized

by the existence of minimum micro-aneurysm, moderate

indicates the existence or occurrence of hemorrhages,

micro-aneurysms, and hard exudates, and the severe phase

refers to the complete impasse of the retinal blood vessels.

Thus, DR is identified by identifying key features such as,

exudates, hemorrhages, and micro-aneurysms in human

retina. Some of the dominant features of the DR and their

respective shape and sizes are illustrated in Fig. 1.

The types of diabetic retinopathy compliant with its

severity of DR are presented in Fig. 2.

The early detection of DR can play a vital role in assuring

successful diagnosis and effective treatment. To characterize

or classify the severity of the disease, DR employs weighting

of various key features and their respective locations [1]. No

doubt, it is an extremely time-consuming task for traditional

practitioners or the clinicians. Developing a novel CAD

system for DR can be of paramount significance for efficient

DR diagnosis. However, the dominating intricacy in the

process is to extract significant features such as exudates that

typically resemble optic disk and possess similar color and

size. Similarly, micro-aneurysms also look similar to the

retinal blood vessels, especially in terms of color and

propinquity with retinal blood vessels. The sophisticated

computing mechanism has enabled retrieving swift feature

classifications once trained, thus facilitating the CAD

solution to the practitioners for better diagnosis decision.

The efficacy of CAD solutions for DR characterization and

severity labeling has been an open research domain in

computer imaging systems [2, 3]. Recently, some efforts

have been made to detect the features of DR using machine

learning schemes such as support vector machines (SVM)

and k-NN classifiers [4]. The development of convolutional

neural networks (CNNs) has provided an attractive research

domain in biomedical imaging system, particularly for

image analysis and interpretation. Approaches were also

developed decades before (1970s) to enable better imaging

system and its analysis [5] to assist applications and effec-

tiveness of approaches to solve certain task [6]. However, the

breakthrough was observed only after the emergence of

neural networks, where the dropouts were implemented to

enable better outcome [7] and rectified linear units and

graphical processor units (GPUs) were used to enable more

effective computing systems, to solve image recognition

purposes [8]. Recent studies [9, 10] have stated that the large

CNNs can be applied to deal with highly complex image

recognition applications withmultiple object classes and can

be effectively employed in major state-of-the-art image

classification purposes such as the Image Net and COCO

issues [9, 10]. However, enhancing the CNN to deal with

complex problems such as DR has always been the moti-

vation for researchers. With this motivation, in this paper, a

CNN-based deep neural network (DNN) model has been

developed for a DR CAD system. Unlike existing works, we

proposed a multilevel optimization measure which, at first,

tries to identify precise regions of interest (ROIs) and

respective detection to enable optimal feature extraction

using AlexNet DNN. Furthermore, to reduce computational

overheads, different feature selection and dimensional

reduction schemes have been applied. To examine the effi-

cacy of the proposed DR CAD solution, a five-class classi-

fication (normal, mild NPDR, severe PDR, moderate NPDR,

and PDR) has been performed using a SVM classifier.

The other sections of the presented manuscript are

divided as follows. Section 2 presents related work, Sect. 3

discusses the contributions and proposed method, and

Sect. 4 discusses the implementation/system model and

associated processes. Section 5 discusses the results

obtained. In Sect. 6, the overall research conclusions are

presented. References used in this work are given at the last

part of the paper.

2 Literature survey

Considering the significance of blood vessel segmentation

for efficient DR, the authors in [11] applied different mor-

phology and segmentation techniques to detect blood ves-

sels, hard exudates, and micro-aneurysms. To extract
Fig. 1 NPDR: thin arrows—hard exudates; thick arrow—blot intra-

retinal hemorrhage; triangle—micro-aneurysm
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features, they [11] used Haar wavelet transform, which was

followed by PCA-based feature selection. The authors sug-

gested a back-propagation-based neural network for two-

class classifications. Similarly, in [12],multilayer perception

neural network (MLPNN) was used to detect DR. An auto-

matic exudate detection approach was developed in [13],

where optic disk (OD) segmentation was performed using a

graph cuts algorithm. The authors in [13] used the invariant

moments Hu to extract the feature vector and NN-based two

classes; exudate and non-exudate classification was

performed. Majority of these artificial neural networks

(ANN)-based approaches [11–13] do not address the over-

fitting issues, particularly for large-scale fundus images. In

[14], the authors applied optic disc identification for exu-

dates and micro-aneurysm extraction-based DR, where they

performed a five-class classification: mild, moderate, severe,

NPDR, and PDR. To localize exudates, authors used a

genetic algorithm [15]. To localize the exudates and other

lesions in a fundus image, authors [16] applied the inter-

section of abnormal thickness in blood vessels. Similarly, in

Fig. 2 Fundus images

signifying different levels of

diabetic retinopathy
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[17], k-means clustering and fuzzy inference system (FIS)

were applied for DR. In [18], emphasis was made on

reviving an automatic CAD system for DR anomaly detec-

tion and its severity assessment. Authors [19] used eigen-

value analysis from Hessian matrix to detect micro-

aneurysms. In [20], dynamic shape features of blood vessels

were used for micro-aneurysm and hemorrhage detection. In

[21], emphasis was made on detecting and classifying neo-

vascularization originated owing to PDR.A technique called

JSEG was used in [22] to detect exudates and abnormalities

in a macular region. The authors in [23] performed the

characterization of the parafoveal hemodynamics allied with

DR along with the adaptive optics scanning laser ophthal-

moscopy and computational fluid dynamics approach. Their

prime objective was to identify an optimal feature to perform

earlier DR prediction based on hemodynamics in blood

vessels. In [24], the authors explored the efficacy of geo-

metric features, especially related to the retinal vascular

changes during a diabetic condition to predict DR. A mat-

ched filter with minimum cross entropy threshold (MCET)

was applied to detect blood vessels [25] so as to enable an

effective DR solution. They applied MCET for blood vessel

detection in real time, enabling normal and abnormal retina

classification. Authors [26] developed a hemorrhage detec-

tion scheme which, at first, detected blood vessels and

eliminated so as to localize hemorrhage candidate. A generic

CAD model with retinal micro-aneurysm and exudate

detection, and an SVM and k-NN-classifier-based DR clas-

sification was used in [27]. Discrete-wavelet-transform-

based feature extraction was performed in [28] to identify

DR diseases in fundus images. In addition, they applied the

PCA algorithm to reduce feature dimension, which was

followed by Naı̈ve Bayes-based classification. In [29], the

Hurst exponent was used to estimate the fractal dimension

(FD) that was applied for DR purposes. Morphology and

texture analysis approach was used in [30] to detect DR

features, like blood vessels, hard exudates, etc., in colored

fundus images. To characterize DR severity level, authors

used SVM-based feature classification [30, 31]. Texture

features, along with exudates and micro-aneurysm features,

were applied for DR classification [32, 33]. Authors used

SVM to perform five-class DR level classification. The

authors in [34] used ANN and pixel intensity values to

perform DR classification, where the accuracy was 83.5%.

The areas of exudates and blood vessels were used in [35] to

perform DR characterization.

3 Our contribution

This research intends to develop an efficient automated

computer-aided (CAD) system for DR. To enable a robust

CAD solution for DR purposes, enhancing a major

comprising process level, such as data preparation, data

quality enrichment, noise reduction, retinal blood vessel

detection, ROI segmentation, feature extraction, and fea-

ture resizing and classification, is necessary. At first, pre-

processing techniques such as noise removal and image

resizing have been applied, which enriched fundus image

quality and suitability for further processes. Once per-

forming pre-processing, ROI segmentation has been per-

formed, for which an adaptive-learning-rate-based

enhanced GMM (E-GMM) algorithm has been developed.

Here it should be noted that, to exhibit DR classification,

different features, including hard exudates, blot intra-reti-

nal hemorrhage, and micro-aneurysms, have been consid-

ered as target regions to be segmented so as to characterize

the fundus image as DR or non-DR or other classes.

Considering the diversity of features in this research, the

KAGGLE DR dataset [36] has been applied. Now, realiz-

ing the fact that accurate and precise ROI identification and

associated feature extraction can lead to accurate classifi-

cation, the segmented region is processed for connected

component analysis (CCA). The CCA method removes

those image components that seem connected to the target

region, which, however, are insignificant toward classifi-

cation. For example, there can be pixel regions which may

be connected to the DR traits or features, but may not give

any significant characteristic to signify its role in DR

classification. Thus, applying CCA and removing

insignificant pixels, a precise ROI region is obtained,

which is further processed for feature extraction using

CNN. Unlike conventional feature extraction approaches

such as wavelet transform and Gabor filter, in this work,

the AlexNet DNN technique was applied to extract features

from the CCA-processed segmented ROI. AlexNet DNN

applied the CNN concept to extract highly dimensional

features.

The proposed AlexNet model extracts multidimensional

features at the fully connected (FC) DNN layers, such as

FC6 and FC7, which is supposed to have more significant

feature information. Considering the generic DNN

approaches where the probability of over-fitting and

degraded accuracy can be ignored, particularly for large-

scale datasets, the proposed model applies CaffeNet DNN

in conjunction with AlexNet that plays a vital role in fea-

ture extraction (for large-scale data) as well as execution

with general-purpose computing systems. Practically,

owing to higher unannotated data, performing DNN

learning and classification is often a tedious task, and

therefore, to alleviate such problem, AlexNet incorporates

multilayered DNN, which is over large-scale labeled

datasets to perform accurate DR classification. In the pro-

posed model, the features are obtained at each layer of the

trained DNN (convolutional layer-1 to layer-5 and FC 6

and FC7). The layered architecture of the DNN can be
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found in Fig. 7. The higher layer of DNN model retrieves

4096-dimensional features that make it more informative to

enable sufficient features for accurate DR classification.

While exploring literatures, it has been found that spatial

invariant feature transform (SIFT) technique can perform

better than generic wavelet transform or Gabor filter

techniques, and it has been applied to perform feature

extraction over a CCA-processed segmented concept

region. The discussion of SIFT-based feature extraction

can be found in Sect. 4. As already stated, AlexNet DNN

retrieves highly dimensional features at FC6 and FC7 that

is significantly bulky in size, which could limit the com-

putational efficiency of the proposed work. Therefore, two

well-known dimensional reduction or feature selection

methods, namely, principle component analysis (PCA) and

linear discriminant analysis (LDA), have been applied.

This process significantly assures optimal feature selection

that eventually supports accurate classification. Once per-

forming feature selection or dimensional reduction, the

finally obtained features, also called feature vectors, have

been projected to the polynomial kernel-based SVM clas-

sifier, where a tenfold cross-validation is applied to per-

form five-class classifications: no DR, mild DR, moderate

DR, severe DR, and proliferative DR. The overall imple-

mentation flow can be found in Fig. 2.

Before discussing the implementation of the proposed

DR method, a glance of the terms used and their nomen-

clatures is given as follows (Table 1):

4 System model

This section primarily discusses the overall proposed sys-

tem and its implementation to achieve the optimal DR

solution. Our proposed CAD solution for DR classification

includes the following sequential steps. Figure 3 depicts

the implementation model of the proposed DNN-based

CAD system for DR.

A. Data collection,

B. Pre-processing,

C. Concept region or ROI detection,

D. Feature extraction,

E. Dimensional reduction, and

F. Diabetic retinopathy classification.

The discussion of the applied methodology is presented

as follows.

4.1 Data preparation

Considering the objective of developing an automatic CAD

system for DR, a standard DR image dataset named

KAGGLE [36] has been used. KAGGLE benchmark data

Table 1 Nomenclatures

Nomenclature

CAD Computer-aided diagnosis

DR Diabetic retinopathy

DNN Deep neural network

ROI Region of interest

SIFT Spatial invariant feature transform

WHO World Health Organization

PDR Proliferative diabetic retinopathy

NPDR Non-proliferative diabetic retinopathies

OD Optic disk

CNNs Convolution neural networks

GPUs Graphical processor units

SVM Support vector machine

MLPNN Multi layer perception neural network

FIS Fuzzy inference system

FD Fractal dimension

GMM Gaussian mixture model

CCA Connected component analysis

E-GMM Enhanced GMM

PCA Principle component analysis

LDA Linear discriminant analysis

PDF Probability density function

CONV-1 Convolutional layer-1

3D Three-dimensional

PCS Principle components

MEF Most expressive features

MDF Most discriminating features

LLE Locally linear embedding

FV Fisher vector

RBF Radial basis function

ANN Artificial neural network

FC Fully connected

CONV Convlutional (Layer)

wk Weight factor

x Value of a pixel at an instant

p(x) Gaussian mixture

a Rate of learning

k Threshold

rk Lowest standard deviation

b Fixed sized learning rate

lk Average density

ck(t) Adaptive learning rate

FV Feature vector
P

k = rkI covariance matrix

IICW Intra-class scatter matrix

IIOS Inter-class scatter matrix

C total classes

li Mean of the average vector of a class i

Mi Total number of samples in class i
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provides a large set of high-resolution fundus images taken

under varied imaging conditions. It contains a total of

35,126 fundus images, which are labeled as left or right,

signifying whether the image belongs to the left eye of the

patient or the right. Table 2 presents the fundus image

distribution in the KAGGLE dataset.

These fundus images are taken from different cameras

and under different conditions that may influence the visual

appearances, thus demanding an optimal retinal blood

vessel detection and ROI localization scheme. In this

dataset, a fraction of the fundus images is presented in such

manner that an individual can see the retina anatomically

(i.e., macula on the left and optic nerve on the right for the

right eye). The other fundus images are shown as one can

see by means of a microscopic condensing lens. It should

be noted that the other type of fundus images presents the

inverted image as usually seen in live eye test. In general,

there are two approaches in assessing whether an image is

inverted. These are the following:

1. The fundus image can be inverted when the macula (it

presents the tiny dark central region) is little higher as

compared to the optic nerve midline. In case the

macula is lower than the optic nerve midline, it is not

inverted.

2. In case of any notch sign (square, circle, or triangle) on

the side of the fundus image, then it is not inverted.

Otherwise, the fundus image is inverted.

Similar to other real-world dataset [37–39], the KAG-

GLE [36] DR fundus images also possess certain noise,

where the image can be out of focus, over-exposed, or

under-exposed. Considering huge data elements and asso-

ciated noise complexities, in this paper, it is intended to

develop a mechanism that could predict DR even in the

presence of noise and disturbances. Before processing

Table 1 continued

Nomenclature

W Eigenvectors of I�1
ICWIIOS

E Level of error tolerance

xi Training vector

B Background subtraction

Fig. 3 Proposed algorithmic

implementation structure

Table 2 KAGGLE benchmark

data distribution
Class DR classification Fundus images Percentage (%) Imbalanced ratio

0 Normal 25,810 73.48 1.01

1 Mild NPDR 2443 6.96 1.84

2 Moderate NPDR 5292 15.07 1.26

3 Severe NPDR 873 2.48 2.76

4 PDR 708 2.01 2.89
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blood vessel segmentation of ROI localization, the fundus

images are resized to 512 9 512, which is a valid input for

AlexNet DNN-based feature extraction. In addition, it

makes computation accurate and also reduces complexity.

Figure 4 represents the resized data elements.

Retrieving the resized data, data pre-processing has been

performed. A brief of the applied pre-processing phase is

presented as follows.

4.2 Pre-processing

To enable optimal DR/non-DR characterization, being a

sensitive data enabling a fundus image optimal for pro-

cessing, image pre-processing is vital. The pre-processing

approach refers to outstandingly vital same time finishing

arrangement for micro-aneurysm vicinity in the pictures.

The key features, like micro-aneurysms, would Verwoerd

little and circular to nature. Completing pre-processing

without suppressing whatever picture qualities should

measure and figure out micro-aneurysms and other signif-

icant features accurately [40–42]. In this paper, the sug-

gestion made by Antal [40] was applied to ensure optimal

DR/non-DR-type characterization. Antal [40] applied an

ensemble-based model to enhance the detection of micro-

aneurysms (MAs) in the human eye. To perform MA

detection, both pre-processing and candidate region

detection and extraction were applied. Considering the

interchangeable nature of pre-processing methods, authors

suggested to perform pre-processing before exhibiting

candidate region detection and feature extraction. It avoids

the variations in the original fundus image characteristics.

To deal with noisy images, observing their suggestions and

justifiable outcomes in [40], we have used histogram

equalization that makes data suitable for further feature

extraction and classification. More details of pre-process-

ing can be found in [40]. Once performing pre-processing,

detection of the blood vessels and associated key feature

identification are necessary. In this paper, before process-

ing feature extraction, at first, blood vessel extraction has

been performed, which has been followed by associated

ROI localization. To achieve this, blood vessel segmenta-

tion has been performed. A brief of the segmentation

approach applied is presented in the following sub-section.

4.3 Concept region or ROI detection

This section primarily discusses the process of blood vessel

segmentation applied to extract region of interest in fundus

images. To perform blood vessel segmentation, in this

paper, the background subtraction method has been

Fig. 4 Represents the resized data elements
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applied. Here, it should be noted that the prime objective of

retinal blood vessel segmentation is to distinguish other DR

features such as hard exudates, MAs, and hemorrhage. In

an array of background subtraction approaches, the Gaus-

sian mixture model (GMM) algorithm has exhibited a

better performance. Considering its effectiveness, unlike

traditional algorithm, in this paper, an enhanced GMM

algorithm has been developed, which has been applied to

perform background subtraction and associated retinal

blood vessel extraction for further DR/non-DR-type char-

acterization of the fundus images. The discussion of the

proposed GMM algorithm is discussed as follows:

4.3.1 Adaptive-learning-based GMM for background

subtraction

Considering the complex color and textural features of the

human retina, the traditional threshold-based GMM cannot

be effective, and hence, to enable optimal blood vessel

detection and associated feature extraction measure, in this

paper, an enhanced adaptive-learning-rate-based GMM has

been developed. In fact, GMM is a pixel-based approach

that assures precise background subtraction. Let x be the

value of a pixel at an instant. Then, to calculate the prob-

ability density function (PDF) of x, a GMM model can be

used, where PDF may encompass the addition of all

associated Gaussians. The PDF of Gaussian mixture p xð Þ
with K components can be calculated using (1).

p xð Þ ¼
XK

k¼1

wkN x; lk;rkð Þ; ð1Þ

where wk represents the weight factor, N x; lk; rkð Þ signifies
the normalized density of the average lk, and

P
k = rk-

I represents the covariance matrix. This condition considers

that the red, green, and blue pixel values in the fundus

image are independent and possess similar variances. In

contrast, it seems impractical, and hence, the distribution of

recently observed values of the individual pixel in the

image can be characterized in the form of a Gaussian

mixture. Here, a new pixel value is signified by means of

one of the dominating components of the mixture model

and taken into consideration to update the model.

Authors [43] applied variables to estimate the image

background, where, at first, these variables were initialized

with zero. If there is any similarity, likex - lj/rj\ s, with
j 2 [1, …, K] and s [ 0ð Þ as a threshold, the functional

parameters of the GMM model are updated as follows:

wk tð Þ ¼ 1� að Þwk t � 1ð Þ þ aMk tð Þ ð2Þ
lk tð Þ ¼ 1� bð Þlk t � 1ð Þ þ bx ð3Þ

r2k tð Þ ¼ 1� bð Þr2kðt�1Þ þ b x� lk tð Þð Þ2; ð4Þ

where

Mk tð Þ ¼ 1 with matching element j

Mk tð Þ ¼ 0 others:

�

In case of non-matching elements, the element with the

least wk is re-initialized, and these are updated as follows:

wk ¼ w0; lk ¼ l0; rk ¼ r0:

As depicted in above Eqs. (2)–(4), a states the rate of

learning, and thus, parameter b is retrieved using Eq. (5).

b ¼ aN x; lk; rkð Þ: ð5Þ

Parameter wk is normalized in such way that it con-

verges toward 1 or increases to the unit value. Authors [43]

performed the sorting of Gaussians wk/rk in their

decreasing order to derive the background model, where

GMM uses a threshold k in relation to the sums of the

weights to achieve the set 1; . . .;Bf g, where B is estimated

using (6).

B ¼ argmin
KB

XKB �K

k¼1

wk [ k

 !

: ð6Þ

Authors [43] performed the sorting of Gaussians wk/rk
in their decreasing order to derive the background model.

With a decrease in the variances, the Gaussian distribution

gains increases, thus making it more evident to perform

background identification. Once estimating these GMM

parameters, it becomes feasible to sort from the matched

mixture distribution toward optimal (say, most probable)

background distribution. This is due to the fact that only

the matched models’ relative value would change. In this

approach, the ordering is performed in such manner that

the most probable background distributions exist on the

top, whereas the less probable transient background dis-

tributions incline toward the bottom. In this manner, the

initial B distributions are selected as the background

model. Mathematically, B is estimated as (6), where k
represents the output of the smallest fraction of the data

accounted for by the background. It takes the ‘‘optimal’’

distribution till a significant section k of the recent data is

accounted for. With a smaller value of k, the background

model is typically called as unimodal, and in this case,

applying merely the most probable distribution can make

computation more efficient. On the contrary, a higher k
refers to the multimodal distribution which is usually

caused by a repetitive background motion. Interestingly, in

our research model, we apply fundus images with static

features, and hence, unimodal (i.e., lower k) makes our

approach computationally efficient. Gaussians with the

highest wk and lowest standard deviation rk signify the

background region of the image, and thus, when

48 Biomed. Eng. Lett. (2018) 8:41–57
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identifying the specific background region, the subtraction

can be performed. In numerous GMM approaches, the

mean factors lk;rkð Þ are generally updated using fixed-

size learning rate b [43]. Considering the application-

specific scenario of retinal blood vessel detection and

segmentation and other DR feature extraction, these

existing static-learning-rate-based methods could not

ensure optimal DR-ROI identification and might result to

their exclusion, thus impacting the overall DR fundus

image classification accuracy. To alleviate this issue,

authors altered [44], where b was used at the early learning

phase, which enabled adaptation under varying surface

conditions. There can be a certain surface condition where

the pixel might neither be the retinal blood vessel or the

DR-ROI features nor the background, but may be classified

in either category. It may cause inaccurate blood vessel

detection and other DR-ROI identification, hence influ-

encing DR accuracy. Now, recall the statements [44] that

increasing b may result into significantly high-rate pixel

feature variations and can make ROI detection vulnerable.

Exploring mathematically, it can be found that the square

of the difference between the average and pixel values can

introduce significant changes that eventually might lead to

textural feature variations till GMM saturation over a

complete pixel color range. Though the adaptive back-

ground mixture model [43] can enable target region

detection and tracking precisely even under varying back-

ground conditions (for example vehicle detection in traf-

fic), however, considering minute, fine-growing surface

features and highly intricate region identification and dis-

tinction such as exudates, its efficacy is still unexplored.

Realizing the need for an efficient learning model for

background subtraction when there can be varying back-

ground conditions, authors [44] developed an enhanced

Gaussian mixture learning model. However, during con-

vergence (while performing background subtraction), it

undergoes saturation, and hence, to alleviate this issue, we

incorporated adaptive learning rate (ALR)-based GMM

that not only detects minute and fine-growing target fea-

tures but also ensures accurate ROI detection even under

varying background features. In the GMM model, at first, b
is decoupled with other averaging components lk and rk.
Here, an ALR ck(t) is introduced, which updates lk itera-

tively using a probability parameter Rk ¼ N x; lk; rkð Þ sig-
nifying whether a pixel is a part of the kth Gaussian

distribution or not. Mathematically,

ck tð Þ ¼ ck t � 1ð Þ þ K þ 1

K
Rk �

1

K

XK

i¼1

Ri: ð7Þ

Here in (7), K represents the number of distributions. In

(7), Rk presents the probability parameter that states whe-

ther a pixel can be a part of the kth Gaussian distribution. In

this manner, the probability parameters and the particular

Gaussian distribution ck(t) can be obtained, which, as a

result, can enable fast and precise Gaussian average update

[43]. It may strengthen the system to cope up with the fast

textural variations and illumination condition variation,

hence enabling accurate DR-ROI localization. Now,

replacing the proposed learning rate ck as b in (3), it can be

observed that the self-controlling update of the variance

might prohibit Gaussian saturation. In contrast, a fast

learning rate can raise the issue of degeneracy, as discussed

above. In this paper, to remove such limitation, a semi-

parametric scheme has been proposed to calculate the

variance so as to enable quasi-linear adaptation. It is

effective for the condition where a very small variation

from the average and a reduced response may cause a

higher variation. To accomplish it, the proposed model

employs a sigmoid function given in (8).

fa;b x; lkð Þ ¼ aþ b� a

1þ e�SE x;lkð Þ ; ð8Þ

where E(x, lk) = (x - lk)
T(x - lk) and S signifies a sig-

moid slope controller. Now, replacing (8) in (2), the vari-

ance update can be obtained as (9).

r2k tð Þ ¼ 1� qð Þr2k t�1ð Þ þ qfa;b x; lk t � 1ð Þð Þ; ð9Þ

where q = 0.6 and fa;b x; lð ÞRþ confines rk to a defined

space R 2 aþb
2
; b

� �
. Here, it should be noted that, unlike

Eqs. (2)–(4), in Eq. (9), in spite of b, we have used a

symbol q that differentiates these terms for different

cases. Here, q = 0.6 is assigned on the basis of the

experimental outputs where the two real positive variables

a and b are selected in such way that R spread over one

kth of the pixel range. The value of q is estimated by

manual computation while fulfilling the above mentioned

conditions. In this way, introducing the proposed GMM

model, background subtraction has been performed over

each fundus image. Figure 5 presents the retinal blood

vessel segmentation process. As depicted in Fig. 5, the

first column represents the original fundus image from the

KAGGLE dataset. The other two consecutive columns

present the gray images with noise filtering, which is

performed as per [40]. Column 4 presents the subtracted

blood vessels and associated internal geometries. The last

column presents the segmentation images adjusted by

CCA.

4.4 Retinal blood vessel region localization

To enhance retinal blood vessel detection and optimal

feature extraction, in this paper, the CCA method has been

applied, which considers the region, size, and location of

the key DR features such as hard exudates, MAs, and
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hemorrhage, and their shape, size, and proximity to the

normal retinal blood vessels. Here, a hypothesis that the

disconnected region signifies the Gaussian components

belonging to the ROI DR features has been taken into

consideration. To use the key feature information, the

dimension and proximity to the blood vessels have been

normalized. The normalized dimensional features have

been used as the width of the connected component region

divided by the width of the vessels at the centroid of the

connected region. Thus, applying this normalized width, it

becomes flexible to compare the sizes of exudates, MAs,

hemorrhage, etc., at distinct locations on the fundus image

as well as to identify the abnormal retinal features (char-

acterizing retinal disease). Thus, employing the enhanced

GMM and CCA approaches, the exact blood vessel regions

as well as other DR features have been localized, which has

been followed by feature extraction.

4.5 Feature extraction

Once performing DR-ROI localization, its features have

been extracted to perform automatic DR/non-DR-type

characterization or classification. The DR/non-DR charac-

terization and associated grading consist of recognizing

very fine details, such as MAs, to some bigger features,

such as exudates, on images of the eye. To enable an

efficient CAD solution for DR with large-scale fundus

image data, in this paper, a robust deep learning approach

has been applied to extract significant DR-ROI features.

Here, a well-known and robust image feature extraction

model named AlexNet DNN, which functions based on the

CNN principle, has been applied to extract key ROI fea-

tures, including exudates and MAs, on the retina. LLE and

other dimensionality reduction/embedding processes go

beyond density modeling methods such as local PCA or

mixtures of factor analyzers.

A brief of the AlexNet DNN is given as follows:

• AlexNet DNN

AlexNet is a multilayered DNN that functions based on

the CNN concept and works on ImageNet. To explore the

efficacy of a transferable deep neural network, in this

study, the hypothesis stating that the higher layers of a

DNN trained on a particular large-size labeled data can be

generic enough for another image-based classification

purpose [45] has been taken into consideration. Thus, in

our DR image classification model, the features have been

extracted for a specific layer inside a well-trained DNN

model and are transferred further to perform the classifi-

cation task. The applied AlexNet DNN model is trained on

ImageNet [46]. Here, the AlexNet DNN architecture

facilitates an optimal approach to learn rich midlevel fun-

dus image features and corresponding semantic represen-

tations that signify DR perception. It enables our model to

ensure high classification accuracy for targeted DR image

classification. There is a state-of-the-art learning frame-

work available [47]; however, considering ease of imple-

mentation and efficiency, in our model, we have applied

CaffeNet [48]. It enables AlexNet functions on general-

purpose computers. The brief of the AlexNet DNN mech-

anism is discussed as follows.

4.5.1 AlexNet DNN-based DR-ROI feature extraction

To perform DR classification, at first, feature extortion has

been performed over the considered fundus images. Here,

the AlexNet DNN-based model has been used to extract the

features of the fundus images (standard KAGGLE fundus

dataset). To enable a flexible implementation of the

AlexNet DNN on a general-purpose computing platform,

CaffeeNet-assisted AlexNet DNN has been considered,
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which has been trained over the localized DR-ROI features

of the used DR dataset. In this work, to perform optimally

significant feature extraction, a multilayered AlexNet DNN

has been applied. Figure 6 presents the structure of the

AlexNet DNN model used. Here, it can be seen that the

applied DNN model contains five convolutional layers

(CONV1–CONV5) and two distinct fully connected layers

(FC6–FC7).

In this model, the initial low-level features can have

generic features similar to the Gabor information or certain

blob characteristics. On the other hand, the higher layers

contain a vital and more critical information that can play a

significant role in DR classification. Considering these

factors, in this paper, AlexNet, with its higher order fea-

tures FC6 and FC7, has been used. Here, five convolutional

layers (CONV1–CONV5) and two fully connected layers

(FC6 and FC7) of AlexNet provide extracted DR-ROI

features. The individual convolutional layer contains mul-

tiple kernels, which characterizes a three-dimensional (3D)

filter connected to the results of the previous layer. Here, it

can be seen that the fully connected layers contain multiple

neurons encompassing the real positive value. Here, each

Fig. 6 Background subtraction for retinal blood vessels segmentation
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individual neuron is connected to the entire neurons of the

previous layer. Since higher layers of the CNN encompass

critical information useful for feature classification, the

FC6 and FC7 features have been applied. These high layer

features facilitate 4096-dimensional ROI features that

enable precise and accurate DR classification. The

retrieved DR-ROI features are then converted into vector

form, called feature vector FV ¼ f1; f2; f3; . . .; f4096ð Þ. The
obtained feature vector FV is then used for feature selection

so as to enable dimensionally reduced data for efficient

classification. Recently, authors have argued that SIFT can

provide efficient ROI features to make accurate classifi-

cation. Considering it as a reference technique, it has been

applied to extract features from the detected ROIs on

fundus images (Fig. 7).

4.5.2 SIFT-based DR-ROI feature extraction

In this paper, at first, we estimate the SIFT descriptors for

each image, where each SIFT feature descriptor represents

a 128-dimensional feature vector. The retrieved SIFT fea-

tures have been processed for dimensional reduction using

principle component analysis. Here, it should be noted that,

in our model, we select only 50% of the 128-dimensional

feature vectors, and thus, only 64 dimensions are reserved.

It is then followed by Fisher encoding with the 32 Gaussian

distributions that eventually generate a 4096-dimensional

Fisher vector, which is equivalent to that generated by

AlexNet DNN at the FC6/FC7 layers. Extracting 4096-di-

mensional features, it has been projected to the feature

selection and classification to characterize fundus images

as DR/non-DR type.

4.6 Feature selection and dimensional reduction

Extracting the features from AlexNet and SIFT descriptors,

it has been projected for feature selection. Here, the prime

intension is to use only significant features so that the

computational overheads could be reduced. To perform

feature selection or, in other words, dimensional reduction

in this paper, two algorithms, namely, PCA and LDA, have

been applied individually.

4.6.1 Principle component analysis

Principle component analysis transfers a feature space of

high dimension into lower dimension having the most

significant features. It firmly rotates the axes of the p-di-

mensional space into a new position called principle axes

in such manner that principle axes 1 possesses the maxi-

mum variance, axis 2 possesses the next highest variance,

and so on. In extracted DR fundus image features, there can

be a significant number of highly correlated feature ele-

ments, also called most expressive features (MEF).

Therefore, the PCA feature selection process intends to

transfer the feature elements to new feature vectors that are

not correlated to each other. In this manner, PCA reduces a

significant amount of feature elements having similar sig-

nificance and selects MEF to form a new feature vector to

be projected further for classification. It makes computa-

tion fast and accurate.

4.6.2 Linear discriminant analysis

Typically, the feature elements obtained from PCA are the

MEF. In general, PCA applies MEF, whereas linear dis-

criminant analysis uses the most discriminating features

(MDF) for classification. Here, the irony is that MEF

cannot be MDF universally. Dissimilar to the PCA

approach, LDA exhibits feature selection automatically as

to enable optimal feature space to be used for classification.

For feature selection or dimensional reduction, LDA, at

first, executes PCA, where DR-ROI, irrespective of its

class label, is projected onto a single PC. To perform

dimensional reduction (or feature selection), two distinct

metrics, namely, intra-class scatter matrix IICW and inter-

class scatter matrix IIOS, have been estimated.

Mathematically,

IICW ¼
XC

i¼1

XMi

j¼1

yj � li
� �

yj � li
� �T ð10Þ

IIOS ¼
XC

i¼1

li � lð Þ li � lð ÞT; ð11Þ

where C presents the total number of classes, li represents
the mean of the average vector of class i, and Mi refers to

the total number of samples in class i. Here, the mean of

the average vector, li, is calculated as

l ¼ 1

C

XC

i¼1

li; ð12Þ
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where C presents the total number of classes. LDA

emphasizes on increasing the inter-class scatter while

minimizing the intra-class scatter. It is achieved by

increasing a factor det SB =detj jSwj j. In case of a non-sin-

gular IIOS matrix, this factor is increased when the column

vectors of the projection matrix W are the eigenvectors of

IICW
-1 IIOS. In this overall mechanism, W with C - 1

dimension allocates the training data onto a new feature

space, called Fisher vector (FV). In other words, Wis used

to project all training samples on FV. Thus, the final FV to

be used for classification is obtained as

FVR ¼ f1R; f2R; f3R; . . .; f4096Rð Þ.

4.7 Classification

In this paper, radial basis function (RBF) kernel-based

SVM has been used for training over extracted features.

Here, the SVM algorithm has been trained over DR fea-

tures (fundus image data) to obtain the maximum possible

margin signifying the minimal value of w in Eq. (13).

1

2
wTwþ E

X
ei; ð13Þ

where the parameters ei C 0 and E represent the level of

error tolerance.

In this work, to exhibit two-class classification, the

training feature vectors are grouped in certain labeled pairs

Li xi; yið Þ, in which xi represents the training vector. Here,

the class label of training vector xi is presented by

yi 2 �1; 1f g. During the classification process, the hyper

plane categorizes the maximum feasible points of the same

class on the same side. In this paper, tenfold cross-vali-

dation is performed to ensure higher accuracy and relia-

bility of the results. For DR classification, the test image

data is processed for PCS retrieval, which is then processed

for PCS classification using trained radial-basis-function-

based SVM.

4.7.1 DR/non-DR-type characterization and classification

Final selected feature vectors (Table 2) have been pro-

jected and mapped for SVM-based classification. Consid-

ering non-linearity of the feature spaces, in our

classification model, polynomial kernel-based SVM has

been applied to perform five-class classifications. It clas-

sifies the fundus images into five classes, including normal,

mild NPDR, severe PDR, moderate NPDR, and PDR.

Furthermore, to achieve optimal classification accuracy,

tenfold cross-validation has been performed. The retinal

blood vessels have been classified into two classes, namely,

DR and non-DR.

5 Results and discussion

This section primarily discusses the results obtained in this

paper. To examine the effectiveness of the DR CAD sys-

tem, at first, the KAGGLE datasets have been collected. In

this paper, a total of 35,126 images containing different

fundus images with different levels of DR severity, fea-

tures, trait location, orientation, etc., of exudates, MAs,

hemorrhage, etc., were considered. To enable a computa-

tionally efficient process, at first, the fundus images were

resized to 512 9 512 pixel sizes. Furthermore, to ensure

optimal classification accuracy and overall performance,

pre-processing was performed, which was followed by the

blood vessel segmentation process. In this approach, unlike

traditional GMM models, an enhanced learning-based

GMM model in conjunction with CCA was executed. Thus,

retrieving the ROI, the proposed CNN algorithm was

applied to perform feature extraction. In this work, Alex-

Net DNN with CaffeNet model was used to perform fea-

ture extraction, where 4096-dimensional features at the

higher layer (FC6 and FC7) were obtained. To enable a

flexible AlexNet DNN implementation over general-pur-

pose computers, CaffeNet has been used. The traditional

ANN techniques may undergo over-fitting. This issue may

be common, particularly with the applied data types where

it may exhibit one-class classification, hence signifying that

there is no sign of DR in the fundus image. The use of

AlexNet can greatly alleviate this issue. To examine the

effectiveness of the proposed AlexNet DNN-based feature

extraction, a parallel feature extraction scheme, SIFT, was

executed, which is similar to the AlexNet DNN extracted

4096-dimensional features. Initially, SIFT descriptors

achieved 128-dimensional feature vectors. The extracted

features were then projected onto PCA, where 50% of the

initial PCs were applied (i.e., 64 dimensions) in conjunc-

tion with 32 Gaussian components distribution, and Fisher

encoding generated 4096-dimensional features, equivalent

to the AlexNet DNN features at the FC6 and FC7 layers.

To optimize computational efficiency and swift DR

classification, extracted features were processed for feature

selection and dimensional reduction using PCA and LDA

algorithms. Once retrieving the optimal features, it was

mapped to the feature vectors and was projected to the

tenfold cross-validation-based SVM classifier, where a

five-class classification, namely, DR, mild DR, moderate

DR, severe DR, and proliferative DR characterization, was

performed. To implement the overall model, VLFeat-

0.9.20 toolbox was used, and all major executable func-

tions were developed using MATLAB 2015a software tool.
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Since, in this proposed model, distinct training and testing

data has been used, therefore, the tenfold cross-validation

approach has been taken into consideration, which makes

classification not only efficient but also reliable. Here, it

should be noted that, since the proposed work intends to

apply it on prepared data features for classification, there-

fore, performance assessment must be performed only with

the prepared dataset. Considering diversity and robustness

of the KAGGLE data, the suitability of the proposed sys-

tem can be affirmed. However, as scope for further

exploration, future authors can examine its suitability with

other fundus datasets.

Tables 3 and 4 present the comparative performance

assessment of the different DR approaches and respective

DR image classification accuracy. In traditional approaches

[29], authors applied image features such as contrast, cor-

relation, energy, homogeneity, and entropy from the gray-

level co-occurrence matrix (GLCM) of the fundus image.

Authors applied these GLCM features for DR fundus

image classification. No doubt, consideration of the

inherent fundus image features makes this system exhibit a

higher accuracy (94.60%); however, considering the com-

plexities and closely related ambiguous features of the

human eye often puts a question on its universality. As

depicted in Table 2, it can be seen that the proposed DR

scheme outperforms majority of the existing systems and

exhibits the highest classification accuracy (97.93%) with

AlexNet FC6 layer’s features with LDA selected feature

vectors. Similarly, AlexNet FC7 features with LDA

dimensional reduction (analogous, feature selection) also

show a higher DR classification accuracy (97.28%) than

PCA-based feature selection (95.26%). In the comparative

performance assessment of Priya et al. in [49], where they

used geometrical-feature-based ROI identification, fol-

lowed by ANN-based feature extraction and SVM-based

classification, to perform two-class DR classification, it can

be found that they examined their performance only with a

single fundus image. Similar to our proposed pre-process-

ing technique, the authors [49] adopted grayscale conver-

sion and adaptive histogram equalization. In addition,

applying matched filter and fuzzy C-means clustering, they

performed segmentation. Furthermore, to perform feature

extraction, DWT was applied, and thus, eventual extracted

features were classified using fuzzy C-means segmentation.

From the pre-processed images, features were extracted for

DR classification (using ANN). However, they could

achieve an accuracy of merely 89.6%, which is much lower

than the proposed method. No doubt, the efficiency of the

DR classification is directly related to the optimal or

accurate ROI identification, feature extraction, and its

classification, and therefore, the lower accuracy (89.6%) of

[49] can be caused by the inherent computational limita-

tions of the fuzzy system, matched-filter-based segmenta-

tion that cannot ensure optimal ROI localization, especially

for fundus images having a highly complex architecture

and DR features. On the contrary, our proposed system

intends to apply well-calibrated multilevel enhancement by

first enriching image quality, ensuring optimal segmenta-

tion to lead the best possible DR-ROI feature extraction

and classification. In practice, there can be huge data to be

Table 3 Accuracy of diabetic retinopathy two-class characterization

VI Features Classification accuracy (%)

FC6 ADR6-PCA 90.15

ADR 6-LDA 97.93

FC7 ADR 7-PCA 95.26

ADR -7LDA 97.28

SIFT SIFT-FV-PCA 91.03

SIFT-FV-LDA 94.40

* ADR signifies proposed GMM detection preceded AlexNet DNN

Table 4 Comparative

performance
Techniques Classification accuracy (%) Sensitivity Specificity

FCM, shape, NN [50] 93.00 0.99 0.91

GLCM ? SVM [27] 82.00 0.98 0.89

DWT ? PCA [28] 95.00 0.99 0.88

HEDFD [29] 94.60 0.98 0.88

SVM ? NN [49] 89.60 0.98 0.83

DNN [51] 96.00 1 0.98

ADR6-PCA* 90.15 0.98 0.87

ADR6-LDA* 97.93 1 0.93

ADR7-PCA* 95.26 0.96 0.93

ADR-7LDA* 97.28 1 0.99

SIFT-FV-PCA* 91.03 0.97 0.89

SIFT-FV-LDA* 94.40 0.94 0.93

* ADR states the proposed GMM-based AlexNet features
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processed so as to enable accurate and swift DR classifi-

cation. In addition, the impact of the limitations of the

generic ANN algorithms such as local minima and con-

vergence on feature extraction and its precision cannot be

ignored. Therefore, the CNN-based DNN technique can be

stated as the better alternative for the traditional NN

algorithms. Considering time analysis, the simulation with

MATLAB takes four hours to process the complete 35,126

images. On the contrary, GMM- and SIFT-based features

have taken a relatively lower time (144 min); however,

they perform at relatively compromised classification

accuracy as compared to the AlexNet DNN-based DR

model.

6 Conclusion

In the last few decades, the human society has witnessed

numerous eye problems caused by diabetes globally.

Conventional DR employ a manual fundus image analysis

that needs experienced clinicians to identify, detect, and

analyze the presence of even a minute or very small feature

and its significance. In addition, it is highly time-consum-

ing and difficult. To enable a better solution for DR,

developing an automatic CAD solution can be vital; how-

ever, ensuring optimal accuracy has always been a ques-

tion. In this paper, a CNN-based CAD system was

developed for DR classification. The implementation of a

multilevel optimization measure, including efficient pre-

processing, enhanced GMM-based background subtraction,

Caffee–AlexNet-based DNN for DR feature extraction, and

n-fold cross-validation-based SVM for two-class classifi-

cation, exhibited accurate DR classification. The imple-

mentation of the enhanced GMM in conjunction with CCA

enabled efficient background subtraction and precise reti-

nal blood vessel as well as key feature detection. As a

result, this enabled the proposed system to perform a highly

accurate DR classification. Unlike major existing approa-

ches, where the complete fundus images are processed by

CNN for classification, the proposed scheme extracted

AlexNet features only for the identified or the identified

ROI (blood vessels, hard exudates, micro-aneurysm, and

hemorrhages). It significantly enhanced the efficiency of

the CAD system. The implementation of AlexNet CNN

with CaffeeNet enabled highly dimensional feature

extraction that eventually provided a sufficient feature to

characterize the fundus images into two classes, namely,

DR and non-DR. The results revealed that the highly

dimensional (4096-dimensions) features at the fully con-

nected CNN layers (FC6 and FC7) contain a significant

information to be used for DR classification purposes. This

study also revealed that the selection of significant features

can be vital to ensure a higher efficiency with minimum

time and processing resource requirements. It is of great

significance for CAD-DR solutions. The proposed DNN

model in conjunction with the polynomial SVM and ten-

fold cross-validation exhibited the highest DR classifica-

tion accuracy with AlexNet FC6 LDA features (97.93%).

AlexNet FC7 features with LDA dimensional reduction

(analogous, feature selection) also showed a higher DR

classification accuracy (97.28%) than PCA-based feature

selection (95.26%). AlexNet DNN outperformed other

feature extraction approaches such as spatial invariant

Fourier transform, which shows a DR classification accu-

racy of 91.03% with PCA feature selection and 94.40%

with LDA feature selection. The overall results affirmed

that AlexNet DNN with higher order CNN features can be

an effective solution to enable efficient DR detection. In

the future, multiclass classification can be performed to

make the proposed CAD-DR system more effective and

useful for diagnosis purposes. With a novel intention to

explore the effectiveness of both the enhanced GMM and

AlexNet DNN for DR applications, feature extraction was

performed over GMM-based segmented and localized ROI.

However, in the future, the comparison can be made with

AlexNet features extracted from the original fundus image

without applying GMM-based segmentation and ROI

identification.
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