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Abstract
Purpose  The methods (IHC/FISH) typically used to assess ER, PR, HER2, and Ki67 in FFPE specimens from breast cancer 
patients are difficult to set up, perform, and standardize for use in low and middle-income countries. Use of an automated 
diagnostic platform (GeneXpert®) and assay (Xpert® Breast Cancer STRAT4) that employs RT-qPCR to quantitate ESR1, 
PGR, ERBB2, and MKi67 mRNAs from formalin-fixed, paraffin-embedded (FFPE) tissues facilitates analyses in less than 
3 h. This study compares breast cancer biomarker analyses using an RT-qPCR-based platform with analyses using standard 
IHC and FISH for assessment of the same biomarkers.
Methods  FFPE tissue sections from 523 patients were sent to a College of American Pathologists-certified central reference 
laboratory to evaluate concordance between IHC/FISH and STRAT4 using the laboratory’s standard of care methods. A 
subset of 155 FFPE specimens was tested for concordance with STRAT4 using different IHC antibodies and scoring methods.
Results  Concordance between STRAT4 and IHC was 97.8% for ESR1, 90.4% for PGR, 93.3% for ERBB2 (IHC/FISH for 
HER2), and 78.6% for MKi67. Receiver operating characteristic curve (ROC) area under the curve (AUC) values of 0.99, 
0.95, 0.99, and 0.85 were generated for ESR1, PGR, ERBB2, and MKi67, respectively. Minor variabilities were observed 
depending on the IHC antibody comparator used.
Conclusion  Evaluation of breast cancer biomarker status by STRAT4 was highly concordant with central IHC/FISH in this 
blinded, retrospectively analyzed collection of samples. STRAT4 may provide a means to cost-effectively generate standard-
ized diagnostic results for breast cancer patients in low- and middle-income countries.

Keywords  Breast cancer biomarker assays · STRAT4 · Estrogen receptor · Progesterone receptor · Human epidermal 
growth factor receptor 2 · Tumor proliferation rate · IHC · FISH

Introduction

Breast cancer is becoming increasingly recognized as a 
major health problem in low- and middle-income countries 
(LMIC) [1–5]. Although the impact of cancer diagnoses 
overall has often been overshadowed in these settings by 
infectious diseases like tuberculosis, malaria, and HIV, the 
numbers of patients affected by breast cancer is already sub-
stantial, and is likely to increase among LMIC in regions 
where populations are growing the fastest [6].
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Currently, however, the treatment of breast cancer in 
LMIC is fraught with difficulty. In recent years, effective 
treatments like tamoxifen have become available at low or no 
cost for women with estrogen receptor (ER) positive breast 
cancer, accounting for approximately two-thirds of cases. 
Unfortunately, access to high-quality diagnostic technolo-
gies capable of identifying a tumor as ER-positive have been 
difficult to set up and maintain in a standardized and cost-
effective manner (personal communication, John Flanigan, 
Senior Advisor, Center for Global Health, National Cancer 
Institute), owing largely to their reliance on antibody-based 
methods requiring significant expertise to perform and inter-
pret. As lower cost biosimilars of trastuzumab become avail-
able [7, 8], breast cancer patients with tumors that overex-
press the human epidermal growth factor receptor 2 (HER-2) 
may find themselves struggling to access a highly effective 
drug because diagnostic tests that are standard of care for 
every breast cancer patient in the United States and Europe 
are unavailable to women in LMIC.

Stimulated by several studies that showed an association 
between quantitative measurements of mRNA for the tran-
scripts encoding ER and HER-2 (ESR1 and ERBB2) and 
clinical outcomes on tamoxifen and trastuzumab, respec-
tively [9–11], we anticipated that an assay based on quan-
titative, real-time, polymerase chain reaction (RT-qPCR) 
methodology would be highly concordant with central 
measurements of ER and HER-2 using IHC and/or FISH, 
and might, therefore, be extremely useful in LMIC. A criti-
cal consideration in the genesis of this idea was the fact 
that such RT-qPCR assays could be developed and run on 
a distributed diagnostic platform called the GeneXpert®, 
[(Cepheid, Sunnyvale, CA, USA), (http://www.cephe​id.com/
us/cephe​id-solut​ions/syste​ms/genex​pert-syste​ms/genex​pert-
i)], which performs automated sample preparation and multi-
plexed RT-qPCR assays in approximately 2 h. The platform 
is designed for ease of use, and is already widely distributed 
throughout the world with more than 17,000 instruments 
running in 182 countries. Moreover, the platform has been 
adapted to extract nucleic acids from formalin-fixed, paraf-
fin-embedded tissue (FFPE), the most common tissue-type 
employed by pathologists for the analysis of breast cancer 
specimens.

Thus, we aimed to demonstrate that the measurement of 
mRNAs for the analytes ESR1 and ERBB2 were concordant 
with high-quality central laboratory assessments by immu-
nohistochemistry (IHC) for ER and HER2 protein expres-
sion and fluorescence-in-situ-hybridization (FISH) for 
HER-2 gene amplification. A multiplexed assay was built 
that included, in addition to ESR1 and ERBB2, primers and 
probes to detect and quantitate mRNAs for the progester-
one receptor (PR, PGR) and the cell proliferative antigen 
identified by monoclonal antibody Ki-67 (Ki67, MKi67). 
The panel is referred to as Xpert® Breast Cancer STRAT4 

(STRAT4). Once constructed, the assay was analytically 
validated by demonstrating linearity and dynamic range, 
analytical sensitivity (minimal sample input), analytical 
specificity (tests for interfering substances), prevention of 
carryover contamination, and assay kit stability (Chu et. al. 
manuscript submitted for publication). Additional studies 
were performed to examine the impact of pre-analytical 
sample handling (selection of invasive carcinoma for test-
ing, macro-dissection techniques, and STRAT4 assay perfor-
mance by different pathologists) on assay result variability, 
as well as assess concordance with central IHC/FISH and 
define preliminary cutoff values (Wong et al. manuscript 
submitted for publication).

The current study is designed to investigate concordance 
between STRAT4 and standard IHC and FISH performed at 
a central laboratory using a large cohort of FFPE specimens 
tested in a blinded, retrospective manner, and interpreted 
according to the 2013–2014 ASCO/CAP guidelines. In addi-
tion, we examined the concordance between STRAT4 and 
several different antibodies commonly used in IHC assays 
performed at different central laboratories.

STRAT4 is a CE-IVD (Conformité Européene In-vitro 
Medical Device) product that is available in some, but not 
all, European countries, and is not available in the United 
States. Where the STRAT4 assay is not available under CE-
IVD, evaluations of its performance using specimens pre-
pared under local pre-analytical sample handling procedures 
can be supported under collaborative research agreements 
using a Research Use Only version.

Materials and methods

Specimen collection, IHC and HER‑2 FISH analysis

523 surgically excised breast tumors prepared as FFPE 
specimens, ranging from 6 months to 22 years in block 
age, were sourced from five institutes worldwide. Tumor 
blocks were selected based on what was available at each 
site. For each specimen, one sectioned slide was stained 
with hematoxylin and eosin (H&E) and used by patholo-
gists to mark tumor areas, estimate tumor size, and esti-
mate percentage tumor content. Serial unstained tumor 
samples (4 µm in thickness) were delivered to Cepheid for 
STRAT4 testing and to the University of Southern Cali-
fornia (USC, Los Angeles, CA) Breast Cancer Analysis 
Laboratory for ER, PR, HER2, and Ki67 IHC and HER-2 
FISH analyses. More sections were cut from a subset of 
tumor blocks (155 out of 523 total blocks) and sent to 
USC, Molecular Pathology Laboratory Network, Inc. 
(MPLN, Maryville, TN), and LabCorp (previously Pathol-
ogy Inc., Torrance, CA) where different antibodies and 
scoring methods were used to generate IHC results for 

http://www.cepheid.com/us/cepheid-solutions/systems/genexpert-systems/genexpert-i
http://www.cepheid.com/us/cepheid-solutions/systems/genexpert-systems/genexpert-i
http://www.cepheid.com/us/cepheid-solutions/systems/genexpert-systems/genexpert-i
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each analyte. Each reference laboratory generated its own 
H&E slides for each sample. All IHC, HER-2 FISH and 
STRAT4 testing was performed within two weeks after 
block sectioning. Only a subset of samples was tested for 
concordance for Ki67/MKi67. The immunohistochemi-
cal assay methods used in the USC central laboratory 
for assessment of ER, PR, Ki67 and HER2 are described 
elsewhere [21–24].

Sample processing and testing for STRAT4

FFPE samples were processed according to the package 
insert instructions of the STRAT4 assay kit. For each speci-
men, one unstained slide was overlaid onto the H&E slide 
which had been marked by a pathologist to select the inva-
sive carcinoma, and then was used to choose the material 
to be macro-dissected into a 1.5 mL eppendorf tube using a 
razor blade. Macro-dissected tumor material was then mixed 
with 1.2 mL of FFPE lysis reagent and 20 µL of proteinase 
K. The tubes containing the sample lysate were placed in 
heat blocks for incubation at 80 °C for 30 min. Sample lysate 
was then mixed with 1.2 mL of ethanol (molecular biol-
ogy grade, Sigma-Aldrich). For each sample, 520 µL of the 
lysate was transferred to the sample chamber of a STRAT4 
cartridge and placed into a GeneXpert module for RNA 
extraction, purification, and RT-qPCR analysis.

GeneXpert DX software analysis settings

ESR1, PGR, ERBB2, and MKi67 mRNA measurements were 
normalized against the mRNA measurement of the internal 
reference target Cytoplasmic FMR1-Interacting Protein 1 
(CYFIP1). Optical readouts of PCR amplifications and cycle 
threshold (Ct) determination for all targets and CYFIP1 in 
STRAT4 test runs were analyzed with settings specified in 
t h e  G e n e X p e r t  DX  s o f t wa r e .  D e l t a  C t (

dCt = [Ct
CYFIP1

] − [Cttarget gene
]

)

 assay cutoffs for ESR1 and 

ERBB2 were set at “− 1” and dCt cutoffs for PGR and MKi67 
were set at “− 3.5” and “− 4”, respectively. Preliminary assay 
cutoffs were determined in a previous study involving 32 
FFPE breast cancer samples that were tested by both 
STRAT4 and central IHC/FISH in a reference laboratory. 
The delta Ct numerical limits were set to maximize the con-
cordance with IHC (IHC/FISH for HER2). To minimize the 
rate of false negatives for PGR and MKi67, a minimum assay 
input value of 31 for the CYFIP Ct was implemented. If the 
dCt for PGR or MKi67 was lower than the pre-specified cut-
offs (dCt = − 3.5 for PGR or − 4 for MKi67) and the CYIFIP 
Ct was greater than 31, the result was reported as “INDE-
TERMINATE” instead of “NEGATIVE” indicating that the 

minimum assay input criteria had not been met (CYFIP1 
Ct ≥ 31), and the test should be repeated adding more lysate 
to the cartridge to achieve a CYFIP1 Ct of at least 31.

Results

Among 523 specimens tested with the STRAT4 assay, 503 
samples yielded valid test results (“POSITIVE” or “NEGA-
TIVE”) for at least one assay target. 20 specimens had no 
or insufficient PCR amplification signal for the reference 
RNA CYFIP1 (CYFIP1 Ct > 35). Most of these 20 speci-
mens came from FFPE blocks that were more than 10-years 
old (data not shown).

Agreement rates between ESR1 mRNA and ER 
protein by IHC

The overall concordance rate of the STRAT4 ESR1 results 
compared with central IHC results was 97.8% using either 
a 1% or 10% immunostaining level for positivity (Table 1).

ESR1 dCt values were plotted against percent positive 
staining treated as categorical or continuous variables and H 
score for the same samples (Fig. 1a–c). These data suggest 
high levels of concordance between STRAT4 and central 
IHC for ESR1/ER, and demonstrate that the discordant sam-
ples are nearly all close to the ESR1 dCt cutoff.

Agreement rates between PGR mRNA and PR 
protein by IHC

The overall concordance rate between the STRAT4 PGR 
results and the central PR IHC results with the PGR 636 
antibody was in the 90–91% range whether 1 or 10% stain-
ing was used to determine PR-positive status (Table 1). Fif-
teen samples with “indeterminate” STRAT4 PGR results 
(delta Ct < − 3.5 and CYFIP Ct > 31) were excluded from 
the concordance analysis. The correlation between PGR dCt 
values and PR IHC results considered as a categorical vari-
able suggests that there are more samples close to the PGR 
dCt cutoff with different IHC staining results, explaining the 
lower overall percent agreement for PGR (Fig. 2a). Of sam-
ples considered as low positives by IHC (1–9% PR staining), 
roughly half were called positive by STRAT4 and half were 
called negative. Scatterplots of STRAT4 PGR dCt values 
compared with PR IHC percent staining and H Score sug-
gest a positive correlation between the absolute level of PGR 
transcript detected and the absolute amount of PR staining 
observed by IHC (Fig. 2b, c).
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Agreement rates between ERBB2 mRNA and HER2 
protein by IHC (and FISH)

The overall concordance rate between STRAT4 ERBB2 and 
HER-2 IHC was 95.7%, excluding samples with staining 
results of “2+” (Table 1). Concordance between STRAT4 
and FISH alone was 91.1% (Table 1). When STRAT4 was 
compared to IHC plus FISH, where IHC 2+ samples were 
tested by FISH and categorized as either ISH-positive or 
ISH-negative, the overall positive agreement rate was 
93.3% (Table 1). Finally, similar concordance rates were 

obtained when the population was stratified first by ER sta-
tus (Table 1).

Comparison of STRAT4 ERBB2 dCt values and IHC 
results demonstrated minimal overlap in the IHC negative 
(0–1+) and IHC positive (3+) populations (Fig. 3a), while 
the IHC equivocal group (2+) is almost perfectly bisected 
by the ERBB2 dCt cutoff. A comparison between ERBB2 dCt 
values and the HER-2/CEP17 ratios determined by FISH 
demonstrates an apparent correlation between increasing 
HER-2/CEP17 ratios and the amount of ERBB2 transcript 
detected by STRAT4 (Fig. 3b).

Fig. 1   Comparison of estrogen receptor status determined by immu-
nohistochemistry and RT-qPCR (STRAT4 or [STRAT4 (Xpert)]) 
assays. a Graph of STRAT4 ESR1 dCt values by ER IHC result cat-
egorized as negative (0%), low positive (1–9%), or positive (≥ 10%). 
Among ER-positive and ER-negative breast cancers according to 
IHC assessment, there is also a clear separation by ESR1 mRNA by 
RT-qPCR into high and low expression subgroups. In contrast, those 
breast cancers with from 1 to 9% ER-positive carcinoma cells have 
predominantly ESR1 mRNA quantities near the RT-qPCR cut-off 
separating “positive” from “negative”. b Comparison of STRAT4 
ESR1 dCt values according to ER IHC % staining alone. The plot of 

ER IHC percentage positive tumor cell immunohistochemical stain-
ing demonstrated a strong correlation with ESR1 mRNA quantity. c 
Graph of STRAT4 ESR1 dCt values by ER IHC H-Score. H-Score 
is defined as [3(% of tumor staining 3+)] + [2(% of tumor staining 
2+)] + [1(% of tumor staining 1+)]. Quantitative stratification of the 
IHC protein assessment by combining percentage of immunostained 
tumor cells with intensity of immunohistochemical staining demon-
strated an improved correlation with ESR1 mRNA determined by RT-
qPCR. d The ROC curve for STRAT4 ESR1 including all samples in 
the analysis. The area under the curve (AUC) is 0.99
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Figure 3c shows the correlation between ERBB2 dCt 
values by STRAT4 and the combined results generated 
when IHC and FISH are used together to determine HER-2 
over-expression. Among those patients who were IHC 2+, 
STRAT4 for ERBB2 overwhelmingly agreed with FISH 
when it came to resolving those patients into HER-2 posi-
tive and HER-2 negative groups.

Stratifying the population into ER-positive and ER-
negative sub-populations and then examining the corre-
lation between the ERBB2 dCt values and HER-2 results 
by IHC + FISH suggests that the assay is slightly better 
at discriminating over-expressors in the ER-negative than 
the ER-positive sub-population, but the difference is small 
(Supplementary Fig. 1).

Fig. 2   Comparison of progesterone receptor status determined by 
immunohistochemistry (IHC) and RT-qPCR (STRAT4) assays. a 
Graph of STRAT4 PGR dCt values by PR IHC result categorized as 
negative (0%), low positive (1–9%), or positive (≥ 10%). Among PR-
positive and PR-negative breast cancers according to IHC assessment, 
there is also a relatively good separation by PGR mRNA by RT-
qPCR into high and low expression subgroups. In contrast, the major-
ity of those breast cancers with 1–9% PR-positive carcinoma cells 
have predominantly PGR mRNA quantities near the RT-qPCR cut-
off separating “positive” from “negative”. b Graph of STRAT4 PGR 
dCt values by PR IHC % staining. The plot of the percentage of PR-
positive tumor cells by immunohistochemical staining demonstrated 

a strong correlation with PGR mRNA quantity which was improved 
only slightly by consideration of tumor cell IHC staining inten-
sity as shown in c. c Graph of STRAT4 PGR dCt values by PR IHC 
H-Score. H-Score is defined as [3(% of tumor staining 3+)] + [2(% 
of tumor staining 2+)] + [1(% of tumor staining 1+)]. Quantitative 
stratification of the IHC protein assessment by combining percentage 
of immunostained tumor cells with intensity of immunohistochemi-
cal staining demonstrated a slightly improved correlation with PGR 
mRNA determined by RT-qPCR. d The ROC curve for STRAT4 
PGR including all samples in the analysis. The area under the curve 
(AUC) is 0.95
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Fig. 3   Comparison of human epidermal growth factor receptor 2 
determined by either RT-qPCR or by immunohistochemistry with or 
without FISH assessment of IHC2+. a Graph of STRAT4 ERBB2 dCt 
values by HER2 IHC result categorized as negative (0–1+), equivo-
cal (2+), or positive (3+). There is a significant correlation between 
HER2 status determined by IHC and ERBB2 mRNA determined by 
RT-qPCR with IHC 0/1+ showing low-level expression of ERBB2 
mRNA and IHC 3+ showing high-level ERBB2 mRNA expression. 
The IHC 2+ breast cancers appear to have a level of ERBB2 mRNA 
intermediate between that of the IHC 0/1+ and IHC 3+ subgroups. 
b Graph of STRAT4 ERBB2 dCt values by HER2/CEP17 Ratio by 
the FISH assay. Increasing levels of gene amplification determined by 
FISH (increasing HER2/CEP17 ratio) are associated with increasing 
levels of ERBB2 mRNA expression, as expected. c Graph of STRAT4 

ERBB2 dCt values by IHC plus FISH where FISH was used to resolve 
the IHC 2+ equivocals into HER2-positive or HER2-negative sta-
tus. Although the IHC 2+ breast cancers appear to have a level of 
ERBB2 mRNA intermediate between that of the IHC 0/1+ and IHC 
3+ subgroups (as illustrated in A above), further stratification can be 
achieved by the use of FISH in this group to determine which cases 
are HER2-amplified and which are not. Those IHC 2+ breast can-
cers with HER2-amplification by FISH have ERBB2 mRNA expres-
sion levels similar to IHC 3+ breast cancers. In contrast, those IHC 
2+ breast cancers that are HER2-not-amplified by FISH have ERBB2 
mRNA expression levels similar to IHC 1+ breast cancers. d The 
ROC curve for STRAT4 ERBB2 including all samples in the analysis. 
The area under the curve (AUC) is 0.99
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Agreement rates between MKi67 mRNA and Ki67 
proliferation rates determined by IHC

For MKi67/Ki67 concordance, twenty-four samples with 
indeterminate STRAT4 results were excluded from the 
analysis. We examined the correlation between MKi67 by 

RT-qPCR and Ki67 by IHC using cutoffs of 10% and 20% 
for the determination of high proliferation rate. Although 
many laboratories consider < 10% to indicate low pro-
liferation rate, > 20% to indicate high proliferation rate, 
and use an intermediate zone between 10 and 20%, we 
elected to choose single cutoffs for these analyses because 

Fig. 4   Comparison of Ki67 proliferation rate determined by either 
RT-qPCR or immunohistochemistry. a Graph of STRAT4 MKi67 
dCt values by Ki67 IHC % staining where the IHC high prolifera-
tion rate cutoff is defined as 20% and the intermediate proliferation 
rate is defined as 10–20% with < 10% considered a low proliferation 
rate. There is some overlap in MKi67 mRNA values between the high 
(> 20%) and low (< 10%) proliferation rate groups, with the interme-
diate group (10–20%) showing intermediate mRNA values by RT-
qPCR, but with substantial overlap with both the high and low pro-
liferation rate groups. MKi67 as measured by RT-qPCR appears as a 
continuum without a clear cutoff evident from the distributions when 
compared to Ki67 levels measured by IHC. b Graph of STRAT4 

MKi67 dCt values by Ki67 IHC % staining where the IHC positivity 
cutoff is defined as 30% and the equivocal zone is defined as 10–30%. 
Raising the IHC cutoff for the determination of high proliferation rate 
has no appreciable impact on the correlation between RT-qPCR and 
IHC methods. The MKi67 distribution still shows a continuum of val-
ues without a clear cutoff. c Graph of STRAT4 MKi67 dCt values by 
Ki67 IHC % staining. There appears to be a discernable correlation 
between the percentage of tumor cells with immunochemical staining 
for Ki67 with MKi67 mRNA levels by RT-qPCR, especially at levels 
above 40%. d The ROC curve for STRAT4 MKi67 where all samples 
were included in the analysis. The area under the curve (AUC) is 0.85



335Breast Cancer Research and Treatment (2018) 172:327–338	

1 3

we had not previously defined an intermediate zone for 
the MKi67 dCt distribution. The overall positive agree-
ment rate for STRAT4 MKi67 results with Ki67 by IHC 
using a 20% cutoff was 73%, and using a 10% cutoff was 
78.6%. (Table 1). Comparison of MKi67 dCt values with 
Ki67 IHC results categorized as low (< 10%), intermediate 
(10–20%), or high (> 20%) offers a possible explanation 
for these lower concordance rates. Rather than distinct 
subsets, the distribution appears as a continuum with the 
large intermediate population showing substantial over-
lap with both the low and high populations, although the 
median values of each sub-population are clearly different, 
and correlate positively with increasing MKi67 dCt values 
by STRAT4 (Fig. 4a). Expanding the intermediate zone to 
include patients with Ki67 IHC values of 10–30% leads 
to the same conclusion (Fig. 4b). Comparison of MKi67 
dCt values with a continuous measure of IHC % immu-
nostaining for Ki67 demonstrates a weak correlation with 
STRAT4 and significant scatter at low proliferation rates 
below 30% (Fig. 4c).

Receiver‑operator characteristic analyses

STRAT4 results were compared with central IHC/FISH 
using receiver-operator characteristic (ROC) analyses 
for all four analytes (Figs. 1d, 2d, 3d, 4d). The ROC area 
under the curve (AUC) values for each of the four analytes 
were 0.99 for ESR1 and ERBB2, 0.95 for PGR, and 0.85 
for MKi67. For MKi67, the AUC value improved to 0.92 
when the equivocal samples (IHC Ki67 staining of 10–20%) 
were excluded from the analysis (Supplementary Fig. 2). 
The shape of the curves for ESR1 and ERBB2, the two 
most important analytes for LMIC use, demonstrated that 
the STRAT4 assay is highly correlated with results gener-
ated using conventional IHC and FISH assays. While the 
PGR assay results were highly correlated according to the 
ROC curve, they were not as highly correlated as ESR1 and 
ERBB2. The ROC curve for MKi67 STRAT4 and conven-
tional IHC was the weakest of the four correlations. Whether 
all patients were included in the analysis, or the 10–20% 
intermediate group were excluded, the data suggest that it is 
more difficult to identify a clear cutoff when the distribution 
appears to define a continuum, an observation that has been 
suggested even when using IHC to measure this analyte [19].

Variability of STRAT4 concordance with different IHC 
antibodies and scoring methods

The antibodies selected for the primary concordance anal-
ysis in this study were the antibodies used at the central 
reference laboratory, but not all reference laboratories used 
the same antibodies to perform IHC for these four analytes. 
In order to get a sense of how disparate the concordance 

between STRAT4 and IHC might be when compared across 
a variety of central reference laboratories, we selected a 
subset of samples (n = 155) and tested them at three differ-
ent central reference laboratories that used different IHC 
antibodies and scoring methods. The concordance rates for 
STRAT4 ESR1 to IHC ER range from 97.8% for the 6F11 
antibody scored manually to 91.9% for the SP1 antibody 
using an automated scoring system (Supplementary Fig. 3). 
Concordance across different IHC methods for ER were in 
the 94–95% range (data not shown).

For STRAT4 PGR to PR IHC comparisons, the concord-
ance ranged from 94.4 to 89% while the IHC to IHC com-
parisons were similar at 94.3 and 93.6% (Supplementary 
Fig. 4).

For the STRAT4 ERBB2 to IHC HER2 comparisons, 
with equivocal breast cancers (IHC 2+ samples) excluded, 
concordance ranged from 94.3 to 92.8%, and from 93.3 to 
91.6% if FISH was employed to resolve the IHC 2+ samples 
(Supplementary Table 1). IHC to IHC comparisons using 
different antibodies were not performed.

For the STRAT4 MKi67 to IHC Ki67 comparisons, 
excluding samples with IHC staining in the 10–20% range, 
concordance was quite variable depending on the antibody/
method comparator. Using the MIB1 antibody and manual 
scoring, concordance was 84.6%, while the same antibody 
used in a different central laboratory and employing an auto-
mated scoring system yielded only a 63.7% concordance. 
Another automated scoring system using antibody 30-9 
was intermediately concordant at 76%. A comparison of the 
STRAT4 MKi67 dCt values to % staining with these three 
antibodies/methods is shown in Supplementary Fig. 5.

Discussion

The measurement of mRNAs that encode protein biomark-
ers like ER, PR, HER2, and Ki67 (ESR1, PGR, ERBB2, and 
MKi67, respectively) on an automated, broadly distributed 
diagnostic platform is feasible and carries certain advantages 
for LMIC applications, including ease-of-use, accessibility, 
standardization, reproducibility, and a short time-to-result. 
These features suggest that such an approach has real poten-
tial for clinical benefit in the management of patients with 
breast cancer in low- and middle-income countries, where 
accessing more standard diagnostic methods like IHC and 
FISH is difficult. The ASCO/CAP guidelines currently rec-
ommend IHC and/or FISH for the determination of hormone 
receptor or HER-2 status for the purpose of selecting ther-
apy, therefore, it is important that we determine the degree 
of concordance between STRAT4 and these standard meth-
ods [12–14].

In prior studies, we have shown that STRAT4 is analyti-
cally valid and capable of generating reproducible results 
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even when variability in pre-analytical sample handling 
exists across laboratories performing the test. Our goal 
in this study was to determine the degree of concordance 
between measurements of the mRNAs ESR1, PGR, ERBB2, 
and MKi67 by STRAT4 and central laboratory IHC and 
FISH results for ER, PR, HER2, and Ki67.

The results demonstrate high concordance for ESR1/ER 
and ERBB2/HER2 with ROC AUC values of 0.99 for both, 
and very good concordance for PGR/PR (ROC AUC = 0.95). 
For MKi67/Ki67, including all samples in the analysis, the 
ROC AUC was reduced to 0.85. This may not be surprising, 
however, due to the significant challenges already described 
in achieving standardization of Ki67 result reporting by IHC 
across laboratories [15–18]. Denkert and colleagues [19] 
have shown that Ki67 results by IHC are highly variable 
unless at least 500, and better yet 1000, cells are carefully 
counted for each sample. Multicenter studies to address 
improved methods of standardization for Ki67 measure-
ment by IHC are in progress. For these markers, examina-
tion of direct correlations between the RNA measurements 
and clinical outcomes is desirable, but this is particularly 
important for Ki67, where the establishment of MKi67 dCt 
cutoffs derived directly from clinical outcomes would obvi-
ate the need for further concordance studies and perhaps 
offer pathologists an easier method of reliably measuring 
this proliferation marker.

The results of the antibody comparison studies dem-
onstrate some minor variabilities in concordance rates 
depending on the laboratory, antibody, and scoring method 
used for ESR1/ER, PGR/PR, and ERBB2/HER2, suggest-
ing that the STRAT4 assay results are generally concord-
ant across central laboratories using different methods. For 
MKi67/Ki67, there was significant variability in concord-
ance, but once again, this is not unexpected given the chal-
lenges associated with Ki67 assessments by IHC.

The dCt cutoffs used for all four of the STRAT4 ana-
lytes were pre-specified based on prior testing in small 
datasets. However, we learned during the performance of 
this study that reliable negative results for both PGR and 
MKi67 depended upon having a larger amount of sam-
ple available for analysis by the cartridge than it did for 
ESR1 or ERBB2. Based on these observations, the require-
ment was established that for each of these two analytes, 
the CYFIP1 internal control Ct value needed to be ≤ 31 
rather than 35, which is the CYFIP1 Ct cutoff for ESR1 and 
ERBB2. Thus, select samples were classified as indeter-
minate if the PGR or MKi67 values were below the cutoff 
for positivity and also had a CYFIP1 Ct of greater than 
31. Moving forward, such samples would be re-run using 
the lysate from the entire FFPE section rather than only 
520 µL, which represents 25% of the final lysate volume.

The current study suggests that the determination of 
ESR1, PGR, ERBB2, and MKi67 RNA levels by RT-qPCR 

on the GeneXpert automated diagnostic platform is not 
only feasible, but also generates results from FFPE tumor 
sections that are highly concordant with high quality cen-
tral laboratory measurements of ER, PR, and HER2 using 
standardized IHC and FISH assays. For Ki67, the con-
tinuous nature of the distribution of values we observed 
as well as known difficulties in standardizing IHC assess-
ments across laboratories presents unique challenges, but 
one we hope to address more fully by using clinical out-
comes from appropriately designed studies to define the 
STRAT4 MKi67 dCt cutoff(s) that will provide the clearest 
and most clinically informative interpretation.

STRAT4 has already been shown to be highly concord-
ant with automated quantitative analysis of IHC (AQUA) 
[20]. From a LMIC perspective, ESR1 and ERBB2 meas-
urements have the greatest relevance currently. As such, 
given these results, the STRAT4 assay could be considered 
a potential solution to the problem of limited access to 
breast cancer diagnostics that currently exists for patients 
in low resource countries, and should move forward to a 
prospective concordance study without delay, paying par-
ticular attention to the impact of local sample handling 
and fixation methods on STRAT4 results. Assuming the 
STRAT4 assay can be validated for use in those geogra-
phies, prior experience with the GeneXpert system can be 
leveraged for rapid progress toward a workable diagnostic 
solution for patients with breast cancer in countries with 
limited healthcare resources, particularly LMIC.
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