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Abstract
Purpose Schnyder corneal dystrophy (SCD) is a rare inherited disease that leads to gradual vision loss by the deposition of lipids
in the corneal stroma. The aim of this study is to report a novel pathogenic variant in the UBIAD1 gene and present clinical and
molecular findings in Polish patients with SCD.
Methods Individuals (n = 37) originating from four Polish SCD families were subjected for a complete ophthalmological check-
up and genetic testing. Corneal changes were visualized by slit-lamp examination, anterior segment optical coherent tomography
(AS-OCT), and in vivo confocal microscopy (IVCM).
Results In a proband with primarily mild SCD that progressed rapidly at the end of the fifth decade of life, a novel missense
pathogenic variant in UBIAD1 (p.Thr120Arg) was identified. The other studied SCD family represents the second family
reported worldwide with the UBIAD1 p.Asp112Asn variant. SCD in the remaining two families resulted from a frequently
identified p.Asn102Ser pathogenic variant. All affected subjects presented a crystalline form of SCD. The severity of corneal
changes was age-dependent, and their morphology and localization are described in detail.
Conclusion The novel p.Thr120Arg is the fourth SCD-causing variant lying within the FARM motif of the UBIAD1 protein,
which underlines a high importance of this motif for SCD pathogenesis. The current study provides independent evidence for the
pathogenic potential of UBIAD1 p.Asp112Asn and new information useful for clinicians.

Keywords Schnyder corneal dystrophy . UBIAD1 . Confocal microscopy . Optical coherent tomography . Pathogenic variant

Introduction

Schnyder corneal dystrophy (SCD; OMIM #121800) is a rare
autosomal dominant disease classified within the group of
stromal dystrophies (IC3D 2015, [1]) and caused by
UBIAD1 pathogenic variants [2–4]. SCD is characterized by
progressive opacification of both corneas resulting from ex-
cessive cellular and intracellular accumulation of cholesterol

and phospholipids in the corneal stroma. Lipid deposits may
take form of crystals, non-crystalline stromal opacity, or arcus
lipoides [2]. Chemical analysis of SCD corneas shows a ten-
fold higher content of cholesterol and fivefold higher content
of lipids compared to healthy corneas [5]. SCD prevalence in
the general population remains unknown. Early stages of the
disease may be asymptomatic and the diagnosis may be de-
layed until the occurrence of a distinct haze or crystals, com-
monly in the second decade of life [6]. While SCD scotopic
vision usually remains preserved until the late stages of the
disease, photopic vision deteriorates more rapidly with the
progression of corneal opacification [5, 7]. Patients complain
of decreasing visual acuity (VA) and glare which is caused by
light scattering from the surfaces of corneal crystals. In order
to recover vision quality in advanced stages of SCD, penetrat-
ing keratoplasty (PKP) is performed. In a group of 115 indi-
viduals from 34 SCD families, 54% of patients of at least
50 years and 77% of patients aged 70 or over were subjected
to PKP [5].
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To date, 27 non-synonymous point alterations of the
UBIAD1 gene causative of SCD have been described
[8–11]. The most frequent pathogenic variants include
p.Asn102Ser, p.Gly177Glu/Arg, and p.Leu121Phe. In 2016,
p.Thr103Ile, the first de novo UBIAD1 gene pathogenic vari-
ant associated with SCD was identified [9]. UBIAD1 protein
is predicted to contain ten transmembrane (TM) helices, nine
of which lie within a functional prenyltransferase domain [12],
which is a key part of the UBIAD1 protein enzymatic activity
[10, 12–14]. TM helices emerge from the lipid bilayer into
three soluble polypeptide loops. All of the so far identified
pathogenic variants leading to SCD encompass this domain
[10]. The first loop is most frequently affected by SCD path-
ogenic variants which appear to disturb its hydrophilic prop-
erty [14].

The purpose of the study was to report two known and a
novel UBIAD1 gene variant causative of SCD and present a
clinical and molecular characterization of the disease in the
context of systemic findings in four previously unreported
Polish SCD families.

Patients and methods

Study subjects

Blood samples were collected from 37 individuals (14 SCD
affected, 21 unaffected, and 2 not examined ophthalmologi-
cally) from four Polish families (Ped. nos. 690, 411, 149, 272,
Fig. 1a–d), one of them with a three-generation history of
SCD (Ped. no. 272, Fig. 1d).

Ophthalmological evaluation

The subjects underwent complete ophthalmological examina-
tions including uncorrected and best corrected visual acuity
(UCVA/BCVA), intraocular pressure measurement, and slit-
lamp biomicroscopy. In patients with identified corneal
changes, Anterior Segment-OCT (CASIA SS-1000, Tomey,
Nagoya, Japan) and in vivo confocal microscopy (CS3/CS4,
Nidek Tech., Padova, Italy) were also performed.

Genetic testing and bioinformatic analysis

Genomic DNAwas isolated from blood samples (n = 37) with
a standard salting-out procedure. DNA pathogenic variant
testing was performed by PCR amplifying and Sanger se-
quencing of the UBIAD1 gene coding regions (exons 1 and
2). The PCR primer sequences designed using the reference
sequence NG_009443.1 and amplification conditions are
available upon request. DNA samples were purified with exo-
nuclease I and FastAP thermosensitive alkaline phosphatase
(Thermo Fisher Scientific, Waltham, Massachusetts, USA)
according to the manufacturer’s protocol, sequenced directly
using ABI Prism 377 DNA Sequencer (Thermo Fisher
Scientific) and BigDye Terminator v1.1 Cycle Sequencing
Kit (Thermo Fisher Scientific) and analyzed with the Variant
Reporter DNA analysis software v1.1 (Thermo Fisher
Scientific).

Pathogenicity of the novel non-synonymous single nucle-
otide UBIAD1 variant was predicted using PredictSNP2 [15],
FATHMM [16], andMutPred2 [17], leading and reliable com-
putational approaches [18] and analyzed for population fre-
quency based on the data from Exome Aggregation
Consortium (ExAC, http://exac.broadinstitute.org), 1000
Genomes Project (http://www.1000genomes.org), and
NHLBI GO Exome Sequencing Project (ESP, http://evs.gs.
washington.edu/EVS; all accessed 06/2018).

Results

Identified UBIAD1 gene pathogenic variants
in patients with SCD

UBIAD1 gene pathogenic variants were found in a total of 18
subjects (11 females and 7 males aged 13–68 years; mean age
37.8 y/o). Two of them (III.7 PatID#506 and III.6 PatID#507)
did not present signs of SCD, most probably because of their
relatively young age (16 and 21 y/o, respectively) or incom-
plete penetrance of the identifiedUBIAD1 variant. In the other
two individuals (III.15 PatID#459 and III.17 PatID#511) with
severe intellectual disability, a detailed ophthalmological ex-
amination could not be conducted (Table 1). The remaining 19
unaffected subjects did not carry anyUBIAD1 disease-causing
alteration (Fig. 1a–d).

All pathogenic variants identified in the patients with SCD
are located within the first exon of the UBIAD1 gene. Genetic
testing of the first family (Ped. no. 690) shown in Fig. 1a
revealed a novel heterozygous missense variant
NM_013319.2:c.359C>G predicted to result in amino acid
substitution NP_037451.1:p.Thr120Arg (Fig. 2f). The alter-
ation completely segregated with the disease in the family
and was predicted to be damaging by PredictSNP2 (score
1.0000, threshold range <0; 1> for pathogenic variants),

Fig. 1 Pedigrees of the analyzed SCD families
For every examined patient a corresponding identification number
(#PatID format) together with a detected UBIAD1 allelic variant (wt–
wild type, p.Thr120Arg – Pedigree no. 690 (a), p.Asp112Asn –
Pedigree no. 411 (b), p.Asn102Ser – Pedigree nos. 149 and 272 (c and
d)) are shown. Black symbols indicate affected, white symbols unaffected
individuals, symbols with a diagonal line indicate deceased individuals,
symbols with question mark indicate individuals not examined
ophthalmologically, probands are marked with arrows
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FATHMM (score 0.8970, threshold range <0.7; 1> for patho-
genic variants) and MutPred2 (score 0.8810, threshold range
< 0 . 5 ; 1 > f o r p a t h o g e n i c v a r i a n t s ) . T h e
NM_013319.2:c.359C>G transversion has not been reported
in population databases.

In patients from the second family (Ped. no. 411), a hetero-
zygous pathogenic variant NM_013319.2:c.334G>A causing
a missense change NP_037451.1:p.Asp112Asn was identified
(Figs. 1b and 2l). Testing of patients from the third and fourth
family (Ped. nos. 149 and 272, Fig. 1c, d) showed the presence
of a heterozygous NM_013319.2:c.305A>G pathogenic vari-
ant causing the NP_037451.1:p.Asn102Ser amino acid sub-
stitution (Fig. 2s) [4, 14].

Corneal changes in SCD patients
from the investigated families

Corneal thickness in all patients was within a normal range,
and no signs of corneal edema were observed. All of the
symptomatic individuals had corneal crystals.

In family with the novel p.Thr120Arg pathogenic variant
(Ped. no. 690), the signs of asymptomatic SCDwere identified

as early as in the 6 year of age (II.3 PatID#925, Fig. 1a) with
the first symptoms occurring at the end of the fourth decade of
life (37 y/o; I.2 PatID#922, Fig. 1a). Dystrophic changes were
located in the paracentral part of corneal stroma and took form
of single crystals. They were more numerous in the proband
(44 y/o) than in her two sons (22 and 13 y/o) and the pheno-
type was assessed as relatively mild. At this time of ophthal-
mological examination, there was no haze or arcus lipoides in
the corneas of the affected individuals (Fig. 2b). AS-OCT
images in the affected family members showed dystrophic
changes in the form of highly reflective lines of deposits in
the anterior and mid-stroma in the central and peripheral part
of the cornea (Fig. 2e). IVCM examination in these subjects
showed hyperreflective spindle-shaped deposits within the an-
terior and partly mid-stroma. They were thicker than those
observed in patients with p.Asp112Asn and p.Asn102Ser
pathogenic variants. Some images revealed diffuse homoge-
nous structures without the spindle-shaped deposits (Fig. 2c,
d). During the last 3-year observation period (48–51 y/o) cor-
neal changes in the proband have progressed dramatically
from single paracentral crystals to an advanced stage of SCD
with arcus lipoides, stromal haze, central corneal opacity, and

Table 1 Clinical and genetic characterization of SCD patients from this study

Ped. no. PedID/
PatID

UBIAD1 pathogenic
variant

Sex Age at
examination

Crystals
C/P

Haze
C/D

Arcus
lipoides

BCVA OD/OS Other medical conditions

690 I.2/922 p.Thr120Arg F 44 + P −/− – 0.7/0.5 Hypertension, varicose veins
51 ++++ C/P + + 0.2/0.2

II.2/924 p.Thr120Arg M 22 + P −/− – 1.0/0.9 –

II.3/925 p.Thr120Arg M 13 + P −/− – 0.7/0.4 intellectual disability,
inguinal hernia

411 II.2/580 p.Asp112Asn F 65 ++++ C/P + + 0.8/0.7 n/a

II.3/644 p.Asp112Asn F 68 ++++ C/P +/+ + 0.4/0.2 ↑ cholesterol, hypertension,
cholelithiasis

III.1/579 p.Asp112Asn F 36 ++ C/P – – 0.9/0.9 –

149 I.2/492 p.Asn102Ser F 51 n/a n/a n/a n/a n/a

II.1/207 p.Asn102Ser M 33 ++ C +/− – 0.4/0.5 –

272 II.1/379 p.Asn102Ser M 47 +++ C/P +/− + 0.4/0.9 ↑ cholesterol, hypertension

II.3/486 p.Asn102Ser F 49 + C/P −/− – 0.8/0.5 hypoacusis

II.5/378 p.Asn102Ser F 54 ++++ C/P +/− + 0.4/0.5 ↑ cholesterol, hypertension

II.6/375 p.Asn102Ser F 54 ++++ C/P +/− + 0.4/0.3 ↑ cholesterol

III.6/507 p.Asn102Ser M 21 – – – n/a intellectual disability

III.7/506 p.Asn102Ser F 16 – – – n/a –

III.15/459 p.Asn102Ser F 29 n/a n/a – n/a ↑ cholesterol, cholelithiasis,
intellectual disability

III.16/460 p.Asn102Ser F 31 ++ C/P −/− – 0.8/0.8 ↑ cholesterol

III.17/511 p.Asn102Ser M 26 n/a n/a – n/a intellectual disability

III.19/462 p.Asn102Ser M 26 + P −/− – 0.4/0.9 –

Crystals C/P central/paracentral, haze C/D central/diffused, sex F/M female/male, n/a not available
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crystal conglomerates (Fig. 2a). Her BCVA progressed from
0.4 to 0.2. At the age of 51, she has been scheduled for a
corneal surgery.

At the time of ophthalmological examination, the proband
from family with the UBIAD1 p.Asp112Asn variant (Ped. no.
411) was 28 y/o and did not present any symptoms of SCD. In
her mother, the first symptoms occurred around the age of
60 years. Slit-lamp examination in the affected individuals
from this family revealed age-dependent signs of SCD
(Fig. 2g, h) [5]. AS-OCT imaging showed hyperreflective
deposits penetrating to the deep anterior and middle parts of
the stromal layer in the central cornea. At the epithelial side,
the upper border of the deposits was slightly irregular
(Fig. 2k). IVCM examination revealed the presence of thin,
hyperreflective spindle-shaped deposits (Fig. 2i). Some of
them conglomerated into characteristic homogeneous sub-
stance comparable to dystrophic changes observed in IVCM
images of Reis-Bücklers and Thiel-Behnke corneal dystrophy
[1]. Additionally, in the basal epithelial layer, single
microcysts were found and they were similar to those ob-
served in Meesmann’s corneal dystrophy (Fig. 2j) [19]. At
the age of 68, the proband’s mother underwent PKP due to a
low VA as a consequence of SCD progression. After 4 years
post-transplantation, none of the signs of SCD recurrence in
the transplanted cornea has been observed.

The p.Asn102Ser UBIAD1 pathogenic variant was found
in two families (Ped. nos. 149 and 272) with two and six

affected individuals, respectively. There was a great variability
in the age of symptoms onset in both families, ranging from
9 y/o (II.6 PatID#375) to 51 y/o (II.3 PatID#486). In slit-lamp
examination, similar phenotypic features with haze in the cen-
tral and paracentral parts of the cornea, crystalline formations,
and thick yellow-white arcus lipoides in the advanced SCD
stages were visible (Fig. 2m, n). AS-OCT revealed highly
reflective deposits localized in the anterior stroma of the cen-
tral and mid-peripheral part of the cornea (Fig. 2r). IVCM
showed well-demarcated hyperreflective spindle-shaped de-
posits which created star-like formations in the stromal layer
(Fig. 2o, p). The number of deposits was higher in the ad-
vanced stages of SCD and keratocytes could not be visualized.

Discussion

In this study we have identified p.Thr120Arg, a novel hetero-
zygous point alteration in theUBIAD1 gene causative of SCD.
The second pathogenic variant p.Asp112Asn reported here
was previously published by Nickerson et al. [14] in the con-
text of in vitro functional studies. To the best of our knowl-
edge, no detailed clinical characterization of SCD patients
with this pathogenic variant has been provided so far. The
current study delivers independent evidence for the pathogen-
ic potential of UBIAD1 p.Asp112Asn and reports the genetic
variant for the first time in Polish SCD patients. The third

Fig. 2 Corneal photographs and electropherograms of the corresponding
UBIAD1 pathogenic variants. First two columns contain slit-lamp
photographs showing crystalline formations (a, b, g, h, m, n) in the
central and paracentral cornea, arcus lipoides (a, g, n), and haze (a, g,
n). Columns three and four contain IVCM images presenting spindle-
shaped corneal deposits (c, i, o, p), homogeneous conglomerate of
deposits (d), and microcysts at the epithelial level (j). The last column

includes AS-OCT images with sagittal sections demonstrating
hyperreflective opacities in the anterior part of the corneal stroma (e, k,
r). Electropherograms from Sanger sequencing of UBIAD1 exon 1
showing the identified c.359C > G (p.Thr120Arg) (f), c.334G > A
(p.Asp112Asn) (l), and c.305A > G (p.Asn102Ser) (s) pathogenic
variants
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UBIAD1 pathogenic variant detected in the study,
p.Asn102Ser, is identified in the majority of unrelated SCD
families in different ethnic groups and it is believed that this
variant represents a hot spot change for SCD [4].

We have identified the pathogenic variant p.Asn102Ser in
two unrelated Polish SCD families in as many as 12 out of 18
genetically confirmed SCD patients. One of the families (Ped.
no. 272, Fig. 1d) represents one of the most numerous SCD
kindreds, so far reported, for which we have conducted thor-
ough ophthalmological and genetic examinations. Our find-
ings contribute to a previous study describing two other Polish
families with SCD as a result of UBIAD1 p.Asn102Ser [11]
and confirm that the pathogenic variant is also the most com-
mon genetic alteration found in SCD patients from Central
Europe.

The last decade brought the discovery of several funda-
mental functions of the UBIAD1-encoded protein. These en-
compass (i) synthesis of human endogenous form of vitamin
K2 (MK-4) from derivates of a plant form vitamin K1 [10,
20–25], (ii) prevention of oxidative damage in tissues by syn-
thesis of non-mitochondrial coenzyme Q10 [26, 27], and (iii)
direct and indirect interaction with proteins that regulate cho-
lesterol synthesis and transport (HMGCR, SOAT1, apoE) [10,
28, 29]. UBIAD1 protein plays a crucial role in maintaining
lipid-cholesterol homeostasis in different cell types [10, 12,
21, 30, 31] but the molecular mechanism by which UBIAD1
pathogenic variants affect the cornea leading to lipid deposi-
tion in SCD patients has yet to be determined.

Defective function of UBIAD1 protein results in reduction
of the local synthesis of endogenous form of vitamin K2 in
cells and impairment of cholesterol and lipid metabolism lead-
ing to a continuous steroidogenesis stimulation and tissue-
specific cholesterol and lipid deposition [10, 29]. Codon
p.Thr120 of the UBIAD1 protein is placed directly between
two other codons which were previously identified to be al-
tered in SCD— p.Arg119Gly and p.Leu121Phe/Val [10]. All
of these amino acids are placed within the first aspartate–rich
motif (FARM) which localizes to the first polypeptide loop of
the UBIAD1 protein. It is a highly conserved region that may
play a crucial role in synthesis of sterols and isoprenoid lipids,
as well as cellular cholesterol binding, storage, and transport
[10, 12]. Accordingly, p.Thr120Arg along with other SCD
causing pathogenic variants is predicted to strongly affect
UBIAD1 protein folding and stability, protein enzymatic func-
tion, and protein–protein interactions. These alterations may
have deleterious impact on cholesterol metabolism in the cor-
nea, contributing to lipid deposition and cholesterol esterifica-
tion, which may lead to corneal haze and crystalline forma-
tion, characteristic features of the SCD phenotype.

Some of our SCD patients reported cardiovascular sys-
tem disorders (6/18; 33%) and/or cholelithiasis (Table 1).
The most frequent systemic finding in SCD is an elevated
cho l e s t e ro l l eve l i n b lood p l a sma . Gene r a l l y,

hypercholesterolemia is shown to be present in 66% of
patients with SCD [5]. In the 2013–2014 survey on
Polish population, the prevalence of hypercholesterolemia
averaged 67.3%, (70.3% for men, 64.3% for women) [32].
Occurrence of cholesterol deposits in the cornea is de-
scribed to show no relation with severity of systemic dys-
lipidemia [6]. Moreover, SCD corneas present a greater
tendency to accumulate high-density lipoproteins (HDL)
than low-density lipoproteins (LDL) [33]. Progression of
the corneal opacification is also not related to the level of
lipids in the blood plasma [5]. It is shown that statin treat-
ment and control of systemic cholesterol do not inhibit the
progression of SCD [34].

In line with other reports, we have observed a gradual loss
of VA in SCD patients which was progressing along with the
severity of dystrophic changes and corresponded with the age
of affected individuals [5, 6, 14, 35]. Unlike the moderate
severity stage of SCD, which is usually recognized on the
basis of slit-lamp biomicroscopy, initial and advanced stages
of the disease tend to cause a more significant diagnostic
problem. In the early SCD stage, the signs can be easily
overlooked and in the advanced stage, fused corneal opacities
and stromal deposits may resemble other corneal dystrophies
or corneal degeneration. The majority of our patients present-
ed a moderate severity stage of SCD and slit-lamp examina-
tion demonstrated a characteristic clinical picture of the dys-
trophy. Interestingly, at the end of the fifth decade of life in the
proband with UBIAD1 p.Thr120Arg initially mild dystrophic
changes progressed rapidly from an early to advanced SCD
stage only within a 3-year observation period. It is a quite
unusual finding as SCD generally progresses gradually [5, 6,
14, 35].

In general, the appearance of deposits, their reflectance,
location, and the images of corneal epithelium and endotheli-
um in IVCM imaging in our patients is in line with the de-
scriptions by other authors [33, 36–38]. However, in patients
with p.Asp112Asn, we also observed small cysts with
hyperreflective content in the corneal epithelium (Fig. 2j);
such changes are only rarely observed in SCD patients [11,
39]. To the best of our knowledge, there are only two other
reports on SCD visualized by AS-OCT [11, 40]. Both studies
described stromal hyperreflective opacities limited to the an-
terior parts of the cornea corresponding with the localization
of crystalline formation visible in IVCM images, which is
consistent with our observations. In AS-OCT, the appearance
of corneal changes was similar in all subjects, but the quantity
of deposits was noticeably different and appropriate to SCD
stage.

Corneal imaging with IVCM and AS-OCT is proven to be
helpful in differential diagnosis of inapparent SCD cases.
However, IVCMmay not be a conclusive approach as corneal
crystalline formations in SCD are similar to those observed,
e.g., in cystinosis or infectious crystalline keratopathy. Along
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with the increasing availability of genetic testing, identifica-
tion of anUBIAD1 pathogenic variant has become a necessary
complement to ophthalmological examinations as it provides
a definitive confirmation of clinical SCD diagnosis.
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