Skip to main content
. 2017 Aug 31;8(1):41–57. doi: 10.1007/s13534-017-0047-y

Table 4.

Comparative performance

Techniques Classification accuracy (%) Sensitivity Specificity
FCM, shape, NN [50] 93.00 0.99 0.91
GLCM + SVM [27] 82.00 0.98 0.89
DWT + PCA [28] 95.00 0.99 0.88
HEDFD [29] 94.60 0.98 0.88
SVM + NN [49] 89.60 0.98 0.83
DNN [51] 96.00 1 0.98
ADR6-PCA* 90.15 0.98 0.87
ADR6-LDA* 97.93 1 0.93
ADR7-PCA* 95.26 0.96 0.93
ADR-7LDA* 97.28 1 0.99
SIFT-FV-PCA* 91.03 0.97 0.89
SIFT-FV-LDA* 94.40 0.94 0.93

* ADR states the proposed GMM-based AlexNet features