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Abstract

Purpose To assess disease-related patterns of in vivo pathology in 11 patients with Corticobasal Syndrome (CBS) compared to
20 healthy controls and 33 mild cognitive impairment (MCI) patients due to Alzheimer’s disease.

Methods We assessed tau aggregates with ['*FJAV1451 PET, amyloid-B depositions with ['*F]AV45 PET, and volumetric
microstructural changes with MRI. We validated for ['®F]JAV1451 standardised uptake value ratio (SUVRs) against input
functions from arterial metabolites and found that SUVRs and arterial-derived distribution volume ratio (DVRs) provide equally
robust measures of ['*F]AV1451 binding.

Results CBS patients showed increases in [lsF]AV145 1 SUVRSs in parietal (P <0.05) and frontal (P < 0.05) cortices in the
affected hemisphere compared to healthy controls and in precentral (P =0.008) and postcentral (P =0.034) gyrus in the
affected hemisphere compared to MCI patients. Our data were confirmed at the histopathological level in one CBS patient
who underwent brain biopsy and showed sparse tau pathology in the parietal cortex co-localizing with increased
['®F]AV1451 signal. Cortical and subcortical ['®F]AV45 uptake was within normal levels in CBS patients. In parietal
and frontal cortices of the most affected hemisphere we found also grey matter loss (P < 0.05), increased mean diffusivity
(P <0.05) and decreased fractional anisotropy (P < 0.05) in CBS patients compared to healthy controls and MCI patients.
Grey matter loss and white matter changes in the precentral gyrus of CBS patients were associated with worse motor
symptoms.

Conclusions Our findings demonstrate disease-related patterns of in vivo tau and microstructural pathology in the absence of
amyloid-[3, which distinguish CBS from non-affected individuals and MCI patients.
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The core neuropathological feature of corticobasal degener-
ation is abnormal accumulation of hyperphosphorylated 4-
repeat tau (4R) in the form of neurofibrillary tangles,
neuropil threads and coiled bodies together with astrocytic
plaques [2]. The clinical diagnostic accuracy of CBS is poor
due to the overlapping clinical features with other neurode-
generative disorders such as Alzheimer’s disease (AD), pro-
gressive supranuclear pPalsy (PSP) and tau-positive forms of
frontotemporal dementia (FTD). Only 25-56% of cases are
correctly diagnosed antemortem [3]. Therefore, disease-
related patterns of pathology that could be assessed in vivo
with non-invasive procedures such as neuroimaging could
aid accurate diagnosis, provide neuropathological insight
and help in assessing response of disease-modifying
treatments.

Recently, PET with specific radioligands binding to aggre-
gated tau has provided a unique opportunity to assess tau
pathology in living humans [4]. Autoradiography studies with
post-mortem human tissue have shown that ['*FJAV1451 se-
lectively binds to hyperphosphorylated tau over amyloid-f3
plaques [5]. ['®*F]AV 1451 binds with higher affinity to paired
helical filaments of 3R over 4R tau isoforms; however, auto-
radiography studies in post-mortem tissue have shown specif-
ic binding in patients with CBS [5-7]. Recently, an in vivo
['"®F]AV 1451 PET study has shown increased tau uptake in the
motor cortex, corticospinal tract, and basal ganglia in the
hemisphere contralateral to the most affected body side of
six patients with CBS compared to healthy controls and pa-
tients with AD and PSP [8]. Another ['*F]AV1451 PET study
has demonstrated increased tau binding in the putamen,
globus pallidus, thalamus and precentral grey and white mat-
ter in the hemisphere contralateral to the clinically most affect-
ed side in six CBS patients [9]. Previous MRI studies have
shown grey matter loss and white matter changes in
precentral, superior frontal, and fusiform gyri, putamen and
globus pallidus in CBS patients [10, 11].

However, these neuroimaging studies are limited by the
small sample size, commonly assessing a handful of CBS
patients, the use of a single imaging modality lack of arterial
input function for assessing ['*F]AV 1451 binding and the lack
of any evidence for confirmation of in vivo findings at the
histopathological level. Moreover, there is additional scientific
advantage regarding neuroimaging potential by comparing
disease-related patterns of in vivo pathology in patients with
CBS to early stages of AD such as in patients with mild cog-
nitive impairment (MCI) due to AD.

In this study, by using multimodal PET and MR neuroim-
aging, we sought to identify disease-related patterns of in vivo
pathology of tau aggregates using ['*F]AV1451 PET,
amyloid-p deposition with [ *F]AV45, grey matter and white
matter microstructural changes with 3-T MRI, in a group of
patients with CBS compared to age-matched healthy controls
and a group of patients with MCI due to AD. Our study also
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included validation of simplified SUVR analyses in relation to
optimised arterial input function kinetic modelling approach
for ['"*F]AV 1451 data, and histopathological examination of a
brain biopsy in one patient with CBS.

Materials and methods
Participants

Eleven patients with CBS according to the new criteria for the
diagnosis of CBS [3] were recruited from specialist movement
disorders clinics at King’s College Hospital NHS Foundation
Trust and National Hospital of Neurology and Neurosurgery,
Queen Square, London (Table 1). Twenty age- and sex-
matched healthy individuals with no history of neurological
or psychiatric disorders served as the control group. Fifteen of
these healthy controls were selected from the ADNI database.
Thirty-three age- and sex-matched patients with MCI due to
AD [12] from the ADNI database were also included for com-
parisons of imaging data with the group of patients with CBS
(Table 1).

All participants screened successfully to undertake PET
and MRI scanning under scanning safety criteria (http://
www.mrisafety.com; https://www.gov.uk/government/
publications/arsac-notes-for-guidance) and had no history of
other neurological or psychiatric disorders. Details of clinical
assessments can be found in Supplemental Methods. The
study was approved by the institutional review boards and
the research ethics committee. Written informed consent was
obtained from all study participants in accordance with the
Declaration of Helsinki.

Image data analysis
PET data analysis

The Molecular Imaging and Kinetic Analysis Toolbox soft-
ware package (MIAKAT™: www.miakat.org), implemented
in MATLAB® (The Mathworks, Natick, MA, USA) was used
to carry out image processing and kinetic modelling.
MIAKAT™ combines in-house code with wrappers for
FMRIB Software Library (FSL, http://fsl.fmrib.ox.ac.uk/fsl/
fslwiki/) and Statistical Parametric Mapping (SPM, http://
www.fil.ion.ucl.ac.uk/spm/) commands in order to provide
state-of-the-art functionality within a coherent analysis frame-
work. Individual PET frames were corrected for head motion
using frame-by-frame rigid registration using a frame with
high signal-to-noise ratio as reference. The MIAKAT™ pro-
cessing pipeline was followed, ensuring that all quality control
steps were completed.


http://www.mrisafety.com
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https://www.gov.uk/government/publications/arsac-notes-for-guidance
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Table 1 Clinical characteristics
of patients with corticobasal

HC CBS patients MCI patients

syndrome, mild cognitive
impairment and healthy controls No (M, %)

Age in years (mean = SD)
Disease duration (years £SD)
MMSE (mean + SD)

MOCA (mean + SD)

20 (10 M, 50.0%) 11 (5 M, 45.4%) 33 (19 M, 57.6%)

72.4 (+4.8) 69.2 (+6.8) 75.4 (+5.8)
- 4.82 (+2.2) 9.6 (+6.7)

29.67 (+0.8) 23.64 (£5.4)% 27.6 (+3.0)
29.33 (£1.6) 17.82 (6.5)%% 23.5 (24.1)*

CBS=Corticobasal Syndrome; HC = Healthy Controls; MCI=Mild Cognitive Impairment; MMSE = Mini
Mental Status Examination; MoCA = Montreal Cognitive Assessment. Mean (£SD) time delay between clinical
examination and imaging assessments =20.7 (£15.5) days. *P < 0.05, ***P < 0.001 between corticobasal syn-
drome patients and healthy controls. ¥ P < 0.01 between CBS patients and MCI patients

['®F]AV1451 arterial input function

All patients with CBS and the healthy controls scanned at
Imanova underwent arterial sampling for measurements of
radioactivity concentrations. One patient with CBS was un-
able to tolerate arterial cannulation and, therefore, metabolite
analysis was not performed for this patient. ['*FJAV 1451 par-
ent fraction over the course of the PET scan was determined
by HPLC using the Hilton column switching method [13].
Plasma input function of unmetabolised radioligand was gen-
erated using the continuous and discrete plasma samples. The
arterial input function was obtained by plasma-to-whole blood
radios fitted with a single exponential fit and a sigmoid fit for
parent fraction [14].

["®F]1AV1451 pet

["®F]AV 1451 total volume of distribution (V) was generated
using the two-tissue compartmental model (2-TCM) with
blood volume correction [14, 15]. ['*F]JAV1451 Vi reflects
the equilibrium ratio of ['®F]JAV 1451 concentration in the tis-
sue vs plasma [16]. To quantify specific binding of
['®F]AV1451, indirect distribution volume ratio (DVR) was
estimated from compartmental modelling with arterial inputs,
calculated as Logan V1% /V™ with cerebellum grey mat-
ter, excluding the dentate nucleus, as reference. [1 8F]A\/1451
DVR has been shown to correlate with 2-TCM Logan Vrand
yields high quality parametric maps for tau quantification with
PET [14, 17]; therefore, ['®F]JAV1451 DVR parametric maps
were generated from Logan Vr [17].

For the clinical application of ['*F]AV1451 and for com-
parison with previous studies without arterial inputs, we
also quantified ['®F]AV 1451 using standardised uptake val-
ue ratio 60—-80 (SUVR) min post-injection with cerebellar
grey matter excluding the dentate nucleus as the reference
tissue [18, 19]. SUV was generated by correcting absolute
radioactivity concentrations (C; kBq/mL) for subject body
weight (BW; kg) and injected dose (ID; MBq): SUV=C/
(ID/BW).

["®F]AV45 pet

Quantification of ['*F]AV45 in vivo was expressed as SUVR
50-60 min post-injection. SUVRs were calculated as radioac-
tivity concentration in each region of interest tissue divided by
the radioactivity concentration in the cerebellum grey matter
as the reference tissue for no amyloid-specific [ *F]JAV45 up-
take. In line with previous studies, the cortical to cerebellar
SUVRs values reached a plateau within 50 min; therefore, the
time window 50—60 min post-injection was taken as a suitable
representative sample for analysis [20].

MRI data analysis
FreeSurfer analysis

FreeSurfer image analysis suite was used to derive measures
of cortical thickness and deep grey matter nuclei volume.
Cortical thickness was measured as the distance from the grey
and white matter boundary to the corresponding pial surface.
Reconstructed data sets were visually inspected to ensure ac-
curacy of registration, skull stripping, segmentation, and cor-
tical surface reconstruction. Subcortical structure volumes
were derived by automated procedures, which automatically
assign a neuroanatomical label to each voxel in an MRI vol-
ume based on probabilistic information automatically estimat-
ed from a manually labelled training set [21]. All individual
nuclei volumes were normalised for intracranial volume auto-
matically generated by FreeSurfer [22].

DTI analysis

Diffusion data analysis was performed using FSL Diffusion
Toolbox (FDT) (FMRIB Centre Software Library, Oxford
University). Each phase encoding direction image set, blip-
up and blip-down, was corrected for motion and eddy
current-related distortions [23]. Diffusion tensors were esti-
mated on a voxel-by-voxel basis using DTIfit within the
FMRIB Diffusion Toolbox to obtain mapping of mean diffu-
sivity (MD) and fractional anisotropy (FA). Voxel-wise tract-
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based spatial statistics (TBSS) [24] was used to analyse FA
and MD between healthy controls and patients with CBS and
MCI. All subjects’ FA data were registered into a common
space and mean FA skeleton was created using a threshold of
0.2. The group differences were calculated using a voxel-by-
voxel non-parametric test (500 permutations) and the results
reported after threshold-free cluster enhancement to avoid an
arbitrary threshold for the initial cluster formation [25].
Results were corrected for multiple comparisons at P < 0.05.

Neuropathological analysis can be found in Supplemental
methods.

Statistical analysis

Statistical analysis and graph illustration were performed with
SPSS (version 20 Chicago, IL, USA) and GraphPad Prism
(version 6.0c) for MAC OS X, respectively. For all variables,
variance homogeneity and Gaussianity were tested with
Bartlett and Kolmogorov-Smirnov tests. Multivariate analysis
of variance (MANOVA) was used to assess groups’ difference
in clinical, PET and MR imaging data. If the overall multivar-
iate test was significant, P-values for each variable were cal-
culated following Bonferroni’s multiple comparisons test. For
analysis of asymmetric ['®F]JAV 1451 uptake, contralateral to
the clinically most affected side of the body, the most affected
hemisphere was flipped to the same side for each subject
(most affected left hemisphere = 3 CBS patients; most affected
right hemisphere = 8 CBS) to allow comparison of the most
and least affected hemisphere in the group of 11 CBS patients.
Since inter-scanner variability, reconstruction techniques, and
different implementations of scatter and attenuation correc-
tions in PET and MRI images from various sites could have
affect our results, we repeated the analysis by co-varying be-
tween data acquired at our center and the ADNI dataset. We
interrogated correlations between PET and clinical data using
Spearman’s 7 correlation coefficient and we applied the
Benjamini-Hochberg correction. P-values for each variable
were calculated following Benjamini-Hochberg multiple-
comparisons test in order to reduce false discovery rate. We
set the false discovery rate cut-off at 0.05. All data are pre-
sented as mean + SD, and the level o was set for all compar-
isons at P <0.05, Benjamini-Hochberg corrected. For voxel-
wise statistics appropriately weighted contrasts were used to
derive Z-scores on a voxel basis using the general linear mod-
el; threshold for statistical significant was set to P < 0.05.

Results
Clinical assessments

Patients with CBS had worse cognitive function (MMSE P =
0.017; MoCA P =0.007; PSPSR-II mental exam P =0.008)
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and worse symptoms of frontal lobe dysfunction (FAB: P <
0.001) compared to the group of healthy controls (Table S1)
and compared to the group of MCI patients (MMSE P =
0.003; MoCA P=0.001; Table 1). Three CBS patients were
unable to perform the CANTAB® battery due to severe motor
and cognitive impairment (Subject 7: MMSE = 16, MoCA =
7, UPDRS-III = 64; Subject 9: MMSE =17, MoCA =15,
UPDRS-II1 = 63; Subject 11: MMSE =18, MoCA =12,
UPDRS-III = 85). CBS patients performed worse than healthy
controls in the assessments of psychomotor speed [five choice
median reaction time (P = 0.011) and median movement time
(P=0.017)], attention [rapid visual information processing A-
time (P = 0.048) and median latency (P = 0.009)] and episodic
memory [delayed match to sample % correct (P =0.032) and
probability of given error (P = 0.004); Table S2]. CBS patients
had higher burden of neuropsychiatric symptoms as measured
by the NPI (P=0.013), GDS (P=0.024) and HDRS (P =
0.003). Non-motor symptoms burden was also higher in our
group of CBS patients compared to the group of healthy con-
trols (UPDRS-I: P=0.006; ESS: P=0.040; SCOPA-AUT:
P=0.008; Table S1).

['®F1AV1451 PET findings

We first validated use of simplified SUVR analyses in rela-
tion to optimised arterial input function kinetic modelling
approach for ['®FJAV1451. For 10 CBS patients and five
healthy controls, arterial quantification of ['*F]AV1451
was carried out using the 2-TC model with blood volume
correction, to generate regional Vr values. The cerebellum
grey matter, excluding the dentate nucleus, has been used as
a reference region for quantification of ['*F]JAV1451 in sim-
plified model including SUVR analysis. In our data set,
there was no difference (P> 0.10) in V1 cerebellum grey
matter between CBS patients (mean+SD: 5.29+1.1) and
healthy controls (mean +SD: 5.22 &+ 1.4). Therefore, cere-
bellum grey matter is a suitable reference region for simpli-
fied analysis methods. We investigated differences in corti-
cal and subcortical ['*F]AV 1451 uptake using Logan DVR
(V1959 /vrh and SUVR. No significant differences
were found between mean cortical ['*F]JAV1451 SUVRs
and ['®F]AV1451 Logan DVRs in our group of CBS pa-
tients (Table S3) and healthy controls (all P>0.10;
Table S4; Fig. S1). These results validate the use of SUVR
as a reliable, simplified method for the quantification of
['*F]AV1451. ['®F]AV1451 SUVR was used to carry out
group comparisons and correlations.

We found increases in cortical and subcortical [ *F]AV 1451
SUVRs in patients with CBS compared to the group of healthy
controls (P <0.05; Fig. 1, 2A, S2 and S3). Since asymmetric
brain changes and clinical symptoms are features of CBS, we
assessed tau deposition contralateral to the clinically most af-
fected body side, compared to healthy controls and patients
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Fig. 1 Increased tau deposition in a
the most and least affected side of
corticobasal syndrome patients.
(A) Voxel-wise z-score maps for
['®F]AV 1451 standardized uptake
value ratios (SUVR) binding in
CBS patients who present
clinically with most affected right
(R) side (n = 3) and patients who
present clinically with most
affected left (L) side (n=28)
compared to healthy controls. (B)
Bar graph showing increases in
['®F]AV1451 SUVR in the most,
least affected side of patients with
CBS and healthy controls.
Whiskers indicate variability
outside the upper and lower
quartiles, the median is marked by
a horizontal line inside the box.
*P<0.05; **P<0.01. All P
values are Bonferroni corrected
for multiple comparisons. MA =
most affected; LA = least affected
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with MCI due to AD. We found differences in mean
['®F]AV1451 SUVRs between the most and least affected
hemispheres in the precentral gyrus (P =0.047), postcentral
gyrus (P =0.044) and angular gyrus (P =0.044) in our group
of patients with CBS (Table 2; Fig. 1).

CBS patients had higher mean ['®F]AV1451 SUVRSs in the
superior frontal gyrus (P =0.041), middle frontal gyrus (P =
0.031), precentral gyrus (P =0.007), superior parietal gyrus
(P=0.014), postcentral gyrus (P=0.033), angular gyrus
(P=0.039) and putamen (P =0.037) in the hemisphere con-
tralateral to the clinically most affected side compared to the
group of healthy controls (Table 2; Fig. 1). No differences
were observed in mean ['®F]AV1451 SUVRs in the globus
pallidus, substantia nigra, temporal and occipital cortices of
the most affected hemisphere compared to the healthy controls
(all P>0.05; Table 2).

MCI patients showed increases in ['*F]JAV1451 SUVRs in
the anterior (P =0.022), middle and inferior (P =0.019) tem-
poral lobe, parahippocampal gyrus (P =0.019) and fusiform
gyrus (P=0.010) compared to the group of healthy controls
(Fig. 2C). When comparing MCI and CBS patients, we found
that CBS patients had increased ['®*FJAV1451 SUVRSs in the
precentral gyrus (P = 0.008) and postcentral gyrus (P =0.034)
in the hemisphere contralateral to the clinically most affected
body side compared to the group of MCI patients (Table 2;
Fig. 2B and C). Patients with MCI had increased ['*F]AV 1451
SUVRs in the hippocampus (P = 0.016), parahippocampal gy-
rus (P =0.048) and anterior temporal gyrus (P =0.007) com-
pared with CBS patients (Table 2; Fig. 2B and C).

Whole brain voxel-wise analysis of ['*F]AV1451 SUVRs
between the group of CBS patients and healthy controls con-
firmed results from region of interest-based analysis. Whole
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Fig. 2 Increased tau deposition in anatomically defined brain regions of
corticobasal syndrome patients compared to healthy controls and mild
cognitive impairment patients. (A) Z-score maps showing increased
['®F]AV 1451 binding in CBS patients compared to healthy controls. (B)
Z-score maps showing increased [ISF]AV1451 SUVR in CBS patients
compared to MCI patients. (C) Bar graph showing increases in

brain analysis revealed clusters of significant increases in CBS
patients in the middle and superior frontal cortex, dorsolateral
frontal cortex, posterior medial frontal cortex, precentral gy-
rus, and postcentral gyrus (all P <0.05; Table S5; Fig. S4A).
Likewise, voxel-wise analysis showed clusters of significant
increases in ['®F]JAV1451 SUVRs in the dorsolateral frontal
cortex, parietal lobe and supramarginal gyrus of CBS patients
compared to MCI patients (all P <0.05; Table S5; Fig. S4B).
Patients with MCI had clusters of significant increases in
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["®F]AV1451 SUVR in patients with CBS most affected hemisphere,
MCI and healthy controls. Whiskers indicate variability outside the
upper and lower quartiles, the median is marked by a horizontal line
inside the box. *P<0.05. All P values are Bonferroni corrected for
multiple comparisons

['®F]AV1451 SUVR in the superior, middle and inferior tem-
poral gyrus and fusiform gyrus when compared to CBS pa-
tients (all P < 0.05; Table S5; Fig. S4C).

['®F]AV45 PET findings
We found no differences in cortical and subcortical [ *F]AV45

SUVRs between patients with CBS and the group of healthy
controls (all P>0.05; Fig. S1). Patients with MCI showed
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Table 2 ['®F]AV1451 SUVR in
anatomical brain regions in Regions of HC (n =20) CBSMA CBS LA MCI CBS vs. CBS vs.
patients with corticobasal Interest (mean+SD)  (n =11) (n=11) (n =33) HC* P MCI#* P
syndrome patients, mild cognitive (mean+SD)  (mean+SD) (mean+SD) value value
impairment and healthy controls
Hippocampus 1.25 (£0.17)  1.22 (+0.06) 1.19x0.09) 130 (=0.16) >0.10 0.016
Anterior 1.07 (£0.10)  1.06 (£0.13) 1.06 (0.06)  1.16 (0.22)  >0.10 0.007
Temporal
gyrus
Parahippocampal ~ 1.09 (£0.09)  1.09 (£0.09) 1.07 (0.13)  1.18 (0.17)  >0.10 0.048
gyrus
Superior Frontal 1.02 (£0.08)  1.12 (£0.15) 1.09 (=0.09)  1.08 (+0.10) 0.041 >0.10
gyrus
Middle Frontal 1.06 (£0.07)  1.16 (£0.16) 1.11 (£0.07)  1.12 (£0.11) 0.031 >0.10
gyrus
Precentral gyrus 1.01 (#0.07)  1.16 (£0.19) 1.10 (£0.11) ~ 1.05 (0.08) 0.007 0.008
Postcentral gyrus ~ 0.99 (£0.07)  1.10 (£0.19) 1.01 (=0.14)  1.00 (£0.07) 0.033 0.034
Angular gyrus 1.07 (£0.11)  1.24 (£0.32) 1.18 (£0.20)  1.14 (+0.18) 0.037 >0.10
Superior Parietal 1.04 (£0.07)  1.20 (£0.25) 1.19 (=0.20)  1.10 (0.12) 0.014 >0.10
gyrus
Lateral Occipital 1.08 (0.09)  1.22 (+0.29) 1.17 (£0.18)  1.16 (£0.14) 0.078 >0.10
Lobe
Posterior 1.08 (0.09)  1.19 (0.21) 1.17 (20.15)  1.16 (=0.19) 0.057 >0.10
Cingulate
Posterior 1.12 (#0.06)  1.21 (£0.21) 1.18 (=0.14)  1.18 (+0.13) 0.091 >0.10
Temporal Lobe
Superior 1.07 (0.08)  1.13 (+0.20) 1.08 (£0.10)  1.11 (=0.08) >0.10 >0.10
Temporal
gyrus
Middle and 1.18 (0.08)  1.26 (£0.22) 121 #0.13)  1.27 (#0.19) >0.10 >0.10
Inferior
Temporal
gyrus
Fusiform gyrus 1.15(x0.09)  1.18 (£0.15) 1.16 (+0.10)  1.25(#0.18) >0.10 >0.10
Caudate 1.01 (0.12)  0.99 (x0.10) 1.02 (£0.11)  1.05(0.09) >0.10 >0.10
Putamen 1.39 (#0.11)  1.50 (£0.18) 1.48 (£0.17)  1.43 (0.15) 0.037 >0.10
Globus Pallidus 1.55 (#0.14)  1.67 (+0.26) 1.66 (£0.28)  1.69 (x0.20)  >0.10 >0.10
Substantia Nigra 1.39 (#0.14)  1.32 (+0.18) 1.30 (£0.20)  1.38 (0.16) >0.10 >0.10

All P values are Bonferroni corrected for multiple comparisons. *P values for the most affected hemisphere of
CBS patients vs healthy controls; *P values for the most affected hemisphere of CBS patients vs. MCI patients.
CBS=corticobasal syndrome; HC = healthy controls; LA = least affected side; MA = most affected side; MCI=

mild cognitive impairment; n = number of subjects

increased [ ®F]JAV45 SUVRSs in the hippocampus (P =0.015),
amygdala (P =0.004), parahippocampal gyrus (P =0.008),
superior frontal gyrus (P =0.014), middle frontal gyrus (P <
0.001), precentral gyrus (P <0.001), postcentral gyrus (P <
0.001), angular gyrus (P=0.01) and superior parietal gyrus
(P<0.001) compared to CBS patients (Table S6).

Neuropathological results

Histopathology results from one CBS patient who underwent
right frontal lobe biopsy for central nervous system lymphoma
confirmed cortical tau deposition without amyloid-f3 paren-
chymal deposition. The tau pathology comprised sparse cor-
tical pre-tangles and neurofibrillary tangles together with
small numbers of neuropil threads. In addition, fine tau-

positive processes with a plaque-like arrangement suggestive
ofastrocytic plaques were observed in the cortex in addition to
sparse white matter threads and coiled bodies. Ubiquitin and
p62 staining revealed neurofibrillary tangles and neuropil
threads in the cortex. There was no alpha-synuclein pathology

(Fig. 3).

MRI findings

Volumetric findings

FreeSurfer volumetric analysis showed decreased cortical
thickness in the precentral gyrus (P =0.019), supramarginal

gyrus (P =0.008) and middle frontal gyrus (P =0.007) in the
hemisphere contralateral to the clinically most affected body
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Astrocytic
Plaques

Neurofibrillary
Pre-tangles

Coiled Bodies

Neurophil Treads

Fig. 3 Histopathology evidence of increased tau deposition in a
corticobasal syndrome patient. Axial summed ['®F]AV1451 PET
images fused co-registered and fused with 3 T MRI images for the
cortex of a 75-year-old male CBS patient (CBS3; disease duration=
10 years; clinically most affected side =left; MMSE = 17; MoCA = 15;

side of CBS patients compared to the group of healthy con-
trols (Table S7; Fig. 4). When compared to MCI patients, CBS
patients displayed decreases in cortical thickness in the middle

HC vs CBS

HC vs L-CBS

,/
HC vs R-CBS A /\
HC vs MCI

CBS vs MCI

UPDRS-III = 63) who underwent brain biopsy showing increased right
fronto-parietal ['*F]JAV1451 SUVR corresponding to the
histopathological findings of subpial and perivascular glial tau
pathology neuropil threads, rare coiled bodies, astrocytic plaques and
neurofibrillary tangles and pre-tangles in neurones

frontal gyrus (P =0.006), precentral gyrus (P =0.009) and
supramarginal gyrus (P = 0.006; Table S7; Fig. 4) in the hemi-
sphere contralateral to the clinically most affected body side,

-500 -250 250 5.00
- |

Fig. 4 Volumetric changes in patients with corticobasal syndrome and
mild cognitive impairment. Cortical areas showing decreased thickness in
patients with CBS compared to healthy controls (top row); cortical
thinning in CBS patients who present clinically with most affected left
side (L-CBS; n=38) (second row); and patients who present clinically
with most affected right side (R-CBS; n=3) (middle row). Cortical
thinning in patients with MCI compared to healthy controls (fourth

@ Springer

row). Cortical thickness in patients with MCI compared to CBS
patients. Cortical thickness maps are displayed on average surface of
FreeSurfer’s Qdec (Query, Design, Estimate and Contrast) interface.
Colour bar indicated the Z scores. Results were obtained at P <0.05
after multiple comparisons correction using Monte Carlo simulation.
LH = Left Hemisphere; RH = Right Hemisphere; HC=Healthy Controls;
CBS=Cortiobasal Syndrome; MCI = Mild Cognitive Impairment
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whereas MCI patients showed cortical atrophy in temporal
areas such as enthorinal cortex (P =0.016) and temporal pole
(P=0.007) compared to CBS patients (Table S7, Fig. 4).

Microstructural white matter findings

Diffusion tensor imaging showed decreased FA in the angular
gyrus (P = 0.008), precentral gyrus (P =0.037), superior fron-
tal gyrus (P=0.039) and superior parietal gyrus (P =0.035)
and increased MD in the angular gyrus (P =0.007), precentral
gyrus (P=0.018), middle frontal gyrus (P=0.013),
postcentral gyrus (P=0.001) and superior parietal gyrus
(P=0.001) in the hemisphere contralateral to the clinically
most affected body side of CBS patients compared to the
group of healthy controls (Table S8; Fig. 5). When compared
to MCI patients, CBS patients showed increases in MD in the
precentral gyrus (P =0.042), postcentral gyrus (P =0.020),
superior parietal gyrus (P=0.034) and supramarginal gyrus
(P=0.002; Table S8; Fig. 5) in the hemisphere contralateral to
the clinically most affected body side. No differences were
observed in FA values between CBS and MCI patients (all
P>0.05; Table S8; Fig. 5).

We repeated the PET and MRI analysis by co-varying be-
tween data acquired at our centre and the ADNI dataset and
we found no differences in our results.

Correlations

We found a significant negative correlations between de-
creased cortical thickness in the precentral gyrus in the hemi-
sphere contralateral to the clinically most affected body side
and motor performance scores on the finger tapping (UPDRS-
III Item 3.4; r,=-0.86; P=0.001), hand movements
(UPDRS-III Item 3.5; r¢=—0.78; P=0.008), pronation/
supination movements of the hand (UPDRS-III Item 3.6; -
s=—0.71; P=0.022) and apraxia of hand movement (PSPRS
Item 22; r;=—0.68; P=0.031) of the clinically most affected
side in our group of CBS patients (Fig. S5A).

MD values in the precentral gyrus in the hemisphere con-
tralateral to the clinically most affected body side correlated
positively with motor scores for finger tapping movements
(UPDRS-II Item 3.4; »,=0.81; P=0.027), hand movements
(UPDRS-III Ttem 3.5; r,=0.81; P=0.027), pronation/
supination movements of the hand (UPDRS-III Item 3.6; -
s=0.82; P=0.024) and apraxia of hand movement (PSPRS
Item 22; r,=0.87; P=0.010) of the clinically most affected
body side in our group of CBS patients (Fig. S5B). We also
detected a negative correlation between FA values in the
precentral gyrus in the hemisphere contralateral to the clini-
cally most affected body side and upper limb rigidity move-
ments (UPDRS-III Item 3.3; ,=—0.80; P=0.031) of the clin-
ically most affected body side (Fig. S6).

Finally, performance on the Rapid Visual Information
Processing (RVP) test correlated negatively with ['*F1AV 1451
SUVR in middle frontal gyrus (r,=-0.79; P=0.036) and
postcentral gyrus (v, =—0.79; P =0.036) in the hemisphere con-
tralateral to the clinically most affected body side in our group
of CBS patients (Fig. S7).

We did not find any significant correlations between corti-
cal ['®F]JAV1451 SUVRs and clinical symptoms.

Discussion

Our findings demonstrate the presence of frontal and parietal
tau and microstructural pathology, in the absence of
amyloid-[3 pathology, in the affected hemisphere contralateral
to the clinically most affected side of patients with CBS. Our
findings derive from in vivo assessments of molecular and
structural pathology following PET and MRI, which are con-
sistent with observations from histopathological studies [2].
We also present one case, who underwent both the in vivo
imaging study and histopathological examination of brain bi-
opsy, and confirmed co-localisation of increased PET tau sig-
nal and tau pathology in the parietal cortex of the affected
hemisphere contralateral to the clinically most affected side
providing with additional validation of our findings.

Our study follows three recent pilot studies which assessed
tau pathology with either the same ['*F]JAV1451 PET
radioligand [8, 9] we used, or with the ['*F]THK5351 PET
radioligand [26]. Our findings are in line and extend the pre-
liminary observations from these studies that showed frontal
and parietal tau pathology in brain areas including the
precentral, postcentral and superior frontal and superior pari-
etal gyri in patients with CBS. These previous studies, how-
ever, have been limited in scope due to limited sample size and
not assessing some other important elements of pathology
such as grey and white matter microstructural changes. Our
study comes with the significant advantages that our group of
patients with CBS was double the size of that used in previous
pilot studies; the depth of assessments including thorough
clinical and neurophysiological evaluation, and multimodal
tau and amyloid-3 molecular and volumetric and microstruc-
tural assessment of molecular and structural pathology in
vivo; the comparisons with large sized cohorts of healthy in-
dividuals, but also patients with MCI due to AD, and in one
case the concurrent tau and amyloid-f3 PET imaging and his-
topathological examination of brain biopsy.

Another advantage of our study was to validate SUVRs
against arterial input function method for quantification of
['®F]AV 1451 in vivo. To validate a suitable reference region
for use in simplified models, full arterial quantification of
['®F]AV 1451 was carried out using the 2-TC model for esti-
mation of V; no difference was found in the reference region
Vr between groups. Therefore, reference region was used to
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HC vs CBS

Fig. 5 Microstructural white matter changes in patients with corticobasal
syndrome and mild cognitive impairment compared to healthy controls.
Tract-based spatial statistical maps of decreases in fractional anisotropy
(FA) represented by blue voxels and increases mean diffusivity (MD)

quantified ['®F]JAV 1451 using the indirect Logan DVR and
SUVR [14, 27]. Indirect Logan DVR measures were derived
from compartmental modelling with arterial inputs, namely
visuey el 118 E1AV1451 uptake is most commonly mea-
sured using semi-quantitative SUVRs [28-30] with the cere-
bellum as the reference region for no tau-specific
['®F]AV1451 uptake [19]. SUVRs have several advantages
over computational analysis with plasma input functions, in-
cluding shorter scan duration, with static scans targeting a
specific time window, reduced likelihood of head movement
and simplified and quick analysis method. Furthermore, quan-
titative of static imaging with SUVRs static imaging has great-
er potential for clinical applications. Here, we show no differ-
ences in results at a group level when using SUVR or Logan
DVR values. Therefore, supporting previous work [14, 27],
['®F]AV1451 can be analysed without the need for arterial
sampling and compartmental modelling. Static imaging with
SUVRs provides a reliable method for the regional quantifi-
cation of tau burden in patients with CBS.

The region-of-interest analysis we performed showed in-
creases in tau deposition in the superior frontal gyrus,
middle frontal gyrus, precentral gyrus, superior parietal gyrus,
postcentral gyrus, angular gyrus and putamen in the hemi-
sphere contralateral to the clinically most affected
side. These findings were also confirmed at voxel level.
Moreover, we found that increases in cortical tau pathology
co-localised with cortical grey matter loss and white matter
microstructural changes. It is likely that abnormal accumula-
tion of hyperphosphorylated 4R tau may cause neuronal loss
and white matter axonal loss. Tau pathology is also found in
white matter as neuropil threads and oligodendroglial coiled
bodies in CBS postmortem tissue [2]. Smith et al. suggested
that cortical atrophy is more pronounced and widespread com-
pared to cortical ['®F]JAV 1451 deposition in CBS patients [8].
However, this observation was not confirmed in our larger
group of CBS patients. Moreover, it may be possible that the
amount of tau pathology visualised with ['*F]AV1451 is
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HC vs MCI

represented by red voxels. FA white matter skeleton is represented by
green voxels. Results are reported after multiple comparison corrected
at P<0.05. MD =Mean Diffusivity; FA = Fractional Anisotropy;
CBS=Corticobasal Syndrome; MIC = Mild Cognitive Impairment

lower than expected because of the low affinity of this
radioligand for 4R tau protein.

It has been suggested that ['*F]JAV1451 selectively binds to
paired helical filaments 3R characteristic of AD and less av-
idly to the straight tau filaments 4R typical of non-AD
tauopathies such as CBS and PSP [5, 6]. Our histopathological
data, however, support that the cortical increases observed in
['®F]AV 1451 uptake corresponded to abnormal accumulation
of hyperphosphorylated 4R tau in neurons and in glial cells. In
support of our findings, previous neuropathological studies
have shown that ['®F]JAV 1451 uptake correlates with 4R-tau
burden in autopsy-confirmed CBS post-mortem tissue [31,
32]. Increases in midbrain and basal ganglia ['*F]AV1451
uptake were also shown found in other 4R tauopathies such
as PSP [33-35] and in MAPT p.R406W mutation carriers
[36].

CBS pathology affects also subcortical nuclei such as stri-
atum, globus pallidus and substantia nigra [2]. We found sig-
nificant increases in tau deposition in the putamen in the hemi-
sphere contralateral to the most affected side in CBS patients.
Neuropathological and autoradiographic data have suggested
that ['*F]AV 1451 exhibits off-target binding to neuromelanin-
and melanin-containing neurons in subcortical nuclei [5].
However, a recent [ *F]JAV1451 PET study showed increased
uptake in the basal ganglia and midbrain of PSP patients in
absence of post-mortem neuromelanin-containing cells [34].
Given that this is still a subject of debate we will not provide
interpretation and mechanistic speculation about our findings
in putamen.

In our study, we compared imaging data from the group of
patients with CBS to a group of patients with MCI due to AD,
in addition to the group of healthy controls. The patients with
MCI showed significant tau retention in the anterior, middle,
inferior temporal lobe, parahippocampal gyrus and fusiform
gyrus compared to the group of healthy controls. These find-
ings reflect the distribution of tau pathology consistent with
Braak stage III-IV, which involves hippocampus and the
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anterior part of the temporal lobe [37]. Compared to patients
with CBS, patients with MCI displayed significant increases
in tau deposition in the hippocampus, parahippocampal gyrus
and anterior temporal gyrus; whereas patients with CBS
showed increases in tau deposition in precentral and
postcentral gyri in the affected hemisphere. This suggests dif-
ferent disease-specific patterns of tau pathology in CBS pa-
tients and MCI patients, with the former involving the primary
motor and primary somatosensory cortices of the hemisphere
contralateral to the clinically affected side of the body.

All our CBS patients had normal cortical and subcortical
amyloid-[3 retention indicating the absence of typical AD pa-
thology. This was also confirmed in the case of the patient
with CBS who underwent histopathological examination of
brain biopsy. As expected, MCI patients showed increased
amyloid-3 deposition across several temporal and parietal
areas consistent with previous studies [38].

We found that increased tau deposition in the medial frontal
and postcentral gyri contralateral to the clinically most affect-
ed side was associated with worse performance at the Rapid
Visual Information Processing test, which measures attention.
The medial frontal cortex plays a key role in performance
monitoring on subsequent trials and in the implementation
of associated adjustments in cognitive control [39], whereas
the somatosensory area has been commonly involved in the
execution of visual motor task, which require sustained atten-
tion [40]. A recent in vivo ['*F]AV1451 PET study showed
that increased tau uptake in the precentral grey and white
matter was associated with worse motor functions as mea-
sured by the UPDRS-III and this correlation was drive by
bradykinesia and axial motor subscores [9]. We did not find
associations between motor symptoms severity and increased
tau deposition. This discrepancy may be due to the small sam-
ple size investigated by Cho et al., [9] who interrogated cor-
relations between tau and clinical symptoms only in six CBS
patients. Moreover, the lack of a validated scale to assess
motor symptoms in CBS may have also contributed to this
difference.

MRI analysis showed disease-related patterns of grey and
white matter changes in CBS and MCI patients. We found
significant grey matter loss in the precentral, supramarginal
and middle frontal gyri in the hemisphere contralateral to the
clinically most affected body side of the patients with CBS
compared to healthy controls and patients with MCI.
Microstructural white matter changes were also observed in
frontal and parietal cortices in the hemisphere contralateral to
the clinically most affected body side of patients with CBS
compared to healthy controls and patients with MCI. This is in
line with previous studies showing significant asymmetric re-
gional grey matter loss and white matter changes in motor
cortex areas [10, 11].

We found significant associations between grey matter loss
and white matter changes in the precentral gyrus in the

hemisphere contralateral to the clinically most affected side
and hand rigidity, bradykinesia and apraxia of the affected
clinical body side. The clinical core features of CBS include
asymmetric rigidity, bradykinesia and apraxia characteristical-
ly affecting the upper limbs [41]. This suggests that grey and
white matter structural changes in the primary motor cortex
are associated with worse clinical symptoms in CBS. We mea-
sured motor symptoms severity using both the UPDRS-III and
PSPRS since to date there is not a validate clinical rating scale
for CBS.

In conclusion, our findings demonstrate the identification
of an in vivo disease-related pattern of asymmetric frontal and
parietal tau and microstructural pathology in the absence of
amyloid-[3, which distinguishes CBS from non-affected indi-
viduals and patients with MCI due to AD. Our results are
confirmed at a histopathological level and support the use of
['®F]AV1451 PET as a marker of tau pathology in CBS pa-
tients. Clinical diagnosis of CBS could be difficult due to
the overlapping features with other neurodegenerative disor-
ders, in vivo imaging of tau aggregates with PET has the
potential to aid in the differential diagnosis of CBS. Since also
prevention of tau aggregation and propagation is the focus
of attempts to develop mechanism-based treatments for
tauopathies our multimodal image approach could also serve
as an indicator of treatment efficacy for interventions aimed at
preventing tau aggregate formation. Further studies are need-
ed to demonstrate changes in ['*F]JAV1451 PET and micro-
structure over time and to establish their full potential as bio-
markers to stratify and monitor the effect of disease-modifying
drugs in future clinical trials.
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