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Following the introduction of the term “Radiomics”, pro-
posed to imply the “Comprehensive quantification of disease 
phenotypes by applying a large number of quantitative image 
features representing lesion heterogeneity and correlating 
with omics and clinical data” [1], the scientific literature 
has been flooded by a continuously increasing number of 
studies on this topic.

In fact, such an approach to the analysis of medical 
images had been adopted even before the term radiomics 
was coined. In some high impact studies, the potential of 
image features to measure lesion heterogeneity by the use 
of advanced image analytics (e.g., texture analysis) had been 
demonstrated, proving statistically significant correlation 
between imaging features and known “omics” prognostic 
factors and/or clinical endpoints, in patients with similar 
cancer diagnosis, e.g., [2, 3].

With radiomics, a revival of the role of in vivo medical 
imaging in the anti-cancer scene is seen, overlapping the 
Genomics era, in which Genomics seemed to be the only 
possible precision approach to win the cancer challenge.

Moreover, ex vivo Genomics sequencing on sample biop-
sies is susceptible to tissue sampling errors possibly miss-
ing detection of intra-tumor heterogeneity and consequently 
misleading Genomic profiles [4]. The possibility of study-
ing cancer heterogeneity by 3D imaging of an entire lesion, 
in vivo, and by means of existing imaging technologies, has 
brought molecular imaging on the scene of personalized 
medicine.

Many research groups applied the radiomics approach 
to their retrospective oncological studies, given the imme-
diate availability of both imaging and clinical follow-up 
data. Most of these exploratory studies were successful in 

finding a number of radiomics features correlated to clini-
cal endopoints, in some studies allowing to stratify patients 
in different prognostic groups. Due to their retrospective 
nature, because of the lack of genetic analysis, very few 
studies allowed to investigate the correlation of the image 
traits with the Genomic profiles of the patients. The major-
ity of studies adopted compromise solutions, such as histo-
pathological and immunohistochemical analysis instead of 
Genomics.

However, this enthusiastic rush into a new research field 
results in a build-up of experimental and analytical work, 
prior to the consolidation of standardized and validated 
methodologies. On the one hand, many results in the litera-
ture have been obtained disregarding relevant methodologi-
cal issues (a disruptive paper on this topic that is worthy of 
wide diffusion and reading is the one on the high risk of false 
discovery rate in radiomics studies [5]). On the other hand, 
such a scientific gym has its advantages, forcing the field to 
grow. A variety of results have certainly emerged, some con-
firmed, others contradicted, however, generally highlighting 
the most critical issues for a clinical translation of radiomics.

First of all, radiomics has focused attention on the need 
to integrate such an unprecedented amount of different 
skills so far and on the complexity of this cultural change. 
The multidisciplinary work involves the collaboration of 
physicians (radiologists, nuclear physicians, oncologists 
and other specialists), not only with biologists, physicists, 
and bioengineers, but, more and more, with computer 
scientists, biostatisticians and experts in bioinformatics. 
These latter expertises appear predominant in radiomics 
and this is perhaps the greatest novelty compared to the 
past. Extremely, as in [6], the images “are more than pic-
tures: they are data” and, we can hazard, they escape the 
radiologists “visual inspection”. This unexpected change 
can perhaps be compared to what happened to biologists 
with the advent of Genomic analyses by high-throughput 
sequencing platforms. The amount of data extracted from 
these platforms is such that the now well-consolidated 
term “big data” was coined in medicine. Here, in radiom-
ics, the number of features which can be extracted is so 
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high, compared to conventional image analysis methods, 
that these new descriptors can be considered worth to enter 
into the “big imaging data” world.

An immediate step forward is, therefore, the translation 
of the feature selection procedures used so far for the analy-
sis of big data for the analysis of radiomic data. Statistical 
methods are applied to avoid data redundancy, reduce the 
dimensionality of the problem and control false discovery 
rate. Procedures to guarantee the stability of the features, and 
consequently the generalization of radiomic results, are also 
set up, with respect to lesion contouring (intra/inter-operator 
and algorithm variability), test–retest studies (intra study 
variability), and independent patient cohorts.

More recently, an emerging area of investigation focusses 
on the dependence of radiomics results on the physical char-
acteristics of the imaging acquisition and reconstruction 
systems, shifting the attention towards image protocols and 
processes prior to feature extraction, selection and classi-
fication, and this is the main topic for the two papers by 
Lovinfosse et al. in this issue [7, 8].

The instability of radiomic features on image acquisition 
and reconstruction protocols represents a serious constraint 
to multi-center radiomic studies, which have been recom-
mended in order to achieve an adequate number of samples 
to guarantee the power of the radiomic results. Interestingly, 
a possible solution may be inspired by the Genomic analysis 
environment, facing the so-called “batch effect”, a variation 
of Genomic data caused by the experimental manipulation of 
the samples (different laboratories, different technicians, dif-
ferent measurement days). A feature standardization method 
has been very recently proposed based on a transformation 
applied to each feature separately on the basis of the batch 
effect of the imaging system [9].

In summary, the results that emerge consistently from the 
recent literature show important reductions in features due 
to their non-negligible variation across different conditions 
but the selection of a limited number of stable radiomics 
features is possible and leads to the definition of “Radiom-
ics signatures” to be used as precision biomarkers for the 
prognosis of individual patients.

A further significant advancement in the radiomics pro-
cess occurs with the application of automatic classification 
techniques. Intelligent systems, trained on radiomics signa-
tures from subjects with known prognosis, allow to predict 
the clinical outcome for new patients, similarly to classifi-
ers predicting prognostic gene signatures, e.g., [10]. By the 
definition of a radiomics profile, it might then be possible to 
predict the prognosis or the response to a given therapy for 
each individual patient, by use of automatic image analyses 
and in vivo. The success and enthusiasm of radiomics per-
haps reach its highest level from these applications, because 
the impact it can have in the modern context of precision 
medicine is extraordinary.

However, compared to these promises, to date we rec-
ognize an insufficient level of standardization and evi-
dence in radiomics. Even in those studies applying accu-
rate selection criteria to produce stable radiomic profiles, 
significant differences exist in terms of methodology and 
clinical utility. There is an appreciable effort to report the 
results of the radiomic analysis to the “visual” control of 
the radiologists, for example mapping radiomics features 
of a particular clinical relevance at the level of the image 
voxel of a lesion. Thanks to these possibilities, radiologists 
have started interpreting the meaning of such features, on 
an imaging level, but we are only at the beginning of the 
puzzle, when one overviews all pieces and starts compos-
ing the picture using the most informative ones.

From which pieces should we start?
Statistical issues at the basis of radiomics extraction 

have been mostly solved, and a pipeline is now recom-
mended to obtain radiomics profiles, e.g., [11]. Fea-
ture standardization methods have been developed and, 
although further confirmations are needed and their appli-
cation requires specific expertise, they could be used to 
harmonize radiomics features from studies across differ-
ent imaging systems. There is still a lack of standardiza-
tion on radiomics generation (today the number of pos-
sible features of images has reached a few thousands with 
deep learning methods [12]) and on radiomics reporting, 
although an attempt of harmonization on reporting has 
been proposed [13]). Moreover, there is still no consensus 
on how to contour lesion volumes, in particular for imag-
ing modalities with poor spatial resolution and signal-to-
noise ratio (e.g., PET and DWI MRI).

Hopefully, we should now start a phase of a more sys-
tematic approach to radiomics, with the focus on “fixing 
the puzzle pieces in place” to guide the scientific commu-
nity toward the use of a clear, shared and robust methodo-
logical framework to the radiomic process. A collaborative 
multidisciplinary work at international and institutional 
level is emerging in fact, including all the above-men-
tioned multidisciplinary competences (e.g., the quanti-
tative imaging network—QIN and the image biomarker 
standardization initiative—IBSI [14]).

Before a collaborative multidisciplinary work is accom-
plished, it might be still too early to start composing the 
puzzle.
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