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Abstract
Blood flow in micro capillaries of diameter approximately 15–500 μm is accompanied with a
lower tube hematocrit level and lower apparent viscosity as the diameter decreases. These
effects are termed the Fåhraeus and Fåhraeus–Lindqvist effects, respectively. Both effects are
linked to axial accumulation of red blood cells. In the present investigation, we extend
previous works using a shear-induced model for the migration of red blood cells and adopt
a model for blood viscosity that accounts for the suspending medium viscosity and local
hematocrit level. For fully developed hematocrit profiles (i.e., independent of axial location),
the diffusion fluxes due to particle collision frequency and viscosity gradients are of equal
magnitude and opposite directions. The ratio of the diffusion coefficients for the two fluxes
affects both the Fåhraeus and Fåhraeus–Lindqvist effects and is found related to the capillary
diameter and discharge hematocrit using a well-known data-fit correlation for apparent blood
viscosity. The velocity and hematocrit profiles were determined numerically as functions of
radial coordinate, tube diameter, and discharge hematocrit. The velocity profile determined
numerically is consistent with the derived analytical expression and the results are in good
agreement with published numerical results and experimental data for hematocrit ratio and
hematocrit and velocity profiles.

Keywords Red blood cells . Axial accumulation . Apparent blood viscosity .Microvessels . Cell
depletion

1 Introduction

The reduction in the tube hematocrit (HT) in comparison with the discharge hematocrit (HD), in
the approximate capillary diameter range 15–500 μm [1], is known as the Fåhraeus effect [2]

Journal of Biological Physics (2018) 44:591–603
https://doi.org/10.1007/s10867-018-9508-5

* Rachid Chebbi
rchebbi@aus.edu

1 Department of Chemical Engineering, American University of Sharjah, Sharjah, United Arab
Emirates

http://crossmark.crossref.org/dialog/?doi=10.1007/s10867-018-9508-5&domain=pdf
mailto:rchebbi@aus.edu


and is attributed to high concentration of red blood cells (RBCs) in the core region of the area
of flow. The drop in the apparent viscosity, observed by Martini [3] and Fåhraeus and
Lindqvist [4], is called the Fåhraeus–Lindqvist effect. Most of the blood flow resistance in
the vascular system occurs in micro vessels with diameters in the range of 10–
300 μm [5]. The approximate range of blood vessel diameters is from 3 μm to
3 cm [6]. For a capillary diameter (D) below 7 μm and as low as 2.7 μm, both the
apparent viscosity and HT increase sharply. The mechanisms for changes of the
apparent viscosity with D are discussed in [7].

A recent review of blood viscosity models as a function of local hematocrit and/or shear
rate can be found in Hund et al. [8]. The models include, among others, the Krieger–Dougherty
model, the Quemada model, and a modified Krieger–Dougherty model by Hund et al.

Haynes [9] proposed a marginal zone theory in which RBCs concentrate in the core region,
while the outer zone is a RBC-free layer. Haynes assumed the outer zone thickness to be
uniform and independent of capillary diameter (D). Haynes’ approach using a two-zone
concept was extended in [1, 10–12]. Fournier [1] used a published relation for viscosity as a
function of hematocrit and assumed the viscosity to be uniform in the core region. Using
published data for apparent viscosity yielded results showing an increase in the relative outer
zone thickness with decreasing capillary diameter [1]. Sharan and Popel [10] considered the
suspending medium viscosity to be different from the plasma viscosity and used Pries et al.’s
data-fit correlations for both the hematocrit ratio HT/HD and the relative apparent viscosity of
blood [6]. Chebbi [11] extended the marginal zone theory of Haynes [9] and the developments
by Fournier [1] and Sharan and Popel [10] by considering viscous dissipation and microvas-
cular network problems involving bifurcations while using the correlation of Pries et al. for HT/
HD [6]. Sriram et al. [12] used the Quemada model to obtain the viscosity of the core region
layer. A numerical solution was obtained using the data-fitted equations in Pries et al. [6] for
calibration to obtain the cell-free layer thickness as a function of HD [12].

In a different development, Leighton and Acrivos [13] proposed mechanisms for particle
diffusion in non-uniform shear flow involving a flux in the direction of decreasing frequency
of interactions between particles, along with another flux in the direction of lower viscosity.
Phillips et al. [14] extended the work of Leighton and Acrivos [13], amended the forms of the
fluxes, and included them in a conservation equation for the particle concentration. Using the
Krieger–Dougherty model for blood viscosity [15], Phillips et al. [14] obtained an analytical
expression for the variation of the particle concentration as a function of radial position in
capillary flow, in agreement with the computational works of Weert [16] and Mansour et al.
[17]. Using the particle migration model of Phillips et al. [14] (also used in [16]) along with the
Quemada model for blood viscosity [18], Mansour et al. [17] found the flux coefficients to
depend on HT and dimensionless radial position. The effect of red blood cells’ elasticity [19]
on RBC migration is addressed in [20–22], with the model of Mavrantzas and Beris [23, 24],
proposed for polymer solutions, adopted for blood flow dynamics by including Fickian cell
migration in addition to elastic-stress induced migration instead of shear-induced migration as
in the Leighton and Acrivos model [13].

2 Governing equations

The hematocrit and velocity profiles satisfy the conservation of mass and momentum
equations.
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2.1 Hematocrit level profile

The hematocrit level H is defined as the RBC volume fraction. At steady state, the fully
developed hematocrit profile in capillary flow is only a function of the radial coordinate r. The
tube and discharge hematocrit levels HT and HD are cross-sectional averages defined as [25]:

HT ¼
∫
A
H dA

A
ð1Þ

HD ¼
∫
A
H vz dA

∫
A
vz dA

ð2Þ

For H and v functions of r only, the equations take the following form:

HT ¼ ∫R0 2πrHdr
πR2 ð3Þ

HD ¼ ∫R0 2πrHvzdr
πR2vav

ð4Þ

where R is the capillary tube inner radius.
The RBC conservation equation includes the accumulation term in addition to the advection

and the diffusion terms.

∂H
∂t

þ v!⋅∇H ¼ −∇ ⋅ J! ð5Þ

At steady state, the above equation reduces in the fully developed region to:

0 ¼ −
1

r
∂ rJ rð Þ
∂r

ð6Þ

where Jr is the total hematocrit flux in the radial direction. The Phillips et al. model
[14] (extending the work of Leighton and Acrivos [13]) is adopted for the diffu-
sional terms resulting from gradients in the hematocrit level, shear rate, and viscosity with

J r ¼ J c þ Jμ ð7Þ
where

J c ¼ −Kca2 H2 dσ
dr

þ Hσ
dH
dr

� �
ð8Þ

Jμ ¼ −KμσH2 a
2

μ
dμ
dr

ð9Þ
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in which a is the red blood cells radius and σ denotes the shear rate:

σ ¼ −
dvz
dr

ð10Þ

2.2 Velocity profile

The two boundary conditions are the no-slip condition at the wall:

B:C:1 at r ¼ R; vz ¼ 0 ð11Þ
and the symmetry condition at the centerline:

B:C:2 at r ¼ 0;
dvz
dr

¼ 0 or
dvz
dr

finite

� �
ð12Þ

Using the notations in Bird et al. [26], the momentum balance in the z-direction reduces to:

1

r
d
dr

rτð Þ ¼ −
dP
dz

ð13Þ

where dP/dz is the pressure gradient and the shear stress τ is given as a function of the shear
rate σ by:

τ ¼ μσ ð14Þ
Both terms in Eq. (13) are constant as one term of the equation depends on r and the other term
depends on z.

Integrating with respect to r while using:

τ finite at r ¼ 0 ð15Þ
gives

τ ¼ μσ ¼ −
dP
dz

r
2

ð16Þ

In dimensionless form, we have

dvz

dr
¼ −

r

2μ
ð17Þ

where

vz ¼ vz
Ωvav

; r ¼ r
R
;μ ¼ μ

μp
;Ω ¼ −

dP
dz

R2

vav μp
ð18Þ

Expressing vav as

vav ¼ ∫R0 2πrvzdr
πR2 ð19Þ
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in terms of the defined dimensionless variables yields

Ω ¼ 1

2 ∫10 vz r dr
ð20Þ

The Poiseuille equation defines the apparent viscosity as

μapp ¼
1

8
−
dP
dz

� �
R2

vav
ð21Þ

This gives a simple relationship between Ω and μapp:

Ω ¼ 8
μapp

μp
ð22Þ

Integrating the RBC conservation equation, Eq. (6), yields

J c þ Jμ ¼ C
r

ð23Þ

where C is an integration constant.
Jc and Jμ can be expressed in dimensionless form using Eqs. (8) and (9):

J c ¼ −Kc
a
R

� �2
H2 dσ

dr
þ Hσ

dH

dr

" #
; J c ¼ J c

Ωvav
;σ ¼ σ

Ωvav=R
ð24Þ

Jμ ¼ −KμσH2 a
R

� �2 1

μ

dμ

dr
; Jμ ¼ Jμ

Ωvav
ð25Þ

In addition, the fluxes are finite at the centerline:

J c and Jμ are finite at r ¼ 0 ð26Þ

Using Eqs. (23) and (26) shows that the integration constant C is zero. Substituting J c and
Jμfrom Eqs. (24) and (25), respectively into J c þ Jμ ¼ 0 yields after simplification:

H
dσ

dr
þ σ

dH

dr
¼ −ζσ

H

μ

dμ

dr
ð27Þ

where ζ is defined as Kμ/Kc.
Using the chain rule, along with σ ¼ r= 2μð Þ, Eq. (17), yields in dimensionless form:

r
dH

dr
1þ ζ−1

μ
H

dμ
dH

" #
¼ −H ð28Þ

Expressing Eq. (28) in dimensional form gives

r
dH
dr

1þ ζ−1
μ

H
dμ
dH

� �
¼ −H ð29Þ
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3 Hematocrit and velocity profiles

To solve for the hematocrit and velocity profiles, a viscosity model is required. In the present
work, the Krieger–Dougherty eq. [15] is adopted:

μ ¼ μp 1−
H
Hm

� �−n

ð30Þ

where n = 1.82 and Hm is the maximum hematocrit level.
The hematocrit and velocity changes are governed by Eqs. (17) and (28), subject to the two

boundary conditions:

H ¼ Hw at r ¼ 1 ð31Þ

vz ¼ 0 at r ¼ 1 ð32Þ
where Hw is the hematocrit level at the capillary wall.

Substituting for viscosity from the Krieger–Dougherty equation into the differential equa-
tions provides:

r
dH

dr
1þ ζ−1ð Þn

Hm
H 1−

H
Hm

� �−1
" #

¼ −H ð33Þ

dvz

dr
¼ −

r
2

1−
H
Hm

� �n

ð34Þ

Integrating Eq. (33) provides r as a function of H, in agreement with Eq. (30) in Ref. [14]
where the value of n = 1.82.

r ¼ Hw

H
Hm−H
Hm−Hw

� � ζ−1ð Þn
ð35Þ

Substituting for rand integrating Eq. (34) yields the following expression for the dimensionless
velocity profile:

vz ¼ H2
w

2Hn
m Hm−Hwð Þ2q ∫

H

Hw

Hm−Hð Þs
H3 Hm þ q−1ð ÞH½ � dH ; s ¼ 2ζ−1ð Þn−1; q ¼ ζ−1ð Þn ð36Þ

Using the dimensionless profiles, HT and HD can be calculated from:

HT ¼ 2 ∫
1

0
rHdr ð37Þ

HD ¼ 2Ω ∫
1

0
rHvzdr ð38Þ
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4 Analytical Solution for the Velocity Profile

The following Taylor series expansion is used:

Hm−Hð Þs ¼ Hs
m 1þ ∑

∞

k¼1
bkHk

� �
ð39Þ

where

bk ¼ −1
Hm

� �k s s−1ð Þ s−2ð Þ… s−k þ 1ð Þ
k!

ð40Þ

Substituting into Eq. (36) and integrating yields

vz ¼ H2
w Hs−n

m

2 Hm−Hwð Þ2q Hm Aþ q−1ð Þ B½ �

where

A ¼ 1

2
H−2

w −H−2� 	þ b1 H−1
w −H−1� 	þ b2ln

H
Hw

� �
þ ∑

∞

k¼3

bk
k−2

Hk−2−Hk−2
w

� 	
;B

¼ −
1

H
þ 1

Hw
þ b1ln

H
Hw

� �
þ ∑

∞

k¼2

bk
k−1

Hk−1−Hk−1
w

� 	 ð41Þ

5 Solution procedure

The data-fit relations obtained by Pries et al. [6] (based on many in vitro experimental values
for the apparent viscosity) are used. The expression found for the relative viscosity is given by
[6]:

μ ¼ μ
μp

¼ 1þ μ0:45−1
� � 1−HDð ÞC−1

1−0:45ð ÞC−1 ð42Þ

where:

μ0:45 ¼ 220 e−1:3D þ 3:2−2:44 e−0:06D
0:645

;C

¼ 0:8þ e−0:075D
� 	

−1þ 1

1þ 10−11 D12

� �
þ 1

1þ 10−11 D12 ð43Þ

Substituting the former equation into Eq. (42) yields a relationship that takes the following form:

μ ¼ μ
μp

¼ F HD;Dð Þ ð44Þ

where F is a lengthy expression that can be readily determined from Eqs. (42) and (43).
For given values of the discharge hematocrit HD and the apparent viscosityμ, it is possible

to find the capillary diameter D numerically by trial and error using the Regula–Falsi method.
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5.1 Krieger–Dougherty model parameters

The model parameters for blood flow modeling are summarized in Hund et al. [8]. The value
of n is close to 2 for blood, while it is theoretically 1.66 in the case of suspended solid spheres
[8]. The value used in [14, 16, 17] is 1.82.

The maximum hematocrit fraction Hm is thought to be in the range 0.98–1 [8]. The value
considered for Hm in [14] is 0.68 for solid spheres.

In the present model, we used n = 1.82. Changing n to 2 did not produce any
significant changes in the results. The value of Hm = 0.67 was selected for the purpose
of comparison with the published numerical results in [16, 17]. On the other hand, the
value of Hm = 0.98 (in the range recommended in Hund et al. [8]) was selected for
comparison with the numerical results of Sriram et al. [12] and the experimental data
[28–31] reported in [12].

5.2 Numerical procedure for ζ selected

The value of Hw is required in order to integrate Eqs. (33) and (34), while using the boundary
conditions, Eqs. (31) and (32).

(i) For given values of the discharge hematocrit HD and D, trial and error using the secant
method can be used to satisfy:

HD ¼ ∫10 rHvzdr

∫10 vz r dr
ð45Þ

(ii) If HT is provided, Hw is determined by trial and error to satisfy Eq. (37).
In both the cases (i) and (ii), the reduced apparent viscosity can be found as:

μapp

μp
¼ 1

16 ∫10 vz r dr
ð46Þ

Once Hw is found, the hematocrit ratio HT/HD can be found from the numerical integration
results.

5.3 Numerical procedure for the determination of ζ as a function of D and HD

For a fixed value of ζ, Hw, HT, HD, HT/HD and μapp/μp are determined as discussed in
Section 5.1. The proper value of D is determined so as to satisfy both Eqs. (45) and
(46):

F HD;Dð Þ ¼ 1

16 ∫10 vz r dr
ð47Þ

Using different values of ζ for a given value of HD provides the relation between ζ and
capillary diameter D.
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6 Results

6.1 Comparison with the results of Weert [16] and Mansour et al. [17]

Both numerical results were obtained in the case of blood flow with HT = 0.45 using
the ratio ζ = Kμ/Kc = 0.62/0.41 = 1.512, along with the Krieger–Dougherty viscosity
model for blood with n = 1.82. The values of Hm used in [16, 17] are close as seen
in Fig. 1 (about 0.66–0.67). The value Hm = 0.67 was selected in the present work.
The simulations in [17] were run using ANSYS Fluent CFD software. Weert [16]
used a Galerkin finite element simulation code. The profiles obtained for the hemat-
ocrit and the normalized velocity to the centerline value are shown in Figs. 1 and 2,
respectively. The present numerical results obtained by the Runge–Kutta integration of
Eqs. (33) and (34), are in excellent agreement with the analytical solution (Eq. (30) in
[14] for the hematocrit profile equivalent to the generalized Eq. (35) in the present
work with n = 1.82) and the derived analytical expression, Eq. (41) for the velocity
profile. Both profiles are in good agreement with the numerical solutions in [16, 17]
as seen from Figs. 1 and 2. The derived analytical expression, Eq. (41), is an infinite
series. Keeping only the first terms in the infinite series expansion (up to k = 10 in
Eq. (41)) was found sufficient (Figs. 1 and 2).

6.2 Comparison with Sriram et al.’s numerical results [12] and reported experimental
data [27–31]

Sriram et al. [12] compared their results for the velocity profile with the experimental
data of Long et al. [27] for HD = 0.335, pressure gradient = 3732 dyn/cm3 and R =
27.1 μm. The Krieger–Dougherty parameters used in the present work are n = 1.82
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Fig. 1 Comparison of the Runge–Kutta numerical integration results for the hematocrit profile (using Eqs. (33)
and (34)), the analytical solution, Eq. (30) in [14] (generalized Eq. (35) in the present work with n = 1.82) and the
numerical solutions in [16, 17] for the case HT = 0.45, using Kμ = 0.62, Kc = 0.41 (ζ = 1.512) and Hm = 0.67
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and Hm = 0.98. The velocity and hematocrit ratio profiles, shown in Figs. 3 (HD =
0.335) and 4 (HD = 0.405), are in favorable agreement with the experimental data in
[28–31]. The values obtained for ζ show higher values at larger values of R as can be
seen from Fig. 5.
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Fig. 2 Comparison of the Runge–Kutta numerical integration results for the normalized velocity profile (using
Eqs. (33) and (34)), the analytical solution, Eq. (41) and the numerical solutions in [16, 17] for the case HT =
0.45, using Kμ = 0.62, Kc = 0.41 (ζ = 1.512) and Hm = 0.67
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Fig. 3 Comparison of the normalized velocity profile results with the experimental data in [27] and the numerical
results in [12] for the case HD = 0.335, pressure gradient = 3732 dyn/cm3 and R = 27.1 μm
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7 Conclusions

The shear-induced model for the migration of red blood cells of Phillips et al. [14], extending
the model of Leighton and Acrivos [13], was used along with the Krieger–Dougherty model
for blood viscosity [15] to solve for fully developed velocity and hematocrit profiles. The
diffusion coefficients ratio for the viscosity gradient and particle collision frequency fluxes can
be determined as a function of capillary diameter and discharge hematocrit using the data-fit
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Fig. 4 Comparison of the hematocrit ratio results with the numerical results in [12] and the reported experimental
data [27–31] for the case HD= 0.405
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Fig. 5 Results for ζ =Kμ/Kc versus vessel radius R for the case HD = 0.405
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correlation for apparent blood viscosity of Pries et al. [6]. The analytical expressions for the
velocity and hematocrit profiles are consistent with the numerically determined values. In
addition, the numerical results are in favorable agreement with published numerical results and
experimental data for hematocrit and velocity profiles and hematocrit ratio. The present
simulations do not detect the change in the slope of the velocity profile near the wall as seen
from experimental data. This is apparently due to the fact that the model of Phillips et al. [14]
does not capture the free RBC zone when using the Krieger–Dougherty model for blood
viscosity. This point could be addressed in further investigations.
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