Table 4.
Techniques | Classification accuracy (%) | Sensitivity | Specificity |
---|---|---|---|
FCM, shape, NN [50] | 93.00 | 0.99 | 0.91 |
GLCM + SVM [27] | 82.00 | 0.98 | 0.89 |
DWT + PCA [28] | 95.00 | 0.99 | 0.88 |
HEDFD [29] | 94.60 | 0.98 | 0.88 |
SVM + NN [49] | 89.60 | 0.98 | 0.83 |
DNN [51] | 96.00 | 1 | 0.98 |
ADR6-PCA* | 90.15 | 0.98 | 0.87 |
ADR6-LDA* | 97.93 | 1 | 0.93 |
ADR7-PCA* | 95.26 | 0.96 | 0.93 |
ADR-7LDA* | 97.28 | 1 | 0.99 |
SIFT-FV-PCA* | 91.03 | 0.97 | 0.89 |
SIFT-FV-LDA* | 94.40 | 0.94 | 0.93 |
* ADR states the proposed GMM-based AlexNet features