
Vol.:(0123456789)1 3

Acta Neuropathologica (2018) 136:709–727 
https://doi.org/10.1007/s00401-018-1900-5

ORIGINAL PAPER

Divergent brain gene expression patterns associate with distinct 
cell‑specific tau neuropathology traits in progressive supranuclear 
palsy

Mariet Allen1 · Xue Wang2 · Daniel J. Serie2 · Samantha L. Strickland1 · Jeremy D. Burgess1 · Shunsuke Koga1 · 
Curtis S. Younkin3 · Thuy T. Nguyen1 · Kimberly G. Malphrus1 · Sarah J. Lincoln1 · Melissa Alamprese4 · Kuixi Zhu5 · 
Rui Chang5,6 · Minerva M. Carrasquillo1 · Naomi Kouri1 · Melissa E. Murray1 · Joseph S. Reddy2 · Cory Funk7 · 
Nathan D. Price7 · Todd E. Golde8 · Steven G. Younkin1 · Yan W. Asmann2 · Julia E. Crook2 · Dennis W. Dickson1 · 
Nilüfer Ertekin‑Taner1,9 

Received: 14 December 2017 / Revised: 26 July 2018 / Accepted: 15 August 2018 / Published online: 22 August 2018 
© The Author(s) 2018

Abstract
Progressive supranuclear palsy (PSP) is a neurodegenerative parkinsonian disorder characterized by tau pathology in neurons 
and glial cells. Transcriptional regulation has been implicated as a potential mechanism in conferring disease risk and neu-
ropathology for some PSP genetic risk variants. However, the role of transcriptional changes as potential drivers of distinct 
cell-specific tau lesions has not been explored. In this study, we integrated brain gene expression measurements, quantita-
tive neuropathology traits and genome-wide genotypes from 268 autopsy-confirmed PSP patients to identify transcriptional 
associations with unique cell-specific tau pathologies. We provide individual transcript and transcriptional network associa-
tions for quantitative oligodendroglial (coiled bodies = CB), neuronal (neurofibrillary tangles = NFT), astrocytic (tufted 
astrocytes = TA) tau pathology, and tau threads and genomic annotations of these findings. We identified divergent patterns 
of transcriptional associations for the distinct tau lesions, with the neuronal and astrocytic neuropathologies being the most 
different. We determined that NFT are positively associated with a brain co-expression network enriched for synaptic and 
PSP candidate risk genes, whereas TA are positively associated with a microglial gene-enriched immune network. In contrast, 
TA is negatively associated with synaptic and NFT with immune system transcripts. Our findings have implications for the 
diverse molecular mechanisms that underlie cell-specific vulnerability and disease risk in PSP.

Introduction

Intracellular aggregation of hyperphosphorylated tau protein 
is a common neuropathological feature of many neurode-
generative diseases including Alzheimer’s disease (AD), 
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progressive supranuclear palsy (PSP), corticobasal degen-
eration (CBD), and Pick’s disease (PiD) [39]. However, 
these tauopathies differ with respect to the aggregated iso-
form of tau protein, the distribution and localization of tau 
pathology, and affected central nervous system (CNS) cell 
types. PSP is a progressive parkinsonian disorder, estimated 
to affect approximately five people in every 100,000 [10], 
with a typical age of onset of greater than 60 years [14]. Four 
characteristic tau lesions observed in PSP brains are coiled 
bodies (CB), neurofibrillary tangles (NFT), tufted astro-
cytes (TA) and tau threads (TAUTh). These represent both 
neuronal and glial neuropathology where NFTs are found 
in neurons, CB in oligodendroglia, TA in astrocytes, and 
TAUTh represent filamentous tau threads present in white 
matter [17]. Although the predominant tau isoform in all 
PSP lesions has four microtubule-binding domains (4R), the 
four distinct tau lesions have morphological and/or biochem-
ical differences [17, 54], indicative of possible cell-specific 
pathomechanisms. Common genetic variants at seven loci 
were reported to associate with risk in a PSP GWAS [26]. 
Some of these PSP risk variants are also associated with 
both brain expressions of proximal genes, and PSP neuro-
pathology, implicating transcriptional regulation in disease 
etiology [2, 26, 58]. With the exception of these prior studies 
focused on expression of PSP candidate genes, little is cur-
rently known of other transcriptional changes in the human 
brain that may be implicated in PSP risk and the distinct tau 
neuropathological lesions observed in this disease.

We hypothesize that brain transcriptional changes under-
lie neuropathology in PSP. Therefore, transcriptome-wide 
association analysis of brain gene levels and PSP neuro-
pathologic traits can identify molecular mechanisms that 
are both commonly and uniquely involved in the four dis-
tinct PSP tau lesions. To identify the genes and biological 
pathways that may underlie the distinct neuropathological 
features and thereby disease risk in PSP, we measured brain 
transcriptome levels in two independent cohorts collectively 
composed of 268 autopsy-confirmed PSP cases. Expression 
measurements were obtained from the temporal cortex, a 
region relatively preserved from PSP neuropathology [17] 
to reduce possible confounding of transcript levels from cell-
type variability as a consequence of local neuropathology 
[48]. All patients also had continuous quantitative meas-
ures for the four distinct tau neuropathologies and a measure 
of overall tau burden generated from semi-quantitative tau 
pathology counts from 19 brain regions [2].

We performed transcriptome-wide association analy-
ses of both individual genes and co-expression networks 
[34] with the four PSP neuropathology traits and identi-
fied both common and divergent patterns of association 
for the distinct tau lesions. Neuropathology-associated 
genes and networks were enriched for numerous biologi-
cal pathways including synaptic and immune processes. 

These had opposite patterns of association with TA vs. 
NFT pathologies, implicating distinct pathomechanisms 
in astrocytes vs. neurons in PSP. The most significant neu-
ronal co-expression network enriched for synaptic genes 
also had enrichment for PSP candidate risk genes. This 
suggests that genetic variants may influence PSP risk via 
their effects on regulatory networks. All significant co-
expression networks had significant overrepresentation of 
genes located on certain chromosomes and also harbored 
strongly connected transcription factors, which suggests 
biological co-regulation of these transcripts.

Methods

Studies and subjects

All PSP subjects described in this study are from the Mayo 
Clinic Brain Bank, received a neuropathological diagnosis 
at autopsy [24], and belong to prior transcriptome stud-
ies which have been previously described. There are two 
independent cohorts with microarray expression data, des-
ignated as “Cohort A”, comprised of 173 PSP subjects [2] 
and “Cohort B”, comprised of 95 PSP subjects [2, 60], after 
quality control (QC) suppl. text (Online Resource 3). We 
utilized differential expression results from a third study, 
the “Mayo Clinic RNAseq study”, comprised of 82 PSP 
subjects and 76 control subjects [3], for additional annota-
tion suppl. text (Online Resource 3). These are available to 
the research community through the AMP-AD knowledge 
portal (https​://doi.org/10.7303/syn25​80853​) and entitled 
as Mayo RNASeq study (syn6090813). All subjects were 
North American Caucasians. Study and subject demo-
graphics are outlined in Table 1. This study was approved 
by the Mayo Clinic Institutional Review Board.

RNA isolation

Total RNA was isolated from frozen postmortem brain 
tissue sampled from the temporal cortex region, for all 
subjects. For Cohort A [2] and Cohort B [2, 60], RNA was 
isolated using an Ambion RNAqueous kit according to the 
manufacturer’s instructions. For the Mayo Clinic RNAseq 
study [3], RNA was isolated from homogenized tissue 
using Trizol® reagent followed by DNase treatment and 
clean-up using Qiagen RNeasy columns. All RNA samples 
were assessed for quality and quantity using the Agilent 
2100 Bioanalyzer and Agilent RNA 6000 Nano Chip and 
had an RNA integrity number (RIN) ≥ 5.0 (Table 1).

https://doi.org/10.7303/syn2580853
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Gene expression measurements and processing

RNA was transferred to the Mayo Clinic Genome Facility 
(MGF) core for expression measures; samples were rand-
omized within each cohort prior to transfer. The Illumina 
Whole Genome DASL (WG-DASL) microarray (Illumina, 
San Diego, CA, USA) was used to collect transcriptome-
wide expression measures for Cohort A and Cohort B as 
previously described [2, 60]. Cohort A utilized an array with 
29,285 probes and Cohort B an array with 24,525 probes, 
all of which were present in the Cohort A array. For both 
cohorts, raw probe levels were exported from GenomeStudio 
software (Illumina Inc.) and the Lumi package (Bioconduc-
tor) was used for preprocessing with background subtraction, 
variance stabilizing transformation, quantile normalization 
and probe filtering [19]. Probes were screened for the pres-
ence of common variants (> 1%) within the probe sequence 
according to dbSNP138. We limited our analysis to expres-
sion probes detected above background in > 50% of subjects 
in each cohort and that were common to both cohorts, result-
ing in inclusion of 17,857 probes with identical sequence in 
both arrays [suppl. Table 27 (Online Resource 1)]. For the 
Mayo RNASeq cohort, expression measures were collected 
using RNA sequencing as described previously [2, 3] and 
detailed elsewhere [suppl. text (Online Resource 3)].

Genome‑wide genotypes

Subjects in Cohort A were previously genotyped using 
Human 660  W-Quad Infinium BeadChips (Illumina, 
San Diego, CA, USA) as part of a published PSP risk 
genome-wide association study [26]. Subjects in Cohort 
B were previously genotyped using the HumanHap300-
Duo Genotyping BeadChips (Illumina, San Diego, CA, 
USA) [12]. Subjects in the Mayo Clinic RNASeq cohort 
were genotyped using Omni 2.5 Beadchips (Illumina, San 
Diego, CA, USA). Genome-wide genotypes were lever-
aged as part of sample quality control for all cohorts, 
and for data analysis for the largest Cohort A [suppl.text 

(Online Resource 3)]. Following QC, genotype imputation 
was performed for all cohorts: genotypes were imputed to 
the HRC reference panel (version r1.1) using the Michi-
gan Imputation Server [16]. Prior to imputation, variant 
position and alleles were linked to the reference panel 
using McCarthy Group Tools (URL: http://www.well.
ox.ac.uk/~wrayn​er/tools​/). Post imputation, variants with 
a minor allele frequency less than 2% or an imputation 
r2 < 0.3 were excluded. VCF files from imputation were 
converted to PLINK [43] formatted files. Imputed geno-
types for Cohort A only were used for eQTL and module 
QTL analysis [suppl.text (Online Resource 3)].

Neuropathological latent trait measurements

Continuous quantitative neuropathology measures (latent 
traits) for four tau lesions: neurofibrillary tangles (NFT), 
oligodendroglial coiled bodies (CB), tufted astrocytes 
(TA), and tau neuropil threads (TAUTH), and the com-
bined burden of neuropathology (overall), were generated 
for 848 PSP samples from the Mayo Clinic brain bank, as 
previously described [2]. Briefly, semi-quantitative counts 
(none = 0, mild = 1, moderate = 2, severe = 3) were gener-
ated by a single neuropathologist (DWD) using CP13 immu-
nostained sections from 19 brain regions affected in PSP, 
which include: basal nucleus, caudate/ putamen, globus pal-
lidus, hypothalamus, motor cortex, subthalamic nucleus, tha-
lamic fasciculus, ventral thalamus, cerebellar white matter, 
dentate nucleus, inferior olive, locus coeruleus, medullary 
tegmentum, midbrain tectum, oculomotor complex, pon-
tine base, pontine tegmentum, red nucleus, and substantia 
nigra. Counts across all 19 brain regions were used to esti-
mate neuropathological latent traits, using the R statistical 
software “ltm” package [45] (URL: http://www.jstat​soft.
org/v17/i05/). All PSP samples assessed in this study were 
amongst the 848 for which neuropathological latent traits 
were generated.

Table 1   Samples and subject 
demographics

Cohorts A and B are independent and composed of PSP subjects with brain expression measurements 
using WG-DASL microarrays. RNAseq-PSP and RNAseq–control cohorts are from the Mayo Clinic 
RNAseq study. RNAseq-PSP subjects are a subset of Cohort A. Cohorts A and B are used in the gene 
expression and transcriptome association analyses. RNAseq-PSP and RNAseq–control data are used in dif-
ferential gene expression (DGE) analysis
RIN–RNA Integrity Number, N Number of subjects, SD standard deviation, WG-DASL Whole Genome 
cDNA Annealing Selection Extension and Ligation, RNAseq RNA sequencing

Cohort N Females (%) Age at death (SD) Mean RIN (SD)

WG-DASL: cohort A 173 77 (45%) 73.38 (7.22) 7.34 (0.83)
WG-DASL: cohort B 95 40 (42%) 71.64 (5.30) 7.04 (1.04)
RNAseq: PSP 82 33 (40%) 73.95 (6.51) 8.48 (0.50)
RNASeq: control 76 38 (50%) 83.72 (9.29) 7.61 (1.04)

http://www.well.ox.ac.uk/%7ewrayner/tools/
http://www.well.ox.ac.uk/%7ewrayner/tools/
http://www.jstatsoft.org/v17/i05/
http://www.jstatsoft.org/v17/i05/
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Gene expression analyses

Covariate adjusted residuals

Prior to all subsequent analysis, normalized WG-DASL 
gene expression measures for Cohorts A and B, and the 
neuropathological latent trait variables, were adjusted for 
covariates and residuals obtained. A custom function was 
implemented using R statistical software to apply multi-
variable linear regression to all tested variables, adjust-
ing for relevant covariates and extracting residuals. Gene 
expression measures were adjusted for Age, Sex, RNA 
integrity number (RIN), RINsqAdj [(RIN–RINmean)2] and 
PCR Plate. Neuropathological latent traits were adjusted 
for Age and Sex. All neuropathology residuals were plot-
ted to confirm that their distributions were approximately 
normal [suppl. Fig. 1a–b (Online Resource 2)].

Gene expression, neuropathological latent trait 
correlations

Gene expression and neuropathological latent trait residu-
als were assessed for correlation using the cor.test func-
tion (method = pearson), implemented using R statistical 
software, for cohorts A and B separately. Correlation 
estimates were converted to the Fisher’s Z scale, to ena-
ble meta-analysis, which was performed for all probes 
in common between Cohorts A and B (17,857 probes) 
using METAL [57], and the resulting beta-coefficients 
converted back to their corresponding Pearson correla-
tion estimates. Correlation p values for each cohort, and 
the meta-analysis, were adjusted for multiple tests using 
false discovery rate (Benjamini–Hochberg) [51]. Unique 
genes nominally associated with each of the latent traits 
(p value < 0.05, consistent direction across both cohorts) 
were tested for enrichment of gene ontology (GO) biologi-
cal processes (BP), split by the direction of the correlation 
estimate (positive or negative), using Metacore (Thomp-
son Reuters) with the full list of unique genes set as the 
background. Bar plots summarizing the top 10 GO BP 
were generated in R Fig. 2, suppl.Fig. 4 (Online resource 
2). Bubble plots, highlighting non-redundant significant 
GO BP (Bonferroni adjusted p value < 0.05) were gener-
ated using REVIGO [53], where bubble color indicates 
enrichment p value and bubble size indicates frequency 
of the GO term in the underlying database queried from 
the January 2017 Gene Ontology monthly release. Named 
GO BP in the bubbles plots are based on p value (Gene 
Ontology) and dispensability scores (REVIGO). Bubbles 
are presented in two-dimensional space reflective of their 
similarity as determined using the simRel score [46].

Gene annotations

To further annotate the genes assessed in this study and 
explore possible underlying regulatory mechanisms, we 
linked the results from the expression–neuropathology cor-
relation analysis, to differential expression (DEG) results 
from the Mayo RNAseq study (PSP vs. Control), and per-
formed a cis-eQTL analysis for Cohort A [suppl.text (Online 
Resource 3)].

Weighted gene co‑expression network analysis 
(WGCNA)

Weighted gene co-expression network analysis was per-
formed using R package WGCNA [34] version 1.41 for 
Cohorts A and B separately, utilizing normalized expression 
residuals (see “Covariate adjusted residuals”) as the input 
variables. A pairwise correlation matrix An×n = (aij) , whose 
element ai,j equals (0.5 + 0.5 ∗ cor(gi, gj))

12 , that is, a modi-
fied Pearson correlation of probe i and probe j was gener-
ated for each cohort. An×n was further transformed to a topo-
logical overlap matrix (TOM) and hierarchically clustered 
based on TOM to obtain probe clusters, or modules, where 
probes within the same module are correlated. This analysis 
was performed using blockwiseModules function and the 
key parameters are softpower = 12, networkType = signed, 
TOMType = signed. For each module, a signed eigengene 
(first principal component) was computed to represent the 
overall expression pattern of all probes in that module. Hier-
archical clustering of module eigengenes was performed by 
the “hclust” function in R [Fig. 3 and suppl. Fig. 8 (Online 
Resource 2)]. Within and between module clustering in 
Cohort A was visualized in a correlation heatmap [suppl. 
Fig. 5 (Online Resource 2)] showing pairwise correlations, 
from WGCNA, for 2000 probes, randomly selected from 
all expressed probes. Modules identified in Cohort A were 
assessed for preservation in Cohort B, by “module preserva-
tion” function in WGCNA [suppl. Fig. 6 (Online Resource 
2)]. The overlap of genes in each module in Cohort A, with 
modules in Cohort B, was determined and visualized using 
R statistical software [suppl. Fig. 7 (Online Resource 2)].

Module eigengene, neuropathological latent trait 
correlations

Module eigengenes were assessed for correlation with neu-
ropathological latent trait residuals using the same method 
as described for single probes (“Gene expression, neuro-
pathological latent trait correlations”), and correlation esti-
mates plotted as a heatmap using R package ggplot2 [56] 
[Fig. 3 and suppl. Fig. 8 (Online Resource 2)].
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Module annotations

To further understand the biological pathways represented 
by the co-expression modules, and identify key genes or 
genetic variants that may influence module genes, all mod-
ules were annotated for enrichment or presence of: Gene 
Ontology (GO) biological processes (BP); genes that are 
enriched in the five primary CNS cell types (neurons, oligo-
dendrocytes, microglia, astrocytes and endothelia); differen-
tially expressed genes (DEG) identified in the Mayo Clinic 
RNAseq PSP vs. control cohort; chromosome and PSP 
disease candidate genes [Table 2, suppl. Table 16 (Online 
Resource 1)]. Gene ontology (GO) enrichment was done 
using the “GOenrichmentAnalysis” function in WGCNA 
and biological processes with a Bonferroni adjusted p 
value < 0.05 for a given module considered significant. Mod-
ules were assessed for enrichment of the five CNS cell-type 
genes [suppl. Table 26 (Online Resource 1)] and other fea-
tures using a one-sided Fisher’s exact test implemented using 
R statistical software. The selection of the CNS cell-type 
genes is described elsewhere suppl.text (Online Resource 3).

The PSP candidate gene set was defined as those genes, 
for which an expression probe was available, within 100 kb 
(+/−) of index SNPs identified by the PSP GWAS [26] 
(rs1411478 near STX6, rs7571971 near EIF2AK3, rs1768208 
near MOBP, rs2142991 near BMS1, rs11568563 near 
SLCO1A2, rs8070723 and rs242557 near MAPT), with the 
exception of the Chr17q21 locus (rs8070723 and rs242557) 
where all genes within the ~900 kb inversion (reviewed [42]) 
were included due to the extent of linkage disequilibrium 
across this region. The PSP GWAS index SNPs were those 
that had significant or suggestive PSP risk association in the 
PSP GWAS [26].

The differentially expressed gene set was defined as DEGs 
identified in the Mayo RNAseq cohort (PSP vs. Control) 
with an FDR adjusted q value < 0.1. To identify transcription 
factors (TFs) which reside within co-expression modules of 
interest, we utilized the transcriptional regulatory network 
analysis package TReNA [41] suppl.text (Online Resource 
3). Bubble plots highlighting significant GO BP (Bonferroni 
adjusted p value < 0.05) for targeted modules were generated 
using REVIGO [53] as described under the “Gene expres-
sion, neuropathological latent trait correlations” methods 
section.

Network plots

Network plots were generated for the WGCNA outputs 
using Cytoscape v3.2.0 (http://www.cytos​cape.org/). For 
each module of interest, unique genes were identified; where 
more than one probe or transcript accounted for the same 
gene, and only the one with the highest module membership 
(MM) was retained. Module genes with a MM ≥ 0.7 were 

extracted from module-specific topological overlap matri-
ces (TOM) generated by WGCNA. Probe pairs were sorted 
according to TOM weight and the top 150 pairs according to 
TOM weight (range 0–0.31) were imported into Cytoscape, 
along with the following additional characteristics for each 
gene: the most significant neuropathological latent trait 
associated with transcript (p < 0.05) and whether the gene 
is enriched in a specific CNS cell-type. The Cytoscape Net-
work Analysis tool was used to calculate degree (number of 
connections each node has in the network), using continuous 
scale mapping ranging from the minimum degree of nodes 
to the maximum degree of nodes in the network. Latent trait 
association and CNS cell-type enrichment for the transcripts 
plotted in the networks were used to apply visual mapping 
styles as indicated in Fig. 4. Networks were arranged accord-
ing to Cytoscape’s prefuse force directed by edge betweeness 
layout algorithm.

Venn diagrams

Probes that were nominally associated (unadjusted p < 0.05) 
in the meta-analysis of Cohorts A and B, with each of the 
four neuropathological latent variables, were identified. 
Venn diagrams illustrating the overlapping probes and genes, 
with respect to the direction of the association, were gener-
ated using R package VennDiagram (Fig. 1).

Circos plot

The circos plot was made using R packages Circulize. The 
outermost track is the ideogram of human reference genome 
hg19. The second outermost track shows a barplot of 
− log10(DEG p value) for genes with DEG p value < 5E-03. 
The next panel contains five tracks of barplots, which are 
from outermost to innermost, the − log10 of association p 
value between gene expression and latent variables Overall, 
TAUTh, TA, NFT, CB. The next panel contains three tracks. 
From outermost to inner most, they indicate the top 150 
genes that are in the highlighted modules CohortA_M13, 
CohortA_M3 and CohortA_M2, respectively, according to 
module membership.

Protein studies

Proteome analysis

Temporal cortex samples from the Mayo Clinic RNAseq 
study underwent proteome measurements using Liquid 
Chromatography Coupled to Tandem Mass Spectrometry 
(LC–MS/MS) analysis. These data were downloaded from 
syn9637748, and the Synapse ID of the file containing the 
mapping of protein ID and TCX ID is syn9782771. Meth-
odological details are available from synapse and previously 

http://www.cytoscape.org/
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published [5, 13]. We obtained LFQ (Label-Free Quantifica-
tion) intensities for 82 PSP samples and log2 transformed 
these measures. Peptides with median log2(LFQ) levels of at 
least four were kept. The combat function in R sva package 
was applied to adjust the batch effect using non-parametric 
approach. The combat method took batch information, sex 
and age at death to estimate batch-specific location and scale 
adjustment of the log2 transformed LFQ intensities, and 
returned batch-adjusted values. There are 6585 measured 
peptides encoded by 5846 genes. Out of these 5846 genes, 
5148 are also present in WGCNA analysis which encompass 
18,516 genes in total, 919 are present in module 2 (2282 
genes), 219 present in module 3 (2347 genes), and 161 pre-
sent in module 13 (701 genes). There are 4022 unique pep-
tides (4016 genes) that have median log2(1 + LFQ) >  = 4, 
false discovery rate below 1% and without contamination. 
Out of these 4016 genes, 3627 are present in WGCNA analy-
sis, 714 in module 2, 97 in module 3 and 100 in module 
13. For these 4022 peptide pass-QC (4016 genes), residuals 
were generated for each peptide by linear regression where 
the dependent variable was the batch-adjusted values from 
combat and independent variables were sex and age at death. 
Out of these 82 samples, 76 are also in Cohort A. Pearson 
correlation and p value between protein level residuals of 
these 76 samples and five latent traits were calculated using 
R cor and cor.test function.

Immunohistochemistry

We selected NSF, SLC1A4 and MAP4 for our immunohisto-
chemistry studies. Besides availability of quality antibodies, 
our selections are based on potential biological relevance 
of these proteins to PSP. NSF resides in a PSP risk-asso-
ciated region on chromosome 17 [8] and plays a key role 
in synaptic vesicle release [44]. SLC1A4 encodes a brain 
amino acid transporter, mutations of which lead to severe 
intellectual disability, microcephaly and spasticity [25, 49]. 
MAP4 encodes a microtubule-associated protein and is evo-
lutionarily linked to MAPT [52]. Immunohistochemistry 
was performed on ten PSP patients (five male, five female) 
with transcriptome and latent trait data. Paraffin-embedded 
5-μm thick sections from the Putamen, Amygdala, Globus 
pallidus and Basal nucleus, mounted on glass slides were 
immunostained using a DAKO Autostainer (Dako, Carpin-
teria, CA) as previously described [30]. These regions were 
selected to represent a range of pathologically affected 
regions (suppl. Fig. 2c). Primary antibodies against MAP4 
(rabbit polyclonal; 1:250; 11,229-1-AP; ProteinTech, Chi-
cago, IL), SLC1A4 (rabbit polyclonal; 1:250; ab118454; 
Abcam, Cambridge, MA), and NSF (rabbit polyclonal; 
1:500; PA5-76,126; Thermo Fisher Scientific, Carlsbad, CA) 
were used. Following deparaffinization in xylene and reagent 

alcohol, antigen retrieval was performed by steaming slides 
in a Tris/EDTA buffer, pH 9 (Dako) for MAP4 and NSF or a 
Citrate buffer, pH 6 (Dako) for SLC1A4 for 30 min. Sections 
of basal ganglia were processed for double-labeling immu-
nohistochemistry with the combination of anti-tau (CP13, 
1:1000) and anti-MAP4 antibodies (1:250).

Results

Human brain gene expression levels associate 
with PSP tau neuropathology

Brain expression levels from temporal cortex, which is an 
area relatively unaffected by PSP pathology, were measured 
using expression microarrays in two independent Cohorts 
“A” and “B”, collectively comprised of 268 autopsied PSP 
patients (Table 1). All patients had continuous quantitative 
latent trait phenotypes for the four types of PSP tau neuro-
pathology (CB, NFT, TA, TAUTh, Overall) [2, 24] [suppl. 
Fig. 1a–b (Online Resource 2), Methods, suppl. text (Online 
Resource 3)]. All latent neuropathology traits had positive 
pairwise correlations with one another in both cohorts, to 
varying degrees [suppl. Fig. 2a–b (Online Resource 2), 
suppl. text (Online Resource 3)]. The strongest correla-
tion was observed between NFT and TAUTh and weakest 
between NFT and TA.

To identify individual gene expression changes associ-
ated with tau neuropathology in PSP, we initially focused on 
meta-analysis results from Cohorts A and B that passed the 
stringent Bonferroni cutoff meta-analysis p value < 2.80E-
06, after adjusting for the 17,857 expression probes which 
were common to both cohorts. This is an overly conservative 
correction, given the presence of multiple expression probes 
for some genes and correlated expression levels for some 
probes. Despite this, we identified 43 probes (41 unique 
genes) with expression–neuropathology associations sig-
nificant after Bonferroni correction [suppl. Table 1 (Online 
Resource 1)]. Most of these associations were with the NFT 
neuropathology (37 probes/36 unique genes), and only 4 
with TAUTh, 1 with TA and none for CB.

We postulate that gene expression levels that associate 
uniquely with one tau neuropathology may underlie a spe-
cific aspect of disease pathophysiology. In contrast, genes 
associated with all four neuropathology traits may represent 
genes involved more generally in tau neuropathology. Of the 
genes most significantly associated with tau neuropathology 
[suppl. Table 1 (Online Resource 1)], there was no overlap 
between the different traits, except for CCDC28A that was 
associated with both TAUTh and Overall neuropathology. 
To further assess the extent of overlap, we focused on the 
more sizable nominally significant associations at unadjusted 



715Acta Neuropathologica (2018) 136:709–727	

1 3

Fig. 1   Temporal cortex gene expression levels are associated with 
tau neuropathology. Meta-analysis results from Cohorts A and B are 
presented for genes expressed in the temporal cortex tissue of PSP 
patients. Results for each of the latent neuropathology traits, i.e., 
Overall, Tau Threads (TAUTh), Tufted Astrocytes (TA), Neurofibril-
lary Tangles (NFT) and Coiled Bodies (CB) are shown in a scatter 
plot a where the X-axis represents the Pearson correlation coefficient 
and the Y-axis represents the q value for significance. Two signifi-
cance thresholds are indicated by green (q < 0.05) and red (q < 0.01) 
lines. Genes that are also differentially expressed between PSP 
patient vs. control temporal cortex samples are indicated with a “+” 
and those that are not, with an open circle. b Venn diagram repre-
senting overlap in nominal associations (unadjusted p value < 0.05) 
between each of the four tau neuropathology traits. c–h Scatter plots 
comparing the Pearson correlation coefficients for probe-latent trait 
associations, between each pair of traits, CB vs. NFT c, CB vs. TA 
d, CB vs. TAUTh e, NFT vs. TA f, NFT vs. TAUTh g, and TA vs. 

TAUTh h. The X-axis indicates the correlation coefficient for the first 
trait and the Y-axis the correlation coefficient for the second trait. 
Probes that are nominally significant (unadjusted p value < 0.05) 
for both traits are highlighted in blue. Probes that are concordant in 
direction of association for both traits are indicated as circles, and 
discordant probes are indicated as triangles. The direction of asso-
ciation with reference to the trait on the X-axis, followed by the trait 
on the Y-axis is indicated in each quadrant of each plot (− negative 
transcript-trait associations; + positive transcript-trait associations). 
The Pearson correlation r2 and p value for the overall comparisons of 
transcript associations for each pair of traits are shown on the plots. i 
Table summarizing the number of concordant and discordant probes 
for each pair of traits, split by direction of the correlation coefficient 
(negative or positive). Between 9 and 24 probes have a correlation 
coefficient of zero for a given pair of traits and are hence not counted. 
*columns indicate count for number of probes with a p value < 0.05 
(unadjusted) for both traits



716	 Acta Neuropathologica (2018) 136:709–727

1 3

meta-analysis p < 0.05. There was considerable enrichment 
of nominally significant associations for NFT (25%), TAUTh 
(19%) and CB (10%), but not for TA (6%) [Fig. 1a, suppl. 
Tables 2–6 (Online Resource 1)]. This suggests that TA 
may be least influenced by brain gene expression changes, 
in comparison to the other latent traits. The majority of 
these nominal associations were positive (64% NFT, 61% 
TAUTh, 68% CB, 59% TA), indicating that higher temporal 
cortex expression levels for most of these genes associated 
with greater burden of tau neuropathology. Of the nomi-
nally significant expression–neuropathology associations, 
considering each trait individually, nearly half were unique 
to NFT (46%) or TA (49%), and about a quarter unique to 
TAUTh (26%) or CB (25%) (Fig. 1b). This may suggest 
that NFT and TA may have the greatest extent of distinct 
expression associations. We further classified overlapping 
nominally significant genes for each pairwise comparison 
as “concordant” or “discordant” with respect to the direc-
tion of the correlation coefficients (Fig. 1c–i). The greatest 
concordant overlap was observed for genes associated with 
CB, NFT and TAUTh (NFT–TAUTh = 12% of all tested 
probes; CB–TAUTh = 6%; CB–NFT = 5%) and the least 
for comparisons with TA (CB–TA = 2%; TA–TAUTh = 2%; 
NFT–TA = 0.75%). This is further supported by the overall 
correlations between neuropathology association coefficients 
for each pair of traits (Fig. 1c–h). These pairwise analyses 
suggest that brain expression changes most commonly influ-
ence NFT and TAUTh, whereas NFT and TA are mostly 
influenced by distinct expression changes. Very few nomi-
nally significant genes were discordantly associated (Fig. 1i), 
with the exception of NFT–TA, where 52 transcripts (0.3% 
of all tested) had discordant direction of associations with 
these two traits, again consistent with their divergent pat-
terns of expression associations. These findings suggest that 
astrocyte neuropathology (TA) may be most distinct from 
other neuropathologies in PSP by both the extent and type 
of gene expression associations. Further, brain expression 
changes may have the strongest influence on neuronal PSP 
pathology (NFT), followed by TAUTh and oligodendroglial 
CB traits.

We sought to determine which of the most significant 
transcriptional associations we observed [suppl. Table 1 
(Online Resource 1)] were likewise reflected at the pro-
tein level. For a subset of the Cohort A samples (n = 76), 
proteome data was also available [suppl. Table 1 (Online 
Resource 1)]. Of the 41 genes with the most significant 
expression–neuropathology associations, 20 had proteome 
data. Despite the smaller cohort, two of the proteins had 
nominally significant associations in the same direction as 
that for gene expression, including the most significantly 
associated GABRB3.

There were only 91 probes (90 unique genes) that associ-
ated with all four neuropathologies at nominal significance. 

All of these had a consistent direction of association with 
all neuropathologies. Although some of these genes have 
been implicated in tau biology [27], cognition [37] or AD 
[22], the functional implications for most of these “com-
mon tau neuropathology” associated genes remains to be 
established [suppl. Table 7 (Online Resource 1), suppl. text 
(Online Resource 3)].

A PSP risk GWAS identified common genetic variants 
associated with disease risk [26]. We hypothesized that 
some of these variants may influence disease risk by regu-
lating brain expression levels of nearby gene(s), which in 
turn modify neuropathology. To determine whether any of 
the genes at the PSP GWAS risk loci [26] have brain levels 
that associate with tau neuropathology in PSP, we assessed 
all genes that are within +/− 100 kb of the PSP risk asso-
ciation variant in addition to the 900 kb inversion region 
on chromosome 17q21 [suppl. Table 8 (Online Resource 
1), suppl. text (Online Resource 3)]. After correcting for 
39 tested transcripts at PSP risk loci, 6 were significantly 
associated with neuropathology. Of these transcripts, five 
were from three genes (MAPT, NSF, CRHR1) located at 
the chromosome 17q21 inversion region associated with 
risk of PSP and other neurodegenerative conditions [4, 
31, 47]. All but one of these chromosome 17 expression 
probes (ILMN_1800049: MAPT, Exon 6) is upregulated 
in samples with more NFT pathology. Additionally, brain 
NSF levels are also positively associated with TAUTh and 
Overall traits; and IAPP on chromosome 12 has negative 
association with NFT. Many of the other genes at the PSP 
risk loci were also nominally significant, though they did 
not reach study-wide significance (ARL17B, C2ORF51, 
IER5, KIAA1267, LRRC37A2, MOBP, MR1, SLCO1A2, 
STX6).

Given its strong association with PSP neuropathology 
in our study, its proximity to the chromosome 17 inver-
sion region [8] and its location within a region of copy 
number polymorphisms [50], we investigated the exon 
levels of NSF using the RNAseq data from 82 PSP sub-
jects [3]. We determined that exons 1–2 and 10–21 were 
expressed (NM_006178) in the temporal cortex [suppl. 
Fig. 3 (Online Resource 2)]. Although there was evidence 
of variability in the levels of the exons, no strong NSF 
exon cis-eQTLs were identified [suppl. Table 9 (Online 
Resource 1)], suggesting that the NSF expression–neu-
ropathology associations are unlikely to be driven by cis-
regulatory variants.

Biological pathways are enriched for genes with PSP 
neuropathology associations

To determine if any biological pathways are enriched for 
genes with nominally significant brain expression–neu-
ropathology associations, we used Metacore software to 
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identify enriched Gene Ontology (GO) terms [1, 7]. Gene 
sets associated with each neuropathological trait in a spe-
cific direction (positive or negative) were tested separately 
for GO term enrichment. We identified significant GO terms 
(FDR < 0.05) for all gene sets, with the exception of genes 
negatively associated with CB [suppl. Tables 10–14 (Online 
Resource 1)]. The five most significantly enriched GO terms 
for each tested gene set are shown in Fig. 2a–e. There were 
more significant GO terms for genes positively associated 
with neuropathology (Fig. 2g). This may be expected given 
that there are more genes positively associated with all of 
the neuropathology traits. However, the number of GO 
terms enriched for positively associated genes was dispro-
portionately higher for CB (100% of all associated genes) 
and TA (96% of all associated genes).

The largest numbers of significantly enriched GO pro-
cesses were for the NFT-associated genes (n = 518, 56% 
with positive associations); followed by TA (n = 222), then 
TAUTh (n = 55, 58% with positive associations), and CB 
(n = 18). To better visualize the large number of GO pro-
cesses, we generated REVIGO [53] plots for those gene 
sets with > 20 significantly enriched GO processes [suppl. 
Fig. 4a–e (Online Resource 2)]. This approach identified 
clusters of GO processes with distinct patterns of enrichment 
for the different neuropathologic trait associations. Genes 
positively associated with NFT were most significantly 
enriched for “synaptic” GO processes, whereas “immune 
system” terms were the most significant for negative NFT-
associated genes [Fig. 2b, suppl. Fig. 4a–b (Online Resource 
2), suppl. Table 11 (Online Resource 1)]. In complete con-
trast, “synaptic” GO terms were enriched for genes with 
negative TA-expression associations, whereas “immune sys-
tem” terms were enriched for positively TA-associated genes 
[Fig. 2c, suppl. Fig. 4e (Online Resource 2), suppl. Table 12 
(Online Resource 1)].

“Synaptic” GO processes were also the most significantly 
enriched for positive TAUTh-associated genes, in addition 
to “protein modification” terms [Fig. 2d, suppl. Fig. 4d 
(Online Resource 2), suppl. Table 13 (Online Resource 1)]. 
Another consistency was for “RNA metabolism” GO terms 
that were enriched for genes positively associated with both 
TA and CB [Fig. 2a, suppl. Table 10 (Online Resource 1)]. 
GO enrichment for genes associated with the Overall neu-
ropathology trait [Fig. 2e, suppl. Table 14 (Online Resource 
1)] generally reflected the most significant positive NFT 
associations (“synaptic”), and negative TAUTh-associations 
(“metabolic processes”) [suppl. Fig. 4c (Online Resource 
1)]. We assessed overlapping GO terms for each pair of 
traits, and similar to the probe level analysis, identified 
the most concordance for TAUTh and NFT-associated GO 
terms, and the least for NFT and TA-associated GO terms 
(Fig. 2f).

Co‑expression modules associate with PSP 
neuropathology

Analyses of individual gene expression levels strongly sug-
gest the presence of clusters of genes with either distinct or 
overlapping patterns of association with PSP neuropathol-
ogy traits. To formally identify groups of co-expressed genes 
and their patterns of tau neuropathology associations, we 
performed Weighted Gene Co-expression Network Analysis 
(WGCNA) [33, 34]. Twenty co-expression modules were 
identified in Cohort A [Fig. 3a, suppl. Table 15 (Online 
Resource 1)], eight of which are associated with at least one 
neuropathology trait (unadjusted p < 0.05). Of these eight 
modules, three remain significant even after performing a 
Bonferroni correction for 20 tests (p < 2.5E-3); CohortA_
M2, CohortA_M3 and CohortA_M13 modules [Table 2, 
suppl. Table 16 (Online Resource 1)].

Similar to the individual gene findings, NFT had the 
greatest number and most significant associations with co-
expression modules. Six of the eight modules are associ-
ated with NFT (unadjusted p < 0.05), three in a positive 
(CohortA_M2, CohortA_M8 and CohortA_M11) and 
three in a negative direction (CohortA_M3, CohortA_M12, 
CohortA_M13). TAUTh was likewise associated with the 
same six modules, and in the same direction as NFT, but 
with slightly weaker effect sizes. CB was positively associ-
ated with two modules (CohortA_M2, CohortA_M20), one 
of which also positively associated with NFT and TAUTh.

In contrast, TA had a divergent pattern of associations 
in comparison to the other neuropathology traits. Two 
modules were positively associated with TA, one of which 
was not associated with any of the other neuropathologies 
(CohortA_M6). The other (CohortA_M12) was negatively 
associated with both NFT and TAUTh, further highlight-
ing the divergence of brain gene expression associations 
between TA and the other tau pathologies.

The most significant module was CohortA_M2, which 
associated positively with NFT (p = 1.27E-4), and nominally 
(p < 0.05) with TAUTh, CB and Overall traits, but not with 
TA [Figs. 3a, 4a, Table 2, suppl. Table 16 (Online Resource 
1)]. This module was enriched for neuronal genes and inter-
estingly included 33 of the 41 genes with the most signifi-
cant neuropathology associations [suppl. Table 1 (Online 
Resource 1)]. The other two significant modules, CohortA_
M3 and CohortA_M13 are clustered closely on the mod-
ule dendrogram, and are not significantly enriched for any 
CNS cell type. Both CohortA_M3 and CohortA_M13 have 
significant negative associations with NFT, and nominally 
associate with TAUTh and Overall traits [Figs. 3a, 4b–c, 
Table 2, suppl. Table 2 (Online Resource 1)]. Given these 
findings and the high degree of correlation between genes 
in CohortA_M3 and CohortA_M13, these two modules are 
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Fig. 2   Temporal cortex gene expression levels associated with tau 
neuropathology are enriched for Gene Ontology biological processes. 
a–e Gene Ontology bar plots for the five most significant GO terms 
for genes nominally associated with CB a, NFT b, TA c, TAUTh d 
and Overall e. The X-axis indicates the unadjusted GO term enrich-
ment p value. Note that all GO terms shown in a–e are significantly 
enriched at FDR < 0.05, except those for CB negative associations. 
f Scatter plot for GO terms (FDR < 0.05) common to two or more 
traits. Each point on the plot represents a single GO term, the posi-
tion on the plot is determined by the enrichment p value on the X 
and Y-axes for trait 1 and trait 2, respectively, and as indicated in the 
key. Each quadrant represents one of the four combinations of direc-

tion of associations for each pair of traits with the GO-term-enriched 
transcripts. Upper right and lower left quadrants include the concord-
ant positive and negative associations for trait pairs. Upper left and 
lower right quadrants represent discordant associations, in the nega-
tive–positive and positive–negative directions, respectively. The first 
direction pertains to trait 1 and the second direction to trait 2 in all 
quadrants. g Table summarizing the number of nominally associ-
ated unique genes with each of the neuropathology traits. The num-
ber of GO terms that are significant at false discovery rate adjusted p 
value < 0.05 is also shown, split by direction of the correlation coef-
ficient (negative or positive)
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likely components of the same broader co-expression net-
work [suppl. Fig 5 (Online Resource 2)].

We sought replication of the Bonferroni-significant 
Cohort_A module results in Cohort_B, which had 28 co-
expression modules [suppl. Table 17 (Online Resource 
1)]. The significant modules CohortA_M2, CohortA_M3, 
and CohortA_M13 are well preserved in Cohort B [suppl. 
Fig. 6 (Online Resource 2)], where CohortA_M2 has the 
highest level of preservation amongst all modules. The 
Cohort B modules with the highest number of overlapping 
transcripts with the significant Cohort A modules are as fol-
lows: Cohort B_M1 for Cohort A_M2 and CohortB_M5 for 
both CohortA_M3, and CohortA_M13 [suppl. Fig. 7 (Online 
Resource 2)]. CohortB_M1 is enriched for neuronal and to 
a lesser extent also astrocyte gene signatures [suppl. Fig. 8 
(Online Resource 2), suppl. Table 17 (Online Resource 1)], 
and such as Cohort A_M2, is positively associated with 
NFT (p = 4.19E-02). The correlation coefficients for NFT 
associations with CohortA_M2 (r = 0.29) and CohortB_M1 
(r = 0.21) are remarkably similar. CohortB_M5 has no CNS 
cell enrichment, similar to CohortA_M3 and CohortA_M13. 
Although CohortB_M5 does not have significant associa-
tions with neuropathology traits, it had a negative trend of 
association with NFT (r =  − 0.14, p = 0.19), consistent with 
its Cohort A counterparts.

Biological characteristics of co‑expression 
modules have divergent features for distinct PSP 
neuropathology traits

To further explore the biological features of the neuropathol-
ogy-associated co-expression modules, we tested for enrich-
ment of the module genes in GO terms [Fig. 3b–e, suppl. 
Tables 18–21 (Online Resource 1)]. For CohortA_M2, we 
identified enrichment for 81 significant GO biological pro-
cesses (BP) after Bonferroni adjustment, where “synaptic” 
terms were the most significantly enriched [Fig. 3b, d, suppl. 
Table 18 (Online Resource 1)]. Consistently, “synaptic” GO 
terms were also significantly enriched for CohortB_M1 genes 
[suppl. Table 19 (Online Resource 1)]. CohortA_M3, which 
is negatively associated with NFT and TAUTh, is enriched for 
GO terms related with smell sensation (Fig. 3c, e). CohortA_
M13 does not have any GO term enrichment. CohortB_M5 is 
also enriched for “olfactory” terms, consistent with CohortA_
M3. Thus, the most significant modules in Cohort A have con-
sistent GO term enrichment with their Cohort B counterparts.

To delineate the biological features for the co-expression 
modules that have divergent associations with TA vs. other 
neuropathologies, we next focused on CohortA_M6 and 
CohortA_M12. Interestingly, CohortA_M6, which is posi-
tively associated with TA, is enriched for “immune system” 
terms [suppl. Table 18 (Online Resource 1), suppl. text 

(Online Resource 3)], consistent with individual gene expres-
sion associations for this neuropathology trait [suppl. Fig. 4e 
(Online Resource 2)]. CohortA_M12, which is positively 
associated with TA, but negatively with NFT and TAUTh, 
is enriched for “metabolic processes” terms, again reflecting 
the individual gene expression–neuropathology associations 
[Fig. 2a–e, suppl. Fig. 4a, c, e (Online Resource 2)].

We further annotated the most significant modules 
[Table 2, suppl. Table 16 (Online Resource 1)] for enrich-
ment of PSP candidate risk genes, defined as +/− 100 kb 
of the PSP risk association variant [26] in addition to the 
900 kb inversion region on chromosome 17q21. CohortA_
M2 was the only module significantly enriched for PSP 
candidate risk genes, which includes chromosome 17q21 
inversion region genes MAPT (probe ILMN_2310814), NSF 
and CRHR1, which are also individually associated with 
neuropathology traits [suppl. Table 8 (Online Resource 1)], 
in addition to IER5 and STX6 on chromosome 1; and BMS1 
on chromosome 10.

Genomic annotations of co‑expression modules

To determine whether the expression levels in the most sig-
nificant co-expression modules [Table 2, suppl. Table 16 
(Online Resource 1)] may be driven by nearby expres-
sion quantitative trait loci (cis-eQTL), we tested whether 
the individual genes in these modules had significant brain 
cis-eQTL [suppl. text (Online Resource 3), suppl. Table 22 
(Online Resource 1)]. Many of the genes had significant 
eQTL, PRSS36 in module 2, C19ORF48 in module 3 and 
ZC3H12D in module 13 had variants that remained signifi-
cant after conservative correction for the number of tests 
[suppl. Table 22 (Online Resource 1)]. We also ran eQTL 
analysis for the module eigengenes that represent modules 
2, 3 and 13 [suppl. Tables 23–25 (Online Resource 1), suppl. 
Fig. 9a–c (Online Resource 2)], suppl.text (Online Resource 
3) and generated false discovery rate (Benjamini–Hochberg) 
adjusted q values. This analysis identified 53 SNPs at 11 
loci on 6 chromosomes (Chr1, Chr4, Chr5, Chr7, Chr8, 
Chr17) associated with ME2, 8 SNPs at 5 loci on 3 chro-
mosomes (Chr3, Chr19, Chr20) associated with ME3, and 
2 SNPs at 2 loci on Chr 4 associated with ME13, with a 
q value < 0.05. The most significant locus for ME2 [suppl.
Table 23 (Online resource 1)] includes 14 SNPS (q < 0.05) 
that reside within an uncharacterized ncRNA on Chr1; for 
ME3 the most significant SNP (rs115709231) is located 
within an intron of HDAC11; for ME13 the most significant 
SNP (rs111571429) is located within an intron of GABRB1. 
HDAC11 and GABRB1 are not members of Modules 3 or 
13, respectively, so this association is unlikely to be an arti-
fact of a cis-eQTL association with these genes. Given that 
these variants are imputed, additional studies are required 
to validate and replicate these observations.
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Given that regulatory elements and genes regulated by 
these elements can reside in distinct chromosomal domains 
[23, 28], we next tested the neuropathology-associated mod-
ules for overrepresentation of genes located on distinct chro-
mosomes. Indeed, there was enrichment of genes located 
on certain chromosomes for all three modules [Table 2, 
suppl. Table 16 (Online Resource 1), Fig. 5]. We also per-
formed transcription factor (TF) regulatory network analy-
sis using TReNA [41] and identified TFs within the three 
most significant modules, some of which have nominally 

significant cis-eQTL [suppl. Table 16 (Online Resource 1)]. 
Most of these TFs were highly connected with the other 
genes in these modules with module membership (MM) val-
ues > 0.70. These findings suggest biological co-regulation 
of genes residing in these co-expression networks.

Immunohistochemistry studies

We further explored the cellular localizations of select pro-
teins by immunohistochemistry studies. We selected three 
proteins to represent an NFT-associated gene (NSF), a 
TAUTh-associated gene (SLC1A4) and a hub gene from the 
neuronally enriched module CohortA_M2 (MAP4), which 
is associated with NFT, TAUTh and CB [suppl. text (Online 
Resource 3)]. Immunohistochemistry patterns of these pro-
teins were consistent with their neuropathology associations 
[suppl. Fig. 10 (Online Resource 2)].

Discussion

In this transcriptome-wide association study of brain gene 
expression levels and quantitative neuropathology measures 
in PSP, we identified transcripts and expression networks 
that have unique patterns of association with the distinct 
cell-specific tau lesions in this disease. Tau pathology in 
PSP is characterized by neuronal (NFT), astrocytic (TA), 
oligodendroglial (CB) and white matter (TAUTh) lesions. 

Fig. 3   Co-expression modules are associated with tau neuropathol-
ogy and enriched for cell type marker genes and Gene Ontology bio-
logical processes. Correlation and enrichment results are presented 
for co-expression modules and module eigengenes. a Left to right, 
neuropathology barcode indicating module eigengenes (MEs) nomi-
nally associated (unadjusted p < 0.05) with CB, NFT, TA, TAUTh or 
Overall according to the legend in the top right. Cell type enrichment 
barcode indicating modules enriched for genes that are predominantly 
expressed in CNS cell types, color coded according to the middle 
right legend. Heatmap illustrating the Pearson correlation for each 
ME with the neuropathological traits, where Bonferroni-significant 
MEs are indicated with a star. Hierarchical clustering dendrogram 
depicting the relationship between MEs. b–c Gene Ontology bar plots 
indicating the ten most significant GO terms for modules 2 b and 3 c. 
These are the Bonferroni-significant modules that also had significant 
GO term enrichment. d–e REVIGO scatter plots clustering significant 
(FDR < 0.05) GO terms for module 2 d and 3 e in two-dimensional 
space according to semantic similarities. Bubble color reflects the 
enrichment p value; the size of the bubble refers to the size of the GO 
term; labeled bubbles are the most unique terms in the cluster

◂

Table 2   Co-expression 
modules associated with tau 
neuropathology are enriched for 
biological and disease-relevant 
features

Association of co-expression modules with each of the neuropathological traits, annotated for: CNS cell-
type enrichment, candidate disease genes in cis with GWAS index SNPs (Hoglinger. G et al Nat Genet-
ics, 2011), and chromosomal location. Additional features of the modules including hub genes, significant 
DEGs, disease locus genes, transcription factors (TF) and their eQTLs are depicted in suppl. Table 16

Module Trait Estimate p value Enrichment

Cell type: p value Disease 
genes p 
value

Chromosome (p value)

M2 CB 0.17 2.56E-02 Neuron: 1.30E-134 0.04 Chr 2 (4.07E-03),
NFT 0.29 1.27E-04 Chr 5 (2.39E-04),
TA − 0.06 4.43E-01 Chr 10 (3.84E-02),
TAUTh 0.20 7.67E-03 Chr 20 (6.17E-04),
Overall 0.18 1.54E-02 Chr X (1.82E-03)

M3 CB − 0.06 4.72E-01 NS NS
NFT − 0.23 2.20E-03 Chr 11 (8.55E-13),
TA − 0.09 2.18E-01 Chr 20 (3.58E-02),
TAUTh − 0.18 1.99E-02 Chr 21 (2.07E-02)
Overall − 0.15 4.39E-02

M13 CB − 0.14 6.38E-02 NS NS
NFT − 0.25 1.10E-03
TA − 0.06 4.49E-01 Chr 7 (1.02E-02)
TAUTh − 0.21 5.52E-03
Overall − 0.20 9.55E-03
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We took advantage of this diverse cell-specific neuropa-
thology to identify brain transcriptional networks enriched 
for specific biological processes that may influence differ-
ent aspects of this disease in a unique fashion. Our findings 
reveal that neuronal NFT and astrocytic TA pathologies in 
PSP have the most divergent patterns of brain expression 
associations. We implicate changes in synaptic, immune 

and olfactory mechanisms in various aspects of PSP neuro-
pathology, and annotate transcriptional networks for many 
genomic features, including enrichment of candidate PSP 
risk variants, chromosomal regions and TFs. Our study 
design is unique in its use of brain expression measures from 
the temporal cortex, a relatively unaffected region in PSP 
[17], from two independent cohorts of 268 autopsied PSP 

Fig. 4   Network plots for Cohort A co-expression modules 2, 3 
and 13. Genes that have a module membership (MM) > 0.7 and are 
amongst the top 150 connections, based on their degree of correla-
tion in the TOM matrix, are shown for CohortA_M2 a, CohortA_M3 
b and CohortA_M13 c. The size of the nodes reflects the number of 

connections (edges) and the weight of the edges reflects the strength 
of correlation between two nodes. Nodes are shaped according to the 
most significant neuropathological trait (bottom right legend) and 
colored according to whether they are predominantly expressed in 
one CNS cell type (top right legend)
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patients, who also had detailed quantitative neuropathology 
measures. This design enabled us to minimize the potential 
confounding effects on gene expression due to cell popula-
tion changes, which occur in diseased tissue [48]. As such 
our conclusions are unlikely to be driven by gene expression 
changes that occur as a consequence of neuropathology and 

rather reflect the influence of upstream regulatory changes 
on cell-specific tau pathology.

We detected the greatest number and the most significant 
expression associations for neuronal NFT pathology, at both 
gene [suppl. Table 1 (Online Resource 1)] and co-expression 
network levels [Table 2, Figs. 3, 4, suppl. Table 15 (Online 

Fig. 5   Circos plots of chromosomal locations for tau neuropathology 
associations. The outermost track is the ideogram of human refer-
ence genome hg19. The second outermost track shows a bar plot of 
− log10(p value) for genes that are differentially expressed between 
PSP and controls. This is limited to genes with DEG p value < 5E-03. 
The next panel contains five tracks of bar plots, which are the − log10 

p value of association between gene expression and the following 
latent variables from outermost to innermost: Overall, TAUTh, TA, 
NFT, CB. The next panel contains 3 tracks, which indicate the 150 
genes with the highest module membership from each of the neuro-
pathology-associated modules, CohortA_M13, CohortA_M3 and 
CohortA_M2, from outermost to innermost, respectively
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Resource 1)]. This is not surprising given that PSP is a pri-
mary neurodegenerative tauopathy. Amongst the most sig-
nificant NFT-associated transcripts are those implicated in 
tau pathophysiology, including CDK5R1, which encodes 
the regulatory p35 subunit of cyclin-dependent kinase 5, 
the truncated form (p25) of which hyperphosphorylates tau 
and is implicated in neuronal death in neurodegenerative 
diseases [15, 40]. CDK5R1 is also one of the most well-
connected genes in the neuronal modules (CohortA_M2 
and CohortB_M1), enriched in synaptic genes and posi-
tively associated with NFT. TAGLN3 is another gene with 
strong NFT association and a highly connected member of 
these neuronal modules, for which there is evidence from a 
Drosophila model as being a modifier of tau-induced neu-
rodegeneration [9]. MAPT per se and a paralog thereof, 
MAP4, are also members of these neuronal co-expression 
modules; and their brain transcript levels are also positively 
associated with NFT. Another gene with strong NFT asso-
ciation is PTPN1, which was shown to increase in the rat 
hippocampus with aging in parallel with worse cognition 
and increased tau phosphorylation [32]. Further, PTPN1 
inhibition suppressed amyloid ß-induced tau phosphoryla-
tion and improved cognition in a mouse model [29]. In our 
study, PTPN1 is negatively associated with NFT, which may 
reflect a negative feedback from higher protein levels in PSP 
brains with higher NFT burden, although this remains to be 
established. These collective experimental findings, which 
implicate some of the most strongly NFT-associated genes 
from our study in aspects of tau biology, provide external 
validation for our findings.

The positive association of higher levels of synaptic 
genes in the temporal cortex with higher overall burden of 
NFT pathology could have several implications. It is possi-
ble that regulatory genetic variants result in higher levels of 
synaptic genes, some of which subsequently lead to higher 
neuronal tau accumulation and ultimately risk for PSP. The 
significant enrichment of the synaptic module in this study 
for candidate PSP genes proximate to the PSP GWAS [26] 
risk variants (MAPT, NSF, CRHR1, STX6, IER5, BMS1) is 
in support of this hypothesis. This is also consistent with our 
prior findings which showed association of PSP risk vari-
ants, including MAPT locus SNP rs242557, with higher lev-
els of PSP neuropathology [2]. Another explanation for our 
findings would be that synaptic transcripts are upregulated 
in response to NFT pathology or its consequences, includ-
ing neuron and synaptic protein loss. Since we measured 
brain transcripts in the temporal cortex, which is relatively 
spared from PSP neuropathology, a direct local influence 
of NFT pathology on expression levels is unlikely in this 
study. Nevertheless, extracellular release of tau from affected 
brain regions and its propagation [36] to other brain regions, 
which may in turn lead to downstream regulatory events, 
remains theoretically possible. The consistent direction of 

transcript associations for NFT and TAUTh supports the 
notion that the same mechanism may underlie the expres-
sion associations for these neuronal and extrasomal tau 
pathologies, respectively. Notably, tau-mediated modifica-
tion of chromatin structure resulting in aberrant increases 
in gene expression has been demonstrated in a Drosophila 
model [20], providing a direct potential link between tau and 
transcriptional dysregulation. Whether the same epigenetic 
mechanism underlies the expression changes observed in 
our study requires further investigation in cohorts of PSP 
and other primary tauopathies. Our findings demonstrate a 
significant enrichment for tau neuropathology-associated 
transcripts which reside on certain chromosomes [Fig. 5, 
suppl. Table 16 (Online Resource 1)]. This finding, remi-
niscent of the concept of topologically associated domains 
[28], may implicate a role for chromatin re-organization in 
PSP as a potential mechanism for the observed transcrip-
tional changes.

A key finding in our study is the divergent patterns of 
expression associations especially between the neuronal 
NFT and astrocytic TA neuropathologies [Figs. 1, 2, suppl. 
Fig. 4 (Online Resource 2)]. In stark contrast to the NFT 
associations, higher TA pathology is associated with lower 
synaptic gene levels. TA is also the only neuropathology 
which is not associated with the synaptic co-expression net-
work. Furthermore, levels of immune system transcripts and 
the immune network (CohortA_M6) are positively associ-
ated with TA. In contrast, NFT levels are negatively associ-
ated with immune system transcripts and lack association 
with the immune network. These findings suggest that dif-
ferent pathomechanisms may underlie the cell-specific tau 
pathology observed in neurons vs. astrocytes. Indeed, this 
is consistent with the mismatch observed in PSP between 
regions of most severe neuronal pathology (e.g., deep nuclei 
including subthalamic nucleus and substantia nigra) vs. 
those with most severe astrocytic pathology (e.g., motor 
cortex and caudate nucleus) [36], which provides neuro-
pathologic evidence for cell-specific vulnerability.

Our findings suggest that aberrant immune transcript 
expression may specifically underlie the astrocytic tau 
pathology in PSP [Fig. 3, suppl. Tables 15, 18 (Online 
Resource 1)]. The immune module, CohortA_M6, which is 
positively associated with TA pathology is highly enriched 
in microglial genes. Although there is activation of both 
microglia and astrocytes following injury to the central nerv-
ous system [21], TA pathology was shown to be independent 
of and therefore likely a different phenomenon than reac-
tive astrogliosis [55]. Microglia were shown to lead to tau 
aggregation and propagation in neurons in animal models [6, 
38], however, their direct influence on astrocytic tau pathol-
ogy has not been demonstrated. Our findings provide evi-
dence for a link between aberrant upregulation of microglial 
transcripts and increased astrocytic tau pathology in PSP. 
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Another explanation for these findings may be that upregula-
tion of microglial transcriptional networks may confer rela-
tive protection against development of NFT. Increased brain 
levels of the microglial gene TREM2 having a protective 
effect is an emerging concept in AD [11, 35, 59]. Whether 
this phenomenon is applicable to other microglial network 
genes and neurodegenerative diseases, such as PSP, remains 
to be investigated.

In this study, we identified transcriptional associations 
enriched for other biological processes including the olfac-
tory network (CohortA_M3), which is negatively associated 
with NFT and TAUTh pathologies (Figs. 3, 4, Table 2). 
Although olfactory dysfunction is not as prominent a clini-
cal feature in PSP compared to other neurodegenerative dis-
eases, including idiopathic Parkinson’s disease, early studies 
still showed a decline in odor detection in PSP compared 
to controls [18]. Brain regions particularly associated with 
olfactory function, such as forebrain cholinergic neurons are 
shown to harbor NFT pathology but typically exhibit less 
cell loss in PSP [36], which correlates with the lesser olfac-
tory dysfunction in this condition. Nevertheless, our findings 
suggest a direct negative influence of tau neuropathology 
on CNS cells involved in odor detection, which is plausi-
ble considering the vast complexity of the neurotransmitter 
networks involved in olfaction [18]. This finding has clinical 
implications including interrogating olfaction-related neuro-
transmitter systems in clinical PSP using functional imaging 
and investigating the utility of odor tests in this condition as 
potential biomarkers.

It is important to emphasize that the transcriptional 
and neuropathology measurements evaluated in these PSP 
brain cohorts represent a single and terminal snapshot in 
a complex, chronic condition. The transcriptional changes 
and their associated cell-specific pathologies may therefore 
reflect differential vulnerability of the specific cells at vari-
ous stages of the disease. The fact that we are able to discern 
in this study these divergent patterns of cell-specific neuro-
pathology and brain transcriptional associations may be due 
to the heterogeneity of the autopsied cohort with respect 
to disease stage. Another possibility is the presence of dif-
ferent stages of neuropathology in different regions of the 
same brain samples, with more vulnerable regions harbor-
ing a later stage pathology; and less vulnerable regions dis-
playing earlier stage lesions. Our findings support a model 
where microglial transcriptional upregulation is an earlier 
event that preferentially influences astrocytic tau pathology, 
whereas upregulation of synaptic transcripts and concomi-
tant downregulation of vulnerable neuronal pathway genes, 
such as those involved in olfaction, is a later process in the 
disease. This model is consistent with the mismatch of lesser 
neuronal loss in areas most affected with TA; and higher 
neuronal loss correlating with NFTs. There are other equally 

compelling models that can fit our results, which require 
downstream validations in model systems.

This is the first transcriptome-wide association study with 
tau lesions in PSP, and nominates novel genes and path-
ways that underlie distinct aspects of tau neuropathology. 
Our findings suggest that different mechanisms may drive 
cell-specific tau pathology in a divergent fashion in neurons 
vs. astrocytes. These results provide a platform for further 
studies into the divergent biology of different tau neuro-
pathologies in PSP and should serve as a valuable resource 
for the research community.
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