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Abstract Portable wireless ultrasound has been emerging

as a new ultrasound device due to its unique advantages

including small size, lightweight, wireless connectivity and

affordability. Modern portable ultrasound devices can offer

high quality sonogram images and even multiple ultra-

sound modes such as color Doppler, echocardiography, and

endovaginal examination. However, none of them can

provide elastography function yet due to the limitations in

computational performance and data transfer speed of

wireless communication. Also phase-based strain estimator

(PSE) that is commonly used for conventional elastography

cannot be adopted for portable ultrasound, because ultra-

sound parameters such as data dumping interval are varied

significantly in the practice of portable ultrasound. There-

fore, this research aims to propose a new elastography

method suitable for portable ultrasound, called the robust

phase-based strain estimator (RPSE), which is not only

robust to the variation of ultrasound parameters but also

computationally effective. Performance and suitability of

RPSE were compared with other strain estimators includ-

ing time-delay, displacement-gradient and phase-based

strain estimators (TSE, DSE and PSE, respectively). Three

types of raw RF data sets were used for validation tests:

two numerical phantom data sets modeled by an open

ultrasonic simulation code (Field II) and a commercial

FEA (Abaqus), and the one experimentally acquired with a

portable ultrasound device from a gelatin phantom. To

assess image quality of elastograms, signal-to-noise

(SNRe) and contrast-to-noise (CNRe) ratios were measured

on the elastograms produced by each strain estimator. The

computational efficiency was also estimated and compared.

Results from the numerical phantom experiment showed

that RPSE could achieve highest values of SNRe and

CNRe (around 5.22 and 47.62 dB) among all strain esti-

mators tested, and almost 10 times higher computational

efficiency than TSE and DSE (around 0.06 vs. 5.76 s per

frame for RPSE and TSE, respectively).

Keywords Elastography � Elastograms �
Portable ultrasound � Doppler � Phase-shift � Strain
estimation

1 Introduction

Elastography refers to an imaging modality for describing

various elastic attributes of tissues using ultrasound tech-

niques [1, 2]. It uses palpation principle to detect and

classify pathological lesions by comparing relative strains

in different tissues [3]. Since pathological lesions are

normally stiffer than benign tissues, strains in malignant

lesions are smaller than those in surrounding tissues when

forces are applied [4]. Based on this principle, elastography

can visualize mechanical properties of soft biological tis-

sues to facilitate the detection of malignant lesions. For

instance, elastography can provide various clinical infor-

mation in breast [5, 6] and prostate [7]. It is also useful to

monitor thermal changes and ablation [8], to assess tendon

motion [9], and to measure the stiffness of muscle and

tendon [10, 11]. However, elastography function is pro-

vided only by high-end console style ultrasound scanners

& Bonghun Shin

bh3shin@uwaterloo.ca

1 Department of Mechanical and Mechatronics Engineering,

University of Waterloo, 200 University Ave. W, Waterloo,

ON N2L 3G1, Canada

2 Advanced Medical Technology Laboratory, Healcerion Co.,

Ltd, 38-21 Digital-ro, 31-gil, Guro-gu, Seoul, Korea

123

Biomed. Eng. Lett. (2018) 8:101–116

https://doi.org/10.1007/s13534-017-0052-1

http://crossmark.crossref.org/dialog/?doi=10.1007/s13534-017-0052-1&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s13534-017-0052-1&amp;domain=pdf


(e.g. Philips iU22 xMATRIX; Hitachi HI VISION Ascen-

dus) due to the requirements for heavy computational

loads.

Recently, portable ultrasound is emerging as a new

ultrasound device that is considerably smaller and lighter

than the conventional console style ultrasound scanners.

Its high portability and mobility allow practitioners to

make diagnostic and therapeutic decisions on site in real-

time without having to take the patients out of their envi-

ronment. This makes the portable ultrasound an attractive

medical modality particularly for harsh and remote sites

[12]. Some of the modern portable ultrasound devices and

their weights are summarized in Table 1. Typically, the

weight is less than 3 kg, and the size is comparable to or

smaller than a laptop computer, so it can be easily hand-

carried to the patient’s bedside in or out of hospital envi-

ronment. These lightweight units, therefore, now have wide

range of applications including prehospital, austere and

remote ultrasound. Furthermore, wireless portable ultra-

sound can be a useful tool for veterinarians to examine

large animals in the farm or out of hospital.

Although recent portable ultrasound devices offer high

image quality and multiple ultrasound modes, none of them

offers elastography function, mainly due to the limitations

of hardware performance and data transfer speed of wire-

less communication. Particularly, typical strain estimation

processes using signal correspondence function and heavy

image processing requires high computational complexity,

which is hard to be achieved by portable ultrasound system.

Note that a conventional console style ultrasound device

performs large proportion of computation for elastography

using dedicated hardware that is specially designed to

perform substantial amount of data acquisition (i.e. 192

channels of echo data with 20 MHz sampling rate) and

sophisticated image processing. Portable ultrasound devi-

ces, whereas, cannot call on dedicated hardware for such

computation; instead, they have to utilize wireless-con-

nected mobile device or laptop computer for elastography

computation. Although computing power of laptop com-

puter has been increasing rapidly, it is still not comparable

to that of dedicated hardware. Furthermore, wireless

communication cannot ensure consistent and stable data

transfer speed between the ultrasound transducer and the

computing device.

To overcome the limitations without significant

improvement of the hardware system, it is essential to

employ an efficient strain estimation method that requires

minimal computational resources while providing high

quality elastography. Many strain estimation methods for

elastograhpy have been proposed to assess the map of

strain distribution induced by externally or internally

applied loading; they can be classified into three main

categories: time-domain-based, spatial-domain-based and

phase-based. Time-domain-based strain estimation meth-

ods such as time-delay strain estimation (TSE) [1] estimate

the displacement using the time delays between two data

sets acquired at different time points. Strains are calculated

from the time delay generally obtained by cross-correlation

of pre- and post-compression radiofrequency (RF) echo

signals (Fig. 1a), i.e.

e1 ¼
t1b � t1að Þ � t2b � t2að Þ

t1b � t1a
; ð1Þ

where t1a and t1b are the arrival times of the pre-com-

pression echoes from the two reference windows (proximal

and distal), respectively, and t2a and t2b are the arrival

times of the post-compression echoes from the same win-

dows, respectively.

Space-domain-based strain estimation methods such as

displacement-gradient strain estimator (DSE) [5, 6] directly

estimate the displacement in compressed region using

digital image correlation (DIC) technique which measures

the degree of deformation by comparing two ultrasound B-

mode images of the same region acquired at two different

stages, i.e. pre- and post-compression. Strains are estimated

by taking the gradients of the displacements (Fig. 1b):

e1 ¼
x1b � x1að Þ � x2b � x2að Þ

x1b � x1a
;

e2 ¼
y1b � y1að Þ � y2b � y2að Þ

y1b � y1a
;

ð2Þ

where x1a; y1að Þ and x1b; y1bð Þ are the coordinates of the

proximal and distal windows in the pre-compression

image, respectively, and x2a; y2að Þ and x2b; y2bð Þ are the

Table 1 Weight of

portable ultrasound devices
Model Manufacturer Weight (kg)

SononSite 180 FUJIFILM (Bothell, WA, USA) 2.4

Philips Optigo Philips (Andover, MA, USA) 3.4

GE V Scan GE Healthcare (Little Chalfont, UK) 0.39

Micro Q.V. Advanced Medical System (Banbury, UK) 0.9

Primedic Handscan Metrax GmbH (Rottweil, Germany) 2.2

Tringa Linear VET Esocate (Genova, Italy) 0.8

Sonon 300C Healcerion (Seoul, South Korea) 0.39
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coordinates of the same windows in the post-compression

image, respectively.

In phase-based strain estimation (PSE) methods, the

strain can be obtained from the measure of strain rate

acquired by Doppler tissue imaging techniques, as tem-

poral integration of the strain rate is equivalent to the

spatial derivative of the velocity [13]. Depending on the

velocity measures at each point in the region of interest, the

amount of the deformation of tissues and the speed of the

deformation caused by an applied external compression

can be estimated. Typically, the axial differentiation of

velocity field DV is calculated by autocorrelation algorithm

[14] based on the assumption that the speed of sound c,

sampling frequency Ts, and the pulse repetition period TPR
are the known constants. Then, strains can be defined as

e1 ¼
2

c

TPR

Ts
DV : ð3Þ

However, in portable ultrasound, the pulse repetition per-

iod is equivalent to the data dumping interval via Wi-Fi

network, which varies significantly depending on the size

of dataset and/or CPU load; thus it cannot be regarded as

constant. Furthermore, the speed of sound varies depending

on the acoustic impedance of tissues. Therefore, although

PSE is computationally very efficient, it cannot be adopted

for portable ultrasound in its current form.

In this study, we propose a new strain estimation

method, called the robust phase-based strain estimation

(RPSE), which is robust to the variations ultrasound

parameters such as the speed of sound, sampling interval

and pulse repetition period, thus can overcome the limita-

tions of portable ultrasound devices in implementing

elastography function. Furthermore, the RPSE algorithm is

computationally very efficient, so it can be operated in

wireless-connected mobile device or laptop computer

without adding much computational burden. For the vali-

dation of the proposed method, the quality of the elas-

tograms produced by RPSE are evaluated and compared

with those by other strain estimation methods by means of

image quality measures and computation speed.

2 Robust phase-based strain estimation

2.1 Velocity estimation

The fundamental Doppler equation expresses the frequency

shift (Doppler frequency) f of acoustic energy scattered

from a target moving at some velocity V in terms of the

frequency of the incident wave fc, the speed of sound c in

the propagation medium, and the angle h between the

direction of motion and the direction of sound propagation

as

f ¼ 2fc
V

c
cos h: ð4Þ

This implies that the Doppler frequency carries information

about the axial velocity Va ¼ V cos hð Þ of the moving

reflector. If the axial velocity is sufficiently slower than the

speed of sound c, the axial velocity can be obtained as

Va ¼
c

2

f

fc
ð5Þ

In the practice for elastography, the wave direction is

usually identical to the moving direction, so h can be

regarded as zero. Therefore, the axial velocity Va can be

estimated by determining only the Doppler frequency f ,

assuming that c and fc are known and constant. Since this

conventional Doppler method uses information from a

relatively narrow band of frequencies to measure the phase

Fig. 1 Principles of

conventional strain estimation

methods: a time-delay strain

estimation (TSE) and

b displacement-gradient strain

estimation (DSE)
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changes in the carrier frequency, it is also called narrow-

band Doppler.

2.2 1D autocorrelation

In 1985, Barber et al. [15] proposed a phase-coherent

Doppler velocity estimator based on 1D autocorrelation.

This method estimates the mean Doppler frequency f by

measuring I and Q components of the reflected pulsed

signals at different time frame (slow-time axis), i.e.

f ¼ 1

2pTPR
arctan

Im c 0; 1ð Þ½ �
Re c 0; 1ð Þ½ � ¼

1

2p
arg c 0; 1½ �f g

TPR
ð6Þ

where c 0; 1½ � is the autocorrelation function of the RF

signals at lags in slow-time axis, TPR is pulse repetition

period (slow-time sampling rate), and arg c 0; 1½ �f g is the

phase of c 0; 1½ �. By combining (5) and (6), the axial

velocity is obtained as

Va ¼
c

2fc

1

2p
arg c 0; 1½ �f g

TPR
: ð7Þ

Using the velocity difference between two reference points,

strain between the points can be calculated (Eq. 3). High

computational efficiency of 1D autocorrelation algorithm

has made this a suitable algorithm for real-time elastog-

raphy. However, due to stochastic nature of the RF signal

and the variations of c and fc, derived Va usually exhibits

large fluctuations [16].

2.3 2D autocorrelation

To reduce the variance of the velocity estimates, Wilson

[17] proposed broadband pulsed Doppler based on 2D fast

Fourier transform by considering RF data as a 2D function

of depth and time. He showed that the 2D FFT of RF data

from a moving target forms a line whose slope is propor-

tional to the target velocity. Loupas et al. [18] extended

Wilson’s work to discrete limited-duration signals by

examining the case of an ideal point target. They showed

that 2D spectrum of a discrete version of backscattered RF

signal is zero apart from a line passing though the origin of

the 2D frequency plane with a slope equal to

f

fc
¼ 2V

c
ð8Þ

which is in principle the same as conventional narrowband

Doppler equation. Equation (8) also implies that although

mean RF center frequency fc may fluctuate randomly,

corresponding mean Doppler frequency f tracks these

fluctuations so that their ratio is always constant and pro-

portional to the mean axial velocity. The center frequency

can be estimated using the autocorrelation of the signal in

the depth direction (fast-time axis) as

fc ¼
1

2pTs
arctan

Im c 1; 0ð Þ½ �
Re c 1; 0ð Þ½ � ¼

1

2p
arg c 1; 0½ �f g

Ts
ð9Þ

where Ts is the sampling interval (fast-time sampling rate).

By combining Eqs. (6), (8) and (9), the mean velocity V

evaluated by 2D autocorrelator can be expressed as

V ¼ c

2

Ts

TPR

arg c 0; 1½ �
arg c 1; 0½ � ¼

c

2

Ts

TPR
C ð10Þ

where C ¼ arg c 1; 0½ �= arg c 0; 1½ �. Since Eq. (10) does not

include center frequency term fc anymore, the velocity

estimated by 2D autocorrelation shows much less fluctua-

tion than the one by 1D autocorrelation (Eq. 7); however, it

is still a function of the sampling rate Ts and the pulse

repetition period (sampling interval between frames) TPR.

In portable ultrasound, TPR is equivalent to data-dumping

interval via Wi-Fi network that cannot be constant, but

varies with RF data file size and wireless communication

environment. Therefore, the 2D autocorrelation cannot be

directly applied to the elastography for portable ultrasound.

2.4 Strain estimation using 2D autocorrelation

The axial strain of a segment that has been deformed along

loading direction is defined as

e ¼ DL
L0

¼ L� L0

L0
ð11Þ

where DL is the difference between the final length L and

initial length L0 of the segment.

In elastography, it can be assumed that an ultrasonic

transducer transmits waves toward an object moving with

an instantaneous velocity V as depicted in Fig. 2. If a

segment is defined as the region of axial length L0, and the

upper and the lower endpoints of the segment are away

from the transducer by the distance k1 and k2, respectively
(Fig. 2), the echo delays from the upper and the lower

endpoints at time T0 þ TPR are

s1 ¼
2 k01 � k1
� �

c
; and s2 ¼

2 k02 � k2
� �

c
; ð12Þ

respectively. Since L0 ¼ k2 � k1 and L ¼ k02 � k01, the

axial strain can be written with echo delays by combining

Eqs. (11) and (12) as

e ¼ c

2L0
s2 � s1ð Þ ¼ c

2L0
Ds: ð13Þ

The change in the length of the segment

DL ¼ TPR V2 � V1ð Þ, so the echo delay Ds is related to the

velocity as
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Ds ¼ 2TPR

c
V2 � V1ð Þ: ð14Þ

By substituting Eq. (14) into Eq. (13), the speed of sound c

is canceled and the axial strain can be rewritten as

e ¼ TPR

L0
V2 � V1ð Þ: ð15Þ

Now let’s consider an axial segment along single scan line.

If the segment is centered at m depth samples with the

upper and lower endpoints given by m1 ¼ m� Dm=2 and

m2 ¼ mþ Dm=2, the axial length of the segment is

L0 ¼ Dm
c

2
Ts; ð16Þ

where the tunable parameter Dm controls the length of the

axial length of the segment. By substituting Eq. (16) into

(15) and rewriting V1 and V2 using Eq. (10), the local axial

strain can be rewritten as

e ¼ TPR

Dm c
2
Ts

c

2

Ts

TPR
C2 � C1ð Þ ð17Þ

that can be further simplified as

e ¼ C2 � C1

Dm
; ð18Þ

where C1 and C2 are the 2D autocorrelation values at both

endpoints of the segment.

Note that Eq. (18) contains only segment length Dm and

the phase angle C at the upper and lower end points of the

segment, and is not affected by sampling intervals along

depth (Ts) and frame (TPR). Therefore, although data

dumping interval is not consistent in portable ultrasound,

strain estimation accuracy is not degraded, which makes

the proposed RPSE method as a feasible strain estimator

for the elastography in portable ultrasound.

2.5 Least-squares strain estimation

The local axial strain estimator in Eq. (18) only uses the

autocorrelation samples at the endpoints m1 and m2, which

can cause strain estimate very sensitive to signal noise.

Assuming that the 2D autocorrelator C in Eq. (10) is linear

along the depth within the segment, where the segment is

centered at depth m, then the autocorrelation relationship

can be rewritten as

C m½ � ¼ a �mþ b; ð19Þ

where the index m is a natural number restricted by

m1 �m�m2: The relationship can be rewritten by the

matrix form as C ¼ A
a

b

� �
. In case only the inaccurate

(noisy) measured vector bC is known and the true vector C
is unknown, the sum of the squared error between the linear

model and the measured autocorrelation is minimized by

the least-squares method, and the minimized ba can be

regarded as the axial strain.

2.6 Elastographic processing

Strain estimators generally compute the average strain

experienced over the small time-period. When the strains

are generated by periodic forces, the frame-to-frame strain

values are not only changed periodically but also contam-

inated with significant noise, so the strain images are too

crude to illustrate the relative stiffness in elastogram. In

order to improve the contrast of relative stiffness of the

regions, an elastographic post processing has been devel-

oped [14] by combining statistical thresholding and data

smoothing. In this study, the mean (l) and the standard

deviation (r) of a strain image are calculated and the strain

magnitudes are thresholded to the range l� 3r. Afterward,
median filter is applied for data smoothing, i.e. a grey value

of a pixel is replaced with the median of m by n matrix

around the pixel to reduce the local noise and to improve

the visual appearance of the elastographic images.

3 Methods

This section describes the numerical simulation and

experimental methods to validate the performance of RPSE

method.

3.1 Numerical phantom data sets

A numerical phantom of the size 40� 50� 10 mm with a

stiff cylindrical inclusion (10 mm) in a soft matrix was

modeled using commercial finite element analysis (FEA)

Fig. 2 Principle of RPSE: ultrasonic transducer transmits waves

toward a segment (left). The lower (farthest away from the

transducer) and upper endpoints of the segment are moving with an

instantaneous velocity V2 and V1, respectively (right). As a result, the

segment length L0 at t ¼ T0 is changed to L at t ¼ T0 þ TPR

Biomed. Eng. Lett. (2018) 8:101–116 105
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code (Abaqus/CAE 6.10) (Fig. 3, left). The FEA model

was meshed with approximately 427,000 3D quadratic

tetrahedron elements and 77,000 nodes. The elastic mod-

ulus of the matrix and the inclusion was set to 20 kPa and

100 kPa, respectively, mimicking a carcinoma in a breast

tissue. Poisson’s ratio of 0.49 was applied to the whole

phantom. The movement in the vertical direction at the

bottom of the phantom was constrained while 0.1% axial

compressive strain was applied to the top surface. We

selected 0.1% compression [0.05 mm, 0.11 k (wave-

length)] because it is within the correlation range of all

strain estimators. The coordinate of each node was saved to

generate the deformation field data sets.

Field II code [19, 20], a Matlab-based ultrasound sim-

ulation code, was used to add random scatters to the nodal

displacements and generate the corresponding pre- and

post-deformation RF signal data from the numerical

phantom (Fig. 3, center). The amplitudes of the random

scatters were kept constant throughout the phantom; thus

the inclusion could not be detected in the RF signal or

B-mode image. In order to simulate both the conventional

and the portable ultrasound devices, two kinds of linear

probe were virtually modeled by Field II. The first one was

modeled to have 192 ultrasound elements and 64 active

elements to mimic conventional ultrasound device, while

the other had 152 and 24 elements simulating portable ul-

trasound device. The numerical data sets acquired by these

virtual probes are called NP-64 and NP-24, respectively, in

the rest of the paper. Other acoustic parameters were set to

the same values in both phantoms: the center frequency of

the transducer was placed at 3.5 MHz and the sampling

rate of RF signals was set to 28 MHz. The speed of sound

through the phantom was set to 1540 m/s. In this setting,

Field II generated 128 simulated RF lines (A-lines) and

each RF line contained 2589 samples for the phantom

depth. Acoustic parameters used in the numerical phantoms

are listed in Table 2.

Various strain estimation methods (RPSE, TSE, PSE

and DSE) were applied to the simulated RF data sets to

estimate the strain fields (Fig. 3, right). The differences

between the strain estimates and the true strains computed

by the FEA were regarded as estimation errors.

3.2 Gelatin-based phantom data set

A gelatin-based phantom containing a stiffer cylindrical

inclusion was designed to mimic a carcinoma in a normal

tissue [5]. Following the protocol in Madsen et al. [21], the

inclusion and the matrix were made with the same con-

stituents to have the similar echogenicity (Fig. 4). The

fabricated phantom contained a cylindrical inclusion

(12 mm diameter) five times stiffer than surrounding

matrix (47 ± 2 vs. 9 ± 1 kPa).

A commercial portable ultrasound scanner, Sonon 300C

(Healcerion Ltd., Korea) with wireless connectivity via

Wi-Fi IEEE 802.11 b/g/n, was used for the experiment on

the gelatin phantom. SononPlayer, the debugging software

for developers, provided the functions to record and export

RF data of each ultrasound frame to personal labtop

computer for post-processing. Each recording consisted of

128 channels RF data (A-lines), acquired using a 3.5 MHz

convex probe with sampling frequency of 28 MHz.

Ultrasound RF data were acquired while the phantom

was being compressed with a portable ultrasound probe

fixed to a TA micro test machine (TA.xt Plus, Stable Micro

Systems Ltd, UK) with a 5 kgf load cell (Fig. 5). The

portable ultrasound probe was connected to the personal

computer via wireless connection. For the data acquisition,

the portable ultrasound probe was moved downward to pre-

compression position at which the curved probe perfectly

touched the surface of the phantom. Then the probe was

moved downward stepwise with the displacement at each

step corresponding to 0.1% strain increase in the phantom.

Fig. 3 Numerical phantom

modeled by FEA and Field II

code

Table 2 Acoustic parameters for numerical phantoms

NP-64 NP-24

Phantom size (mm3) 40 9 50 9 10 40 9 50 9 10

Center frequency (MHz) 3.5 3.5

Sampling frequency (MHz) 28 28

Width (mm) 0.44 0.44

Height (mm) 5 5

Kerf (mm) 0.022 0.022

Number of elements 192 152

Tx elements 64 24

Rx signals considered 128 128

Tx/Rx focus (mm) 50 50
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An ultrasound frame was recorded in the computer via

wireless communication at each step. 0.1% strain (equiv-

alent to 0.130 mm displacement) was chosen as a step size,

because the corresponding phase change [0.29k (wave-

length)] was within the detectable limit of PSE and RPSE

(0.5k). This was repeated until 1% compressive strain was

reached in the phantom (total 11 frames).

3.3 Implementation of strain estimators

TSE, PSE, RPSE and DSE were implemented using

MATLAB (The MathWork Inc., MA, USA) as conceptu-

ally illustrated in Fig. 6. The algorithms for each strain

estimator are briefly described in this section.

TSE [1] was based on the time delay of raw RF signals

(Fig. 6a), which was found by the correlation function as

the peak of correlation between the pre- and post-com-

pression signals. Since FFT-based correlation is signifi-

cantly faster and is also equivalent to linear convolution, it

was selected as the TSE algorithm. Window size for cor-

relation was chosen to be 45 samples (1.237 mm) for all

data sets. In addition, subsample algorithm was

implemented to enhance the estimation accuracy by

adopting cosine fitting method using 3 points adjacent

maximum correlation point. Least-squares strain estimation

was also employed to compute the strain distribution that is

the slope of fitted displacement curve.

For implementing PSE and RPSE, phase delay between

a pair of ultrasound analytic signals formed with the RF

data and its Hilbert transform was first estimated (Fig. 6b,

c). Since each data frame of both numerical and gelatin

phantom data sets was acquired from time-independent

systems (data was dumped at each displacement), pulse

repetition period (TPR) cannot be assigned as a constant

value; thus the conventional PSE method can not be

implemented. For the comparison with other strain esti-

mators, pulse repetition periods of gelatin and numerical

phantom were set to 11, 4 s, respectively, which produced

the similar scale of strain values to other methods. In RPSE

(Fig. 6c), strains were directly estimated using 2D auto-

correlation (Eq. 15). Phase unwrap function in MATLAB

was performed to expand the phase limit of PSE and RPSE

up to a half wavelength (0.5 k) by preventing aliasing.

Least-square method was also utilized to compute the

curve-fitted slope of phase delay and the corresponding

strain distribution.

Since DSE directly estimates displacement distribution

from spatial domain, the raw RF data should be converted

to B-mode image using Hilbert transform and log-com-

pression (Fig. 6d). In addition, bi-interpolation was con-

ducted to increase data resolution of B-mode image

because sampling interval in the axial direction is signifi-

cantly higher than that in the lateral direction (typically

more than 10 times) [22]. A block matching algorithm

based on 2D fast normalized cross-correlation (FNCC)

calculated the displacements of the selected grids in a pair

of pre- and post- compression B-mode images. 2D sub-

sample method using a second order polynomial equation

was used to enhance the accuracy of the displacement

estimate. Then the strain distributions can be estimated by

finding the 2D gradient function from the displacement

field. The detailed block matching algorithm used in this

study is provided in the Ref. [5]. The distances between

grid points in both lateral and axial directions were set to

15 and 60 pixels, respectively, considering computation

efficiency and image resolution. The side lengths of

squared blocks centered at grid points for both the pre- and

post-compression B-mode images were 45 and 68 pixels,

respectively.

3.4 Image quality measures

Strain errors were quantified using signal-to-noise ratio

(SNRe) and contrast-to-noise ratio (CNRe) that were

employed as metrics for the quality of the elastograms. The

(a) (b) (c)

Fig. 4 Schematic of phantom fabrication procedure: a 5% gelatin

solution is poured into the mold with the pipe insert; b After gelatin is

set, one side plate of mold and the insert are taken out; and c 20%

gelatin solution is poured into the empty hole to form the inclusion

Fig. 5 Experiment setup for the elastographic phantom test using

portable ultrasound
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elastographic SNRe identifies the quantitative measure-

ment of the accuracy and precision of the elastograms, and

is defined as [23]

SNRe ¼ ms

rs
; ð20Þ

where ms is the mean value of the strain, and rs is the

standard deviation of the measured strain. The elasto-

graphic CNRe is an important parameter to determine the

detectability of a stiff lesion in elastograms and is defined

as [24]

CNRe ¼ 2 mo � mið Þ2

r2o þ r2i
; ð21Þ

where mi;mo; r2i ; and r2o are the mean and the variance

values for the inside (subscript i) and the outside (subscript

o) of the lesion, respectively.

4 Results and discussion

RPSE, TSE, DSE and PSE were applied to the numerical

data sets acquired from the numerical phantoms with vir-

tual probes and the experimental data sets from the gelatin

phantom with the portable ultrasound device. Virtual

probes with 24 and 64 active elements were used to sim-

ulate portable ultrasound device and conventional one,

respectively. Displacement field and elastogram produced

by each estimator were investigated to evaluate their esti-

mation accuracy. Computational efficiency was also

assessed by measuring the computation time spent by each

algorithm to generate elastograms.

4.1 Displacement estimation

The displacement fields for two types of numerical data

sets (NP-64 and NP-24) estimated by RPSE, TSE, DSE and

PSE are presented in Fig. 7. The velocity fields by PSE are

scaled to match with displacement fields from the other

methods. Although the fields generated by RPSE (Fig. 7a,

e), TSE (Fig. 7b, f) and PSE (Fig. 7d, h) look similar, the

RPSE shows more delicate and smoother patterns with less

decorrelation errors than the others. On the other hand,

DSE (Fig. 7c, g) cannot generate the right pattern and the

field around the circular inclusion is significantly mingled.

No significant differences are found between the dis-

placement fields for NP-64 (virtually acquired by conven-

tional ultrasound) and NP-24 (portable ultrasound), but the

ones for NP-24 (Fig. 7e–h) show slightly lower resolutions

and more decorrelation errors than those for NP-64

(Fig. 7a–d), due to less number of active elements and

lower lateral resolutions. The above results can be quan-

titatively represented using the displacement plots mea-

sured along the vertical centerline across the displacement

fields (Fig. 7i, j). Note that the FEA plot was formed using

the noiseless data from FEA, while the other plots were

produced from the data in which slight random noises were

introduced by Field II. RPSE, TSE and PSE plots show

relatively good agreement with the FEA plot, with slight

variations caused by the random noises. The DSE plot

presents the smoothest trend; however, it is deviated from

the FEA plot in some regions. The displacement plots for

NP-64 (Fig. 7i) and NP-24 (Fig. 7j) show similar trends

over all, although slightly higher levels of deviations are

observed in NP-24 plot.

(a)

(b)

(c)

(d)

Fig. 6 Flow chart of strain

estimators: a time-based strain

estimator (TSE), b phase-based

strain estimator (PSE) c robust

phase-based strain estimator

(RPSE), and d displacement-

based strain estimator (DSE)
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The displacement fields for the gelatin phantom were

also analyzed (Fig. 8). Since the experimental data con-

tained higher level of signal noises than the numerical data,

the estimated displacement fields are generally nosier and

coarser than those of numerical phantom. The displacement

field generated by RPSE (Fig. 8a) shows smooth and

continuous pattern and the inclusion in the center is dis-

cernable with smaller displacement than the surrounding

matrix at the same depth. Both TSE and PSE displacement

fields (Fig. 8b, d) poses similar behavior to RPSE field, but

much noisier patterns are observed. A short black line in

the middle of the image indicates a spot where decorrela-

tion occurs. The result from DSE (Fig. 8c) shows blurred

and mingled pattern, especially in the soft matrix region

under the inclusion. The above behaviors are also

demonstrated by the displacement plots in Fig. 8e where

RPSE and TSE generate similar plots except a local peak

around the middle of the depth in TSE. DSE plot is the

(a) (b) (c) (d)

(e) (f) (g) (h)

(i)

(j)

Fig. 7 Displacement fields of

NP-64 numerical phantom

estimated by: a RPSE, b TSE,

c DSE, and d PSE; displacement

fields of NP-24 estimated by

e RPSE, f TSE, g DSE and

h PSE; displacement plots along

the vertical centerline of i NP-
64 and j NP-24 estimated by

FEA, RPSE, TSE, DSE and

PSE, respectively
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smoothest, but slightly deviates from the others in some

regions, which is consistent with the trends observed in

Fig. 7. The displacement plot for PSE converted from

velocity shows much higher variations than the others,

particularly after 35 mm depth.

4.2 Elastograms

Elastograms depicting the axial strain fields generated by

different strain estimators were presented in Fig. 9. The

elastograms generated by RPSE (Fig. 9a, e) successfully

describe the shape of the inclusion as a low strain region in

the center. Furthermore, the strains inside the inclusion and

in the outer matrix are almost constant, respectively, which

is in accordance with the FEA result. The elastogram of

NP-64 seems more delicate and smoother, but the one of

NP-24 also demonstrates clearly discernable patterns. In

TSE elastograms (Fig. 9b, f), the inclusion is readily

detectable; however, the shape of the inclusion is distorted

and the matrix strain is inconsistent and noisy. The elas-

togram of NP-64 (Fig. 9b) shows reasonably preserved

pattern, but that of NP-24 (Fig. 9f) is much more degraded,

particularly in matrix region. In DSE elastograms (Fig. 9c,

g), low strain region corresponding to the inclusion is

observed in the center, but the patterns are significantly

dispersed and degraded. PSE elastograms (Fig. 9d, h) also

show the existence of the inclusion; however, the shape of

the inclusion and the matrix strain are much more distorted

and noisier than RPSE.

Strain plots along the vertical centerline of numerical

phantoms (Fig. 9i, j) show the comparison between the

FEA results and those from strain estimators. For NP-64

(Fig. 9i), both RPSE and TSE plots show good agreement

with the FEA plot, and clearly indicate the existence of stiff

inclusion in the depth between 15 and 25 mm. DSE plot is

over-smoothed, and the shape and size of the inclusion are

hard to be identified. PSE plot shows similar trend to FEA

plot, however, it varies significantly within the inclusion

and in the matrix, particularly in the deep region between

30 mm and 35 mm depth. In the strain plots of NP-24

(Fig. 9j), the plots from strain estimators present generally

large deviations from the FEA plot; RPSE plot still follows

the true strain relatively well, while large differences are

found in TSE plot, particularly in the matrix region under

the inclusion. Over-smoothing is observed in DSE plot,

with much more serious manner than for that in Fig. 9i,

while PSE shows very noisy and degraded results.

As for the elastograms of gelatin phantom, RPSE

(Fig. 10a) describes the shape of the inclusion relatively

well. TSE also indicates the existence of the inclusion;

however, the strain patterns are highly noisy and scattered

both in the inclusion and in the surrounding matrix. In the

DSE elastogram (Fig. 10c), the shape of the inclusion is

unclear and dispersed; furthermore, there are many

degraded spots in the surrounding matrix. The elastogram

from PSE (Fig. 10d) fails to describe the inclusion and only

shows highly noisy pattern. In the strain plots along the

vertical centerline (Fig. 10e), the strain levels inside the

inclusion and the matrix are supposed to be constant,

(a) (b) (c) (d)

(e)

Fig. 8 Displacement field of

the gelatin phantom estimated

by: a RPSE, b TSE, c DSE and

d PSE, and e the displacement

plots along the vertical

centerline from RPSE, TSE,

DSE and PSE
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respectively; however, both RPSE and TSE plots show

significant variations. Since both plots present similar

trends, there is a possibility that gelatin phantom was not

cured uniformly and material properties were not

homogenous. Meanwhile, DSE plot shows significant

variations in an over-smoothed manner compared to the

other plots. PSE plot seems to deviate from the trend of the

other plots across the entire depth.

4.3 Image quality measures

Two image quality measures, SNRe and CNRe, were

evaluated over 11 frames of elastograms produced by

(a) (b) (c) (d)

(e) (f) (g) (h)

(i)

(j)

Fig. 9 Elastograms of NP-64

numerical phantom generated

by: a RPSE, b TSE, c DSE and

d PSE; elastograms of NP-24

generated by: e RPSE, f TSE,
g DSE and h PSE; the strain

plots along the vertical

centerline of i NP-64 and j NP-
24, estimated by FEA, RPSE,

TSE, DSE and PSE,

respectively
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RPSE, TSE, DSE and PSE, as presented in Fig. 11 using

box plots. Note that the width of the band plots along

vertical direction represents the dispersion of the measures

over the frames. For the elastograms of NP-64 numerical

phantom (Fig. 11a), SNRe plot associated with the RPSE

elastograms yields the highest median of 6.15, but the

dispersion is relatively large. The SNRe plot for TSE forms

very narrow band with the medians of 4.93, while that of

DSE is slightly more dispersed and the median is around

3.1. The lowest SNRe is delivered by PSE at around 2.5.

As for CNRe plots, RPSE produces the highest median of

53.52 dB followed by TSE (45.33 dB), PSE (34.87 dB)

and DSE (30.1 dB). The widths of the CNRe bands for

RPSE, PSE and DSE are approximately the same, while

that of TSE is widely dispersed. Overall, RPSE shows the

best SNRe and CNRe combination with the highest med-

ian, while the repeatability over 11 frames is approximately

the same.

For the elastograms of NP-24 (Fig. 11b), the SNRe for

RPSE also shows the highest median at around 5.22 fol-

lowed by TSE (3.27), DSE (2.74), and PSE (1.81). The

width of SNRe band is the narrowest for both RPSE and

PSE and becomes wider in the order of TSE and DSE. As

for CNRe, PSE yields slightly higher median at around

49.14 than RPSE (47.62 dB), followed by TSE (33.03 dB)

and DSE (23.07 dB). In regard to the dispersion of CNRe,

RPSE shows the narrowest level and the others are almost

same.

For the elastograms of gelatin phantom (Fig. 11c), the

SNRe for TSE shows slightly higher median at around 4.61

than RPSE (4.39); however, its dispersion is larger than

that for RPSE. PSE produces the lowest SNRe (1.98) and

DSE (3.88) shows the largest dispersion. As for CNRe,

both RPSE and TSE produce similar medians at around

40.65 and 40.44 dB, respectively, with almost equivalent

band width. PSE produces slightly lower CNRe

(30.43 dB), while DSE is associated with the lowest

median (16.77 dB) and much wider band width. Overall,

both RPSE and TSE show similar level of image qualities

while RPSE demonstrates slightly better repeatability.

In conclusion, the results of image quality measures

suggest that RPSE produces the best elastogram from the

numerical data sets; however, for the experimental data set

from gelatin phantom containing relatively high level of

noise, RPSE and TSE shows similar performance, while

PSE and DSE produces much lower SNRe and CNRe in all

cases.

4.4 Computational efficiency

Since the correlation function for strain estimation imposes

high computational load while portable ultrasound device

has limited resources, computational efficiency is one of

the critical factors in assessing the strain estimators for

portable ultrasound. Computation times were measured on

a Windows 7 computer (2.3 GHz, i7-3610 CPU with

(a) (b) (c) (d)

(e)

Fig. 10 Elastograms of the

gelatin phantom generated by:

a RPSE, b TSE, c DSE and

d PSE; e the strain plots along

the vertical centerline estimated

by RPSE, TSE, DSE and PSE
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12 GB RAM, ASUS-K55VD) using in-house developed

Matlab code.

Figure 12 presents the computational times for the strain

estimators to generate elastograms from numerical and

gelatin phantom data sets. Overall, both phase-based strain

estimation methods (RPSE and PSE) delivered much

higher computational efficiency than correlation-based

methods (TSE and DSE) by a significant margin. In order

to perform the calculations for the strain estimation over 11

frames from NP-64 numerical data set of the size 1600

(length) 9 (scanline) per each frame (Fig. 12a), RPSE and

PSE spent only 0.64 and 0.53 s, respectively, while 65.95

and 77.92 s were taken by TSE and DSE, respectively. For

each RF frame, RPSE and PSE recorded only 0.06 and

0.05 s computation times, while TSE and DSE spent

around 6 and 8 s. Similar amount of computation times

were required for the elastogram from NP-24 phantom

(Fig. 12b) by each method, with RPSE and PSE taking

much less time (around 0.6 s) than TSE and DSE (63.57

and 85.56 s, respectively). The computations of each frame

were 0.06, 0.05, 5.78, and 7.78 s by RPSE, PSE, TSE, and

DSE, respectively.

The gelatin phantom data set is composed of 11 frames

with each frame size of 2000 (length) 9 66 (scanline). The

computation of the whole frames took only 0.69 s for

RPSE and 0.59 s for PSE, while TSE and DSE recorded

66.25 and 99.46 s, respectively. Both RPSE and PSE also

show almost 100 times faster computational performance

than TSE and DSE in the strain estimation of each frame

(0.05–0.06 vs. 6.3–7.68 s). Computation time for each

frame using RPSE can be converted to 16.6 fps (frame per

second), that can be regarded as quasi-real-time processing.

This implies that RPSE, without using C programming and

MEX interface in Matlab, may be an efficient strain esti-

mation algorithm for portable ultrasound, and although not

as fast as high-end console style ultrasound device imple-

mented with dedicated hardware (around 30 fps), RPSE

running on a general personal computer have the potential

to provide near-real-time elastography.

4.5 Comparison of the strain estimators

Strengths and weaknesses of each strain estimator identi-

fied through the above evaluation processes can be sum-

marized as below. The strengths of RPSE lie in good

(a) (b) (c)

Fig. 11 SNRe and CNRe for the elastograms of: a NP-64, b NP-24, and c the gelatin phantoms
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accuracy of elastogram, high computational efficiency, and

easy parameter setting. As discussed above, RPSE

demonstrated the best image quality measures for numer-

ical phantoms and the faster computation speed than those

of both TSE and DSE. Moreover, parameter setting for

RPSE is straightforward because it directly estimates the

displacement from the phase delay between a pair of RF

data sets, and does not require any searching process. On

the other hand, RPSE has the phase limitation that it cannot

estimate the displacement larger than a half ultrasound

wavelength. However when the frame rate of ultrasound

devices is over 15 fps, the displacement between consec-

utive frames in elastography practice is mostly within this

limitation. Therefore, the phase limitation of RPSE is not a

significant concern to implement the elastography in the

portable US device. However, if the frame rate is very low,

or the movement of the target object is fast, this can cause a

problem.

The strengths of TSE are decent accuracy of elastogram

and the robustness in estimating the large displacement.

Unlike the RPSE with phase limitation, TSE does not have

the displacement limitation because the correlation

function finds the maximum correlation value throughout

the searching region of which the size can be easily

adjusted to increase the measurement range. However, due

to the correlation algorithm involving intensive computa-

tion, TSE requires higher computational cost and more

sensitive parameter settings than those for RPSE.

The benefit of DSE is that it uses B-mode images, and

does not require raw RF data sets. Since most of com-

mercial US scanners provide B-mode images, DSE can be

an affordable option to generate the elastograms from

various types of medical imaging modalities. However, the

accuracy of DSE is relatively low and the computational

cost is extremely high due to its 2D block matching algo-

rithm. Also, the parameter settings in DSE for its 2D cor-

relation is very sensitive and requires multiple empirical

trials to obtain acceptable quality elastogram images.

The PSE demonstrates the best computational efficiency

among all methods tested. However PSE delivers the

highest error levels (lowest SNRe values) because it is

sensitive to the variation of acoustic parameters. Moreover,

PSE cannot be directly applied to the current portable ul-

trasound device, because pulse repetition period, an

(a) (b) (c)

Fig. 12 Computational times spent by RPSE, TSE, DSE and PSE methods for generating the elastogram(s) of: a NP-64 numerical phantom,

b NP-24 numerical phantom, and c the gelatin phantom
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essential parameter for velocity estimation, is not constant,

but varies with data size and communication environment.

5 Conclusion

In order to overcome the limited computational perfor-

mance of portable ultrasound device in realizing elastog-

raphy function, we proposed a robust phase-based strain

estimator (RPSE) that is independent of the speed of sound,

sampling frequency and pulse repetition period. Thorough

the comparative study with other representative strain

estimation methods including time-delay and displace-

ment-gradient strain estimators, it was found that the RPSE

method can deliver the acceptable level of elastography in

terms of elastogram quality and computational efficiency.

For the numerical phantom data, RPSE showed the best

SNRe and CNRe values than the other methods. TSE also

generated decent quality of elastograms; however, due to

its high sensitivity to signal noise, estimated strain values

were locally deviated from the true strains estimated by

FEA. As for the experimental data set from the gelatin

phantom, RPSE and TSE demonstrated similar perfor-

mance, while PSE and DSE delivered much worse SNRe

and CNRe levels in all cases, respectively. One of the

greatest strength of RPSE lies in the computational effi-

ciency; it demonstrated almost 100 times faster computa-

tion speed than TSE and DSE in strain estimation.

Although PSE can perform the computation almost the

same as or even faster than RPSE, its accuracy is much

lower than RPSE. The results suggest that the RPSE be a

suitable algorithm to perform real-time elastography pro-

cessing for portable ultrasound. However, RPSE has the

limited displacement range between the frames, corre-

sponding to a half ultrasound wavelength; thus, it may not

be an optimum strain estimator for fast-moving tissues.
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