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Abstract

Molecular dynamics simulation with multiscale quantum mechanics/molecular mechanics 

(QM/MM) methods is a very powerful tool for understanding the mechanism of chemical and 

biological processes in solution or enzymes. However, its computational cost can be too high for 

many biochemical systems because of the large number of ab initio QM calculations. 

Semiempirical QM/MM simulations have much higher efficiency. Its accuracy can be improved 

with a correction to reach the ab initio QM/MM level. The computational cost on the ab initio 

calculation for the correction determines the efficiency. In this paper we developed a neural 

network method for QM/MM calculation as an extension of the neural-network representation 

reported by Behler and Parrinello. With this approach, the potential energy of any configuration 

along the reaction path for a given QM/MM system can be predicted at the ab initio QM/MM level 

based on the semiempirical QM/MM simulations. We further applied this method to three 

reactions in water to calculate the free energy changes. The free-energy profile obtained from the 

semiempirical QM/MM simulation is corrected to the ab initio QM/MM level with the potential 

energies predicted with the constructed neural network. The results are in excellent accordance 

with the reference data that are obtained from the ab initio QM/MM molecular dynamics 

simulation or corrected with direct ab initio QM/MM potential energies. Compared with the 

correction using direct ab initio QM/MM potential energies, our method shows a speed-up of 1 or 

2 orders of magnitude. It demonstrates that the neural network method combined with the 

semiempirical QM/MM calculation can be an efficient and reliable strategy for chemical reaction 

simulations.
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INTRODUCTION

Quantum mechanical phenomenon play an important role in fundamental chemical and 

biological processes, such as bond forming or breaking, proton or electron transfer, and 

electronic excitation. Most of these reactions take place in solution or enzymes rather than in 

gas phase. Because of the significant change in electronic structures of complex systems 

with thousands of degrees of freedom, the combined quantum mechanical and molecular 

mechanical (QM/MM) method, first proposed by Warshel and Levitt, is an accurate and 

computationally efficient tool toward QM descriptions on realistic chemical and biological 

systems.1–5 In the QM/MM method, only a small number of atoms in the active site are 

selected for an accurate QM calculation, while the contribution of the rest of the system is 

described with an approximate, yet efficient MM force field. Furthermore, chemical and 

biological processes at room temperature are governed by changes on the free energy surface 

rather than potential energy surface. Therefore, molecular dynamics (MD) simulations from 

tens of picoseconds to hundreds of nanoseconds are usually required to achieve converged 

statistical sampling.6–10 Since an electronic structure calculation is employed at each MD 

step, the application of direct QM/MM MD is still often limited to systems with relatively 

small active site for a short time simulation, such as several picoseconds.

Reducing the very demanding computational costs of QM calculations on the MD 

simulation is a major challenge. Focusing on the reaction path, Yang and co-workers 

developed a series of methods on reaction-path optimizations and free-energy calculations 

based on ab initio QM/MM approaches.11–16 In the first method called QM/MM free energy 

perturbation (QM/MM-FEP), QM calculations were restricted to narrow regions such as 

stationary points on the reaction path. After an iterative optimization on the total QM/MM 

potential energy surface, the free energy difference between two fixed QM conformations 

was calculated with FEP to generate the free energy profile from reactant to product.11 Hu et 

al. further developed the QM/MM minimum free-energy path (QM/MM-MFEP) method, in 
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which the influence of the environment on the structural properties of active site was well 

considered.13,14 With the expression of free energy as a function of QM coordinates, the 

reaction path was minimized on the potential of mean force (PMF) surface of the QM 

degrees of freedom. Many enzymatic reactions including 4-oxalocrotonate tautomerase, 

orotidine 5′-monophosphate decarboxylase, and Cdc25B phosphatase have been studied 

successfully with the above approaches.17–20 The efficiency is much higher than direct 

QM/MM MD simulations because the MD samplings on the QM subsystem are replaced by 

single-point calculations or iterative optimizations in an environment with a fixed ensemble 

of the MM subsystem. The dynamic contributions of the QM subsystem to the free energy 

are calculated within the reaction path potential method under the linear-response 

approximation on QM atomic charges or the vibrational frequency analysis under the 

harmonic approximation on stationary geometries,12,21 requiring expensive QM calculations 

on the response kernel of QM charges or the Hessian matrix of the QM subsystem, 

respectively.

Another attractive way to speed up the direct QM/MM MD simulation is the semiempirical 

QM (SQM) models such as AM1, empirical valence bond (EVB), and the self-consistent 

charge density functional tight binding (SCC-DFTB) method in which the total energy was 

truncated at the second-order term.22–26 The semiempirical QM calculations are so efficient 

that MD samplings on the biological processes for several nanoseconds are affordable. 

Compared with ab initio QM/MM calculations, however, the results obtained from 

SQM/MM simulations may be less accurate and less reliable because of some inherent 

deficiencies in SQM models. For example, the QM atomic charges from SCC-DFTB 

calculations were found to be much smaller than MM charges or charges derived from ab 

initio QM methods.27 Many methods have been developed to account for the differences 

between semiempirical and ab initio QM/MM calculations, which can be further classified 

as “on-the-fly” and “reweighting” corrections. In the on-the-fly correction strategy, the 

potential of SQM model is reparametrized and adapted on-the-fly during MD simulations. 

The corresponding free energy profile is then obtained from the refined SQM/MM potential 

and finally converged to ab initio QM/MM results. This is in spirit analogous to the 

pioneering method developed by Gonzalez-Lafont et al., in which the specific reaction 

parameters for the NDDO molecular orbital theory were adjusted for individual reactions.28 

Plotnikov et al. reported a paradynamics approach, in which the EVB reference potential 

was reparametrized to the ab initio potential with an iterative and automated refinement 

procedure.29 Zhou et al. developed a reaction path force matching method, in which the 

specific reaction parameters in the PM3 model were fitted iteratively to reproduce the atomic 

forces of the selected configurations along the reaction path at the Hartree−Fock (HF) level.
30 The application of these methods to reactions in condensed phase has demonstrated its 

success; but there are still some nontrivial concerns, such as the construction of the empirical 

potential and the converging process of the reaction path over iterations. In the reweighting 

correction strategy, an initial estimate of the free-energy profile is determined from 

SQM/MM MD simulations and then corrected after evaluating the free energy change from 

the approximate SQM/MM to the target ab initio QM/MM Hamiltonian. A general 

formulation of QM thermodynamic-cycle perturbation was proposed by Rod et al., in which 

the free energy difference along the reaction coordinate (RC) was calculated at a low level 
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such as MM or SQM/MM, while a vertical free energy change from low level to high level, 

e.g., MM → QM/MM or SQM/MM → ab initio QM/MM, was estimated with FEP.31 

Several more recent approaches share a similar spirit with different reweighting techniques. 

For example, König et al. applied the Bennett acceptance ratio estimator to connect MM 

samplings to QM/MM free energies.32 Polyak et al. designed a dual Hamiltonian free energy 

perturbation method. After QM/MM MD samplings at the low level, the high-level QM/MM 

single-point calculations were performed at regular intervals while skipping a predefined 

number of MD steps, and then the perturbation energy difference between two levels was 

obtained.33 Note that only the configurations saved each hundredth or thousandth step are 

used for free energy calculations, which reduces the ab initio computational cost 

significantly. In addition, the calculations on high-level gradients are unnecessary in the 

reweighting procedures compared to the on-the-fly corrections.

Ideally, one would like to perform MD simulations that achieve the accuracy of ab initio 

QM/MM yet as is efficient as a semiempirical QM/MM method. An essential challenge is 

how to reduce the number of required high-level QM calculations. For small QM systems in 

gas phase, neural network (NN) is a promising choice to directly provide a relation between 

molecular structure and potential energy.34–39 After NN constructions from a set of 

reference data, the potential energy of the system with any configuration can be predicted 

with an accuracy comparable to ab initio methods at an MM computational cost. In the past 

decades, a number of NNs have been investigated for many types of systems, ranging from 

triatomic reactions to heterogeneous surface processes.40,41 In 2007, Behler and Parrinello 

developed a high-dimensional neural network scheme, in which the total potential energy 

was represented as a sum of atomic energies.35 The energy contribution of each atom 

depends on the atomic environment via a subset of standard NN, and the local environment 

of atoms can be collected through a set of symmetry functions as input vectors. The 

symmetry functions were designed to overcome several disadvantages of standard structure 

of network, including size limitation, transferability of parameters, and invariance with 

translations, rotations, and exchanges. High accuracy of the neural network at a few meV per 

atom has been demonstrated for a wide range of applications such as bulk silicon, zinc 

oxide, and water clusters.35,42,43 Neural network also has a strong potential to improve the 

accuracy of existing QM models. Hu et al. developed a DFT-NN approach, in which an 

artificial neural network was built based on the results of first-principle calculations to 

reproduce several molecular properties such as heats of formation and absorption energies.
44,45 Dral et al. applied machine-learning techniques to the automatic tuning of parameters 

in the semiempirical OM2 model, which improves the accuracy without reducing 

transferability to individual molecules.46 Ramakrishnan et al. introduced a Δ-machine 

learning method that added machine learning corrections to quantum methods having less 

accuracy and less computational cost, showing that highly accurate predictions of high-level 

potential energies were possible based on low-level calculations.47 This idea can be applied 

to correct the energies from SQM/MM to an ab initio QM/MM level, in which the 

configurations from SQM/MM MD samplings can be employed directly as the training set 

for machine learning. However, the description on systems in complex MM environments is 

more difficult than that in vacuum. Recently Häse et al. proposed a machine-learning 
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technique based on the Coulomb matrix to compute the excitation energies and spectral 

densities of BChls in the FMO complex.48

In our present work the neural network reweighting correction is employed to estimate free 

energy changes of chemical reactions at the ab initio QM/MM level with high accuracy 

based on the efficient SQM/MM MD simulations. Inspired by the high-dimensional NN 

reported by Behler et al.,35 we developed a neural network method named QM/MM-NN for 

ab initio QM/MM potential energy calculations to reduce the expensive ab initio 

computational cost. Similar to the Δ-machine learning method,47 the potential energy 

difference between two levels was chosen as the output variable of our QM/MM-NN. We 

aim to develop an artificial neural network such that the NN potential energy predictions 

closely approximate the ab initio QM/MM calculations, and the free energy changes along 

the reaction coordinate through QM/MM-NN reweighting achieve similar free energy 

profiles. Beside the neural network error itself, a possible additional error in our current 

approach can be the poor overlap between the sampling spaces at two levels of theory. For 

our test reactions the final free energy difference after reweighting from the low-level PMF 

is very close to that obtained from direct ab initio QM/MM MD simulations. It is partially 

due to the similarity on the critical structures such as transition state and local minima along 

the reaction path at two levels.10 The choice of reaction coordinates is also essential. In 

principle the error from reweighting can be remedied with additional samplings on the exact 

or NN-predicted high-level potential energy surface, but it is beyond our consideration in 

this paper.

The rest of this paper is organized as follows. We first give an outline of the high-

dimensional neural network developed by Behler and Parrinello. Then we will describe our 

QM/MM-NN scheme to predict ab initio QM/MM potential energies and free energies, 

followed by Simulation Details and Results and Discussions.

THEORY

Neural Network Architecture.

Neural networks represent approximation of arbitrary functions with simple and highly 

interconnected processing elements, which process information by their dynamic state 

response to input variables. The structure of a standard neural network can be seen in some 

textbooks such as Figure 11.2 in ref 49. To predict the potential energy from a given 

configuration of a system, the information on molecular structures is provided to the nodes 

in input layer of NN, and the associated potential energy is produced from the node in output 

layer. There are one or more hidden layers between the input and output layers. Here we 

consider a simple network with one hidden layer and one node in output layer. The potential 

energy E is written as

E = ∑
j = 1

L
w j f ( ∑

k = 1

M
w jkxk + b j) + b0 (1)
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where xk is the input variable in node k in the input layer, wjk is the weight parameter that 

connects node k in the input layer with node j in the hidden layer, wj is the weight parameter 

that connects node j in the hidden layer with the node in the output layer, bj and b0 are 

respectively the bias weights of hidden and output layers, M and L are respectively the 

number of nodes in input and hidden layers, and f(x) is the nonlinear function that can be 

chosen as the sigmoid function, the hyperbolic function, or the Gaussian function. All of the 

weight parameters and bias weights are determined during a training process, in which the 

minimization of the error between the predicted energies obtained from eq 1 and the 

reference energies obtained from electronic structure calculations is implemented based on 

the data in the training set.

The structure of the high-dimensional neural network developed by Behler et al. was shown 

in Figure 2 in the original paper.35 Here we provide a brief summary. The potential energy E 
is represented as

E = ∑
i = 1

N
Ei (2)

where Ei is the atomic energy contribution of atom i, and N is the number of atoms in a 

molecule. The key is to divide the whole network into N subnets, and the atomic energy 

contribution Ei can be obtained from the i-th subnet as

Ei = ∑
j = 1

L
wi j f ∑

k = 1

M
wi jkGi

k + bi j + bi (3)

Here the subnet is assumed to have one hidden layer for simplicity, but two or more hidden 

layers are also used in the related works. The superscript i denotes the i-th subnet used to 

predict Ei. As the same as in eq 1, wijk and wij are the weight parameters coupling two nodes 

in neighbor layers, bij and bi are respectively the bias weights of hidden and output layers, M 
and L are respectively the number of nodes in input and hidden layers of the i-th subnet, f(x) 

is the nonlinear function, and Gi
k is the k-th generalized coordinate of atom i.

Since the individual energy Ei is dependent on the chemical environment of atom i, the 

relative positions of other atoms neighboring on atom i should be involved in the generalized 

coordinates explicitly or implicitly. Different types of symmetry functions have been 

designed.50,51 In the current network, two generalized coordinates, a radial function and an 

angular function, are used for each atom for simplicity. The radial function of atom i in eq 3 

is defined as

Gi
1 = ∑

j ≠ i

N
e

−n Ri j − Rs
2

f c Ri j (4)
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where Rij is the distance between atom i and j, Rs and η are the predetermined parameters of 

NN that would be fixed during the training process, and fc(Rij) is the cutoff function as

f c Ri j =
1
2 cos

πRi j
Rc

+ 1 Ri j ≤ Rc

0 Ri j > Rc

(5)

where Rc is the predetermined cutoff radius. It means that the contribution of atom j to the 

generalized coordinates of atom i is neglected if the distance between two atoms is larger 

than Rc.

The angular function of atom i in eq 3 is defined as

Gi
2 = 21 − ξ ∑

j, k ≠ i

N
1 ± cos θi jk

ξe
−n Ri j

2 + Rk j
2 + Rik

2
f c Ri j f c R jk f c Rik (6)

where ξ is the predetermined parameters of NN, θijk is the angle that consists of atoms i, j, 
and k, and Rij, Rjk, and Rik are the distances between atoms i and j, j and k, and i and k, 

respectively. Other terms have been defined in eqs 4 and 5. More details on the high-

dimensional neural network for potential energy predictions can be found in Behler’s 

reviews and the related papers.37–39

QM/MM Neural Network.

The total potential energy of the whole system in the QM/MM model is written as

Etol = EQM + EQM/MM + EMM (7)

Here EQM is the quantum mechanical energy of the QM subsystem, EMM is the standard 

molecular mechanical interactions involving exclusively atoms in the MM subsystem, and 

EQM/MM is the coupling term between QM and MM subsystems including electrostatic, van 

der Waals (vdW), and covalent interactions as

EQM/MM = EQM/MM
ele + EQM/MM

vdW + EQM/MM
cov (8)

The QM/MM electrostatic interaction is the core of the QM/MM model. In the “mechanical-

embedding” approach, all three terms in eq 8 are modeled classically, and EQM in eq 7 is 

obtained from electronic structure calculations in gas phase. Thus, the neural network 

described above can be applied directly. In the more accurate and widely used “electrostatic-

embedding” approach, however, the contribution of MM electrostatic potentials is involved 

in the QM self-consistent field (SCF) calculation. Therefore, the sum of EQM and EQM/MM
ele

can be obtained as the eigenvalue of an effective Hamiltonian as follows
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EQM + EQM/MM
ele = Ψ H0 + ∑

l ∈ MM
q1vMM(rl) Ψ (9)

where

vMM rl = ∑
k ∈ QM

Zk
rk − rl

− ∫ dr′ ρ r′
r′ − rl

(10)

Ĥ0 is the Hamiltonian of the QM subsystem in vacuum that depends on the QM theory, ρ(r′) 

is the electron density of the QM subsystem, Zk is the charge of the nuclei of the QM atom 

k, and ql is the point charge of the MM atom l. The remaining terms in eqs 7 and 8 are 

calculated much more efficiently with classical force fields.

Consider QM/MM calculations on the same system under two models. The high-level total 

potential energy can be expressed as the low-level total potential energy with an energy 

correction term. Applying the same MM force field at two levels, the correction term of the 

total QM/MM potential energy can be obtained from the QM difference, that is

Etol
H = Etol

L + Ψ H H0
H + ∑

l ∈ MM
qlvMM rl Ψ H − Ψ L H0

L + ∑
l ∈ MM

qlvMM rl Ψ L (11)

where Etol
H  and Etol

L  are the total QM/MM potential energies at high and low levels, e.g, ab 

initio QM/MM and semiempirical QM/MM, respectively, H0
H and H0

L are respectively the 

QM Hamiltonian in vacuum based on the high-level and low-level QM theory, and ΨH and 

ΨL are the wave functions of the QM subsystem corresponding to the high-level and low-

level Hamiltonian, respectively, which can be obtained from ab initio and SQM calculations 

with the contribution of the MM environment as background charges.

To apply the neural network to QM/MM energy calculations, we perform three 

modifications on the high-dimensional NN mentioned in the previous section. The structure 

of our QM/MM-NN is shown in Figure 1. First, the potential energy difference between ab 

initio and semiempirical QM/MM models is predicted as the output of NN to approximate 

the ab initio QM/MM potential. Note that both the SQM and NN calculations are several 

orders of magnitude faster than ab initio approaches, so Etol
H  in eq 11 can be obtained with 

much less CPU times. As expressed in eq 11, the total QM/MM energy difference is

ΔE = Ψ H H0
H + ∑

l ∈ MM
qlvMM rl Ψ H − Ψ L H0

L + ∑
l ∈ MM

qlvMM rl Ψ L (12)
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which is approximated as the output of our present QM/MM-NN, where H and L denote ab 

initio QM/MM and SQM/MM methods, respectively. Similar to eqs 2 and 3, ΔE can be 

represented as

ΔE = ∑
i = 1

N
ΔEi + ΔERC (13)

where N is the number of atoms in the QM subsystem, ΔEi is the atomic contribution of 

atom i predicted from the i-th subnet, and ΔERC is predicted from the RC subnet, which 

depends on the reaction coordinate and will be discussed later. Note that in the previous NN 

predictions on homogeneous systems, one subnet was used for the same element on account 

of transferability and permutation invariance,35,43 but the present reaction-specifical 

QM/MM-NN is constructed with different subnets for different atoms. It is due to the fact 

that only the geometry of the QM subsystem needs to be described in NN. For example, in 

our test reactions each atom in the QM subsystem can be distinguished from others by its 

connectivity in the molecule except for the hydrogen atoms bonded to the same heavy atom, 

and these hydrogen atoms have been permutated before the prediction according to their 

bond lengths.52.

The second and the most important feature of our NN model is that in order to capture the 

polarization of the QM subsystem in response to MM electrostatic potentials as much as 

possible, we use the Mulliken atomic charges from the low-level electrostatic-embedding 

QM/MM calculations as input variables. Mulliken atomic charges reflect not only the 

external potentials of the MM environment but also the polarizabilities of all atoms in 

different QM subsystems. ΔEi is thus represented as

ΔEi = ∑
j = 1

L
wi jtanh wi j1Gi

1 + wi j2Gi
2 + wi j3Qi + bi j + bi (14)

where Gi
1 and Gi

2 are the generalized coordinates of atom i dependent on the QM 

coordinates, which have been defined in eqs 4 and 6, wijk, wij, bij, and bi are respectively the 

weight parameters and bias weights as the same as in eq 3, and Qi is the Mulliken charge of 

QM atom i obtained from SQM/MM calculations, accounting for the polarization response 

of the QM subsystem to the MM environment. Here three input nodes and one hidden layer 

are applied in one subnet, and the nonlinear hyperbolic function is used in the nodes in 

hidden layer. The current network can be extended to a more complex structure with more 

input nodes or more hidden layers.

The third feature of the present QM/MM-NN originates from the goal of our work, that is, to 

estimate the free energy change of chemical reactions at the ab initio QM/MM level based 

on SQM/MM MD simulations. Normally, a set of structural or energetic parameters is 

chosen as reaction coordinates to characterize the process as a low-dimensional free-energy 

curve from reactant to product. The properties directly corresponding to the reaction 

Shen et al. Page 9

J Chem Theory Comput. Author manuscript; available in PMC 2018 October 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



coordinate are thus essential for the accuracy of QM/MM calculations. For example, it has 

been studied by Ruiz-Pernía et al. that a corrected energy as a function of the reaction 

coordinate can improve the quality of the results from a low-level method.53 Here we 

introduce the term ΔERC in eq 13 in order to include the information on the reaction 

coordinate in the node in input layer more explicitly. The value of ΔERC is predicted with an 

additional subnet in NN, which is similar to ΔEi in eq 14 as

ΔERC = ∑
j = 1

L
w j′tanh w j1′ z + w j2′ A z + w j3′

∂A z
∂z + b j′ + b′ (15)

where w jk′ , w j′, b j′, and b′ are respectively the weight parameters and bias weights in the RC 

subnet, z is the one-dimensional reaction coordinate, A(z) is the potential of mean force at 

the low level as a function of the reaction coordinate, and ∂A(z)/∂z is the first derivative with 

respect to z. Note that we put three nodes in the input layer in the RC subnet for a one-

dimensional reaction coordinate, while more input variables in eq 15 could be used if two or 

more reaction coordinates were chosen. A cubic spline is used to interpolate A(z) and ∂A(z)/

∂z at any value of z based on the approximate free-energy profile obtained from SQM/MM 

MD simulations.

Procedure for NN Training and QM/MM Simulations.

Here we outline the procedure of the QM/MM simulation to calculate free energy change of 

reaction with QM/MM-NN as follows:

(1) Define a set of geometric parameters in the QM subsystem as reaction 

coordinate z. After SQM/MM MD simulations, the low-level free energy change 

along the reaction path as a function of z is calculated with classical free energy 

approaches, such as free energy perturbation, thermodynamic integration, and 

umbrella sampling processed with the weighted histogram analysis method 

(WHAM).54,55

(2) Select several configurations from MD trajectories in the entire range of reaction 

coordinates and calculate their QM/MM energies at the highly accurate ab initio 

QM/MM level. Some of the above configurations are chosen randomly to build 

the training set, while the remaining configurations belong to the testing set.

(3) Perform the training of QM/MM neural network based on the selected 

configurations, in which the root mean squared error (RMSE) defined as

RMSE = 1
N ∑

i = 1

N
Ei

pred − Ei
ref 2

(16)

for the training set is minimized. In eq 16, Ei
pred and Ei

ref are the QM/MM 

energies of the i-th configuration calculated with QM/MM-NN and ab initio 

QM/MM methods, respectively, and N is the total number of configurations in 
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the training or testing set. The procedure for the training of QM/MM-NN 

consists of two steps.45,56 First, the genetic algorithm is used to optimize the 

weights of NN. The individual with the smallest RMSE for the training set is 

decoded as the initial values of the weights of NN in the next step. Second, the 

steep-descent optimization is applied to further train the NN. The “early-

stopping” rule is employed to avoid overfitting by monitoring the RMSE for the 

testing set during the optimization. Once overfitting occurs, the RMSE for the 

testing set begins to increase even if the RMSE for the training set continues to 

decrease. At this point, we stop the training procedure and obtain the optimized 

weights of NN. To measure the accuracy of QM/MM-NN, we use the Q2 value 

for the samples in the testing set, defined as

Q2 = 1 −
∑i = 1

N Ei
pred − Ei

ref 2

∑i = 1
N Ei

ref − E 2 (17)

where E is the average of Ei
ref. The Q2 value corresponding to the QM/MM 

energy difference between two levels can be also obtained from eq 17, in which 

Ei
pred, Ei

ref, and E are replaced by ΔEi
pred, ΔEi

ref, and ΔE, respectively.

(4) Predict the ab initio QM/MM potential energies of other samplings from the 

low-level MD simulations using the constructed QM/MM-NN at a low 

computational cost.

(5) Calculate the free energy difference between two levels at reaction coordinate z 
as

ΔAL H z = − β−1ln e
−β EH − EL

z
(18)

where EL is the low-level QM/MM potential energy calculated in Step 1, EH is 

the high-level QM/MM potential energy calculated in Step 4, β = 1/kBT is the 

inverse temperature, and the angular bracket denotes an average over the 

samplings from the low-level MD simulations. The free energy change along the 

reaction path at the high level is then obtained as

ΔAz1 z2
L = Δz1 z2

L + ΔAL H z2 − ΔAL H z1 (19)

where ΔAz1 z2
L  is the free energy change between two states on the reaction 

path at the SQM/MM level, which has been obtained in Step 1, and ΔAz1 z2
H  is 

the related free energy change at the ab initio QM/MM level. The Bennett 
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acceptance ratio estimator57,58 or some variants of WHAM59 can be also used to 

calculate the high-level free energy profile.

SIMULATION DETAILS

The simulations on three aqueous reactions were implemented to evaluate the performance 

of our method. These reactions include the SN2 reaction of CH3Cl + Cl− → Cl− + CH3Cl, 

the intramolecular proton transfer reaction for glycine, and the aliphatic Claisen 

rearrangement reaction of allyl vinyl ether (AVE) to 4-pentenal (see Figure 2). For the SN2 

reaction, the complex of CH3Cl and Cl− was defined as the QM subsystem and solvated in a 

cubic box of 48 × 48 × 48 Å3 containing 3,600 water molecules under periodic boundary 

condition. The cutoff distance for nonbonded interactions was set as 14 Å. The vdW 

interactions between the QM and MM subsystems were described with the CHARMM22 

force field.60 The DFT method with the B3LYP hybrid functional and the 6–31G(d) basis set 

was used as the high-level QM model,61,62 and the SCC-DFTB method with the parameters 

for chlorine developed recently was used as the low-level QM model.63 For the proton 

transfer reaction, the glycine molecule was defined as the QM subsystem and solvated in a 

cubic box of 64 × 64 × 64 Å3 containing 8,650 water molecules under periodic boundary 

condition. The cutoff distance for nonbonded interactions was set as 12 Å. The QM/MM 

vdW interactions were described with the CHARMM22 force field. The B3LYP/6–31G(d) 

and SCC-DFTB methods were used as the high-level and low-level QM models, 

respectively. For the Claisen rearrangement reaction, the solute was defined as the QM 

subsystem and solvated in a cubic box with a 16 Å extended distance, containing 1,745 

water molecules under periodic boundary condition. The cutoff distance for nonbonded 

interactions was set as 14 Å. The QM/MM vdW interactions were described with the 

Amber-ff14SB force field.64 The Hartree−Fock method with the 6–31G(d) basis set and 

SCCDFTB was respectively used as the high-level and low-level QM models. The TIP3P 

water model was employed for all reactions.65 Because the motivation of our work is to 

develop a correction scheme for SQM/MM to ab initio QM/MM, the low-level and high-

level QM methods used for three reactions were selected to distinguish ab initio QM/MM 

MD simulation results from that obtained from SQM/MM. In other words, the qualities of 

SQM/MM and ab initio QM/MM models compared with experiments are inconsequential. It 

should be also noted that the SCC-DFTB with the second-order formulation (DFTB2) was 

used as the low-level QM model in this work, while the newly issued versions of DFTB such 

as the third-order expansion of the DFT total energy (DFTB3) and the Klopman-Ohno 

functional form for QM/MM electrostatic interactions may provide more accurate results, 

especially for proton transfer reactions and the systems with highly charged QM regions.
66,67

The initial geometries of all three systems were optimized with the SCC-DFTB/MM 

method, followed by MD simulations for 100 ps for reaching equilibrium at the same level. 

The reaction coordinate for the SN2 reaction was chosen as z = dCCl1 − dCCl2, where dij is 

the bond distance between atom i and j. Umbrella samplings with 37 windows centering 

from z = −2.5 to 2.5 Å were applied to calculate the low-level PMF with WHAM. Note that 

this reaction is symmetrical along the path, so only the samplings in the first 19 windows 

with z ≤ 0.0 Å are necessary for the training of QM/MM-NN, and the potential energies of 
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other samplings with z > 0.0 Å can be predicted with NN after the exchange of two chlorine 

atoms. The reaction coordinate for the proton transfer reaction was chosen as z = dNH − dOH, 

where H denotes the transferred hydrogen atom. Umbrella samplings with 25 windows 

centering from z = −1.5 to 1.5 Å were applied. The reaction coordinate for the Claisen 

rearrangement was chosen as z = dOC5 − dC2C3. Umbrella samplings with 28 windows 

centering from z = −4.0 to 0.2 Å were applied. For all three reactions, 1 ns of the 

SCCDFTB/MM MD simulation was performed for each window, and the samplings were 

saved every 500 steps for each trajectory to calculate the QM/MM potential energies at the 

ab initio QM/MM level. In addition, 20 ps of the ab initio QM/MM MD simulation for each 

window was performed to obtain the free energy change at the high level for comparison. 

During all simulations the integration time step was set as 1 fs, and the system temperature 

was maintained at 300 K with a Berendsen thermostat.68 The simulations for the SN2 

reaction were implemented in an in-house QM4D program package69 combined with the 

GAUSSIAN 03 program70 for DFT calculations and the Amber SQM (version 14) 

program71,72 for SCC-DFTB calculations. The simulations for glycine were performed in 

the QM4D program package combined with the GAUSSIAN 03 program for DFT 

calculations. The simulations for AVE were carried in the AmberTools15 program package73 

combined with the GAUSSIAN 03 program for Hartree−Fock calculations.

RESULTS AND DISCUSSION

SN2 Reaction in Water.

First the QM/MM-NN was constructed to predict the potential energy of any configuration 

along the SN2 reaction path at the B3LYP/6–31(d)/MM level based on SCC-DFTB/MM 

calculations. The data in the training and testing sets for QM/MM-NN were randomly 

selected from the snapshots of the MD trajectories in Step 1 of the procedure. Since the 

efficiency of our method depends on the computational cost of ab initio QM/MM 

calculations on all configurations in the training set, we explored the performance of 

QM/MM-NN with different sizes of training sets. Five training sets were built with 20, 30, 

40, 60, and 80 samples from each window, i.e., with the total number of data as 380, 570, 

760, 1,140, and 1,520, respectively. Another 200 samples were selected from each window 

to build the testing set to further check the convergence of the size of training sets. The 

target high-level QM/MM potentials vary from −80 to 30 kcal/mol, while the energy 

differences between two levels as the direct output variables of NN are distributed as narrow 

as from −5 to 10 kcal/mol. The parameters of radial and angular functions in eqs 4, 5, and 6 

were set as follows: Rc = 6.0 Å for all elements,Rs = 0.0 Å for all elements, η = 1.80, 1.20, 

and 0.09 bohr−2 for C, H, and Cl, respectively, and ξ = 1.80, 1.20, and 0.09 for C, H, and Cl, 

respectively. The weights for NN were optimized with the training method in Step 3. The 

RMSEs of energies over the training and testing sets were given in Table 1. The error on the 

training set of larger size decreases slightly from 1.15 to 1.09 kcal/mol. The RMSE on the 

testing set obtained from the smallest training set is 1.16 kcal/mol (0.0084 eV per atom) 

while that obtained from the largest training set is 1.15 kcal/mol, indicating that only 20 

samples from each window are sufficient for training. The comparison of predicted and 

reference potential energies (Epred and Eref) for all samples in the testing set was shown in 
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Figure 3(a). The Q2 value for ΔE is calculated as 0.72, indicating the reliability of the 

present NN.

The reaction coordinate is essential for calculating free energy changes during a reaction. 

Here we explore the role of RC on the QM/MM-NN in two ways. First, the distribution of 

errors along RC was shown in Figure 3(b). The error for the reactant is somewhat larger than 

that for the transition state, because the chloride ion in the complex of the reactant is almost 

free in solution, leading to more flexible degree of freedoms. Second, an alternative 

QM/MM-NN without the subnet of RC, that is, ΔERC in eq 13 is a constant of zero rather 

than that in eq 15, was constructed with the same database and training procedure. The 

RMSEs on the training and testing sets were 1.18 and 1.27 kcal/mol, respectively. The 

subnet of RC makes only minor improvement of about 0.1 kcal/mol in this system.

The free energy barrier for this reaction was estimated as 26.9 kcal/mol at the SCC-

DFTB/MM level. The QM/MM potential energies of all snapshots (2,000 samples from each 

window) were then calculated at the B3LYP/6–31G(d)/MM level with DFT and QM/MM-

NN, respectively. Following the procedure in Step 5, the free energy barrier reweighted with 

direct B3LYP/6–31G(d)/MM energies is 22.3 kcal/mol and with QM/MM-NN is 22.2 kcal/

mol. The value obtained from B3LYP/MM MD simulations is 22.4 kcal/mol. As shown in 

Figure 4, QM/MM-NN reproduces the free-energy profile of the SN2 reaction with a good 

agreement with the results obtained from ab initio QM/MM calculations.

In our method the high-level computation has been restricted to the training set, and thus 

most of the high-level potentials in the summation in eq 18 are predicted from QM/MM-NN 

much more efficiently. If all of the exact high-level energies were applied to eq 18 for 

reweighting, however, hundreds or thousands of samples from each window should be 

recalculated with expensive ab initio QM/MM methods. The computational saving of 

QM/MM-NN depends on the size of the training set relative to the required number of points 

of high-level potentials for reweighting. In other words, the number of configurations used 

in the training set of NN (Ntraining) compared with that used for the reweighting procedure 

(Nreweight) reflects the efficiency of our approach. In this system we employed Ntraining = 

380 from 19 windows and Nreweight = 74,000 from 37 windows along the entire reaction 

path. The saving in computational cost is about 2 orders of magnitude. The symmetry of this 

reaction along the path makes our method more efficient.

Proton Transfer Reaction of Glycine in Water.

Another QM/MM-NN was constructed to predict the potential energy of glycine with 

different conformations from zwitterion to neutral form during the proton transfer reaction, 

where B3LYP/6–31G(d)/MM and SCC-DFTB/MM methods were employed as two levels. 

We set up three training sets with 20, 40, and 80 configurations from each window, i.e., with 

the total number of data as 500, 1,000 and 2,000, respectively. Another 160 configurations 

from each window were chosen for the testing set. The high-level QM/MM potentials vary 

from −40 to 90 kcal/mol, and the energy differences between two levels are distributed from 

−5 to 25 kcal/mol. Both of them are broader than that in the SN2 reaction. The parameters of 

radial and angular functions were set as follows: Rc = 6.0 Å for all elements, Rs = 0.0 Å for 

all elements, η = 0.8, 0.2, 0.8, and 0.2 bohr−2 for C, O, N, and H, respectively, and ξ = 0.8, 

Shen et al. Page 14

J Chem Theory Comput. Author manuscript; available in PMC 2018 October 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



0.9, 1.0, and 0.6 for C, O, N, and H, respectively. It can be seen from Table 2 that the 

training set with 20 samples from each window can achieve the accuracy comparable to 

other training sets with 40 or 80 samples from each window. Thus, the smallest training set 

was employed to build NN, obtaining the RMSE as 1.22 kcal/mol for the training set and 

1.25 kcal/mol (0.0054 eV per atom) for the testing set. The comparison of Epred and Eref for 

all samples in the testing set was shown in Figure 5(a). The Q2 value for ΔE is 0.97, which is 

somewhat larger than that in the SN2 reaction because of the broader energy difference 

distribution. As depicted in Figure 5(b), the neutral form of glycine has the largest RMSE, 

and the error of zwitterion is a little larger than that of transition state. The RMSEs obtained 

from the alternative NN without the RC subnet were calculated as 1.38 and 1.39 kcal/mol 

for the training and testing sets, respectively. Although the accuracy of two types of NNs is 

similar in this system, the use of RC as an additional subnet accelerated the NN optimization 

in Step 3.

Interestingly, the free energy calculations based on the B3LYP/6–31G(d)/MM and SCC-

DFTB/MM models provide very different conclusions. The free energy difference and 

barrier were estimated from SCC-DFTB/MM MD simulations as −7.8 and 5.0 kcal/mol, 

respectively, while those obtained from B3LYP/6–31G(d)/MM MD simulations were 

respectively 7.7 and 10.0 kcal/mol. The SCC-DFTB/MM MD simulations give an incorrect 

result because the zwitterion stabilized by water solvents is the predominant form of 

aqueous glycine. The reweighting correction from DFTB to DFT model works well. As 

shown in Figure 6, the free energy differences reweighted with the potentials obtained from 

B3LYP/6–31G(d)/MM calculations and QM/MM-NN predictions are 8.0 and 8.1 kcal/mol, 

respectively, and the related free energy barriers are 10.3 and 9.6 kcal/mol, respectively. The 

error originates from QM/MM-NN is less than 1 kcal/mol. The deviation increases in the 

product region, which is consistent with the distribution of errors with the largest RMSE for 

the neutral form during QM/MM-NN predictions. The use of NN is very efficient in this 

case (Ntraining = 500 and Nreweight = 50,000) compared with the reweighting procedure with 

direct QM/MM potentials, again showing a saving of 2 orders of magnitude.

Claisen Rearrangement Reaction of AVE in Water.

We applied the QM/MM-NN to the Claisen rearrangement reaction of AVE to predict the 

potential energies at the HF/6–31(d)/MM level based on SCC-DFTB/MM calculations. The 

data in the training and testing sets for QM/MM-NN were randomly selected from the 

snapshots. Four training sets were generated with 20, 30, 40, and 50 configurations from 

each window, i.e., with the total number of data as 560, 840, 1,120 and 1,400, respectively. 

The testing set consists of other 100 configurations from each window. The high-level 

QM/MM potentials are distributed from −30 to 60 kcal/mol, while the range of energy 

differences between two levels is much broader than that in the SN2 reaction, varying from 

−30 to 25 kcal/mol. The parameters of radial and angular functions were set as follows: Rc = 

6.0 Å for all elements, Rs = 0.0 Å for all elements, η = 0.4, 0.4, and 0.1 bohr−2 for C, O, and 

H, respectively, and ξ = 0.2, 0.8, and 0.4 for C, O, and H, respectively. As shown in Table 3, 

the RMSE on the testing set is reduced from 2.36 to 2.21 kcal/mol when the total number of 

samples in the training set increases from 560 to 840. However, the training set with larger 

size is not useful for further improving the accuracy of predictions on the testing set. 
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Therefore, 30 configurations were selected from each window, giving the RMSEs as 2.05 

kcal/mol for the training set and 2.21 kcal/mol (0.0068 eV per atom) for the testing set. The 

comparison of Epred and Eref for all samples in the testing set and the distribution of errors 

along RC were shown in Figure 7. The Q2 value for ΔE is 0.95. The RMSEs obtained from 

the alternative NN without the RC subnet were calculated as 3.08 and 3.24 kcal/mol for the 

training and testing sets, respectively. Here the difference is as large as 1 kcal/mol, 

indicating that the RC subnet is more important for larger molecules in improving the 

predictive ability of QM/MM-NN.

The free-energy barrier for this reaction is much larger at the HF/6–31G(d)/MM level than 

that obtained from SCC-DFTB/MM simulations, i.e., 42.6 and 20.9 kcal/mol, respectively. 

The former is overestimated compared with the experimental measurement,74 while the 

SCC-DFTB/MM method combined with enhanced sampling has been successfully applied 

to the dynamics and kinetics study on this reaction.75 In the present work, however, the low-

level and high-level QM methods were chosen based on the difference of the QM/MM MD 

simulation results at two levels rather than their qualities. Thus, the HF/6–31G(d)/MM 

model was still employed as the reference. Here we adopted Ntraining = 840 and Nreweight = 

56,000 during the whole procedure. As shown in Figure 8, the free energy barrier reweighted 

with direct HF/6–31G(d)/MM energies is 46.4 kcal/mol and with QM/MM-NN energies is 

45.1 kcal/mol.

Two factors should be responsible for the error of QM/MMNN. On one hand, there is a 

difference of −1.3 kcal/mol between the reweighted results from direct QM/MM and 

QM/MM-NN potential energies, reflecting the error of NN predictions. It can be remedied 

with further improvements on the quality of NN in different ways, for example, the use of 

advanced training algorithms,76 the Morte Carlo sampling of symmetry functions,77 or the 

interpolation of gradients.78 On the other hand, even if we applied direct HF/6–31G(d)/MM 

potential energies, the low-level free-energy profile cannot be reweighted to the accurate 

PMF obtained from ab initio QM/MM MD simulations. The error on the free energy barrier 

is 3.8 kcal/mol, indicating that the overlap between sampling spaces at two levels is not as 

sufficient as that in the previous systems. It is consistent with the chemical view that the 

change in molecular structure is much larger in the Claisen rearrangement reaction than that 

in the identity SN2 or proton transfer reactions. One possible improvement is to calculate the 

free energy difference in Step 5 using a linear response approximation after a short-time MD 

sampling at the high level.8,10 For the long-time dynamic simulations on larger biochemical 

systems, the “learn-on-the-fly” simulation on the high-level potential energy surface 

predicted with QM/MM-NN is a good candidate to reduce the error from reweighting.79–81 

Compared with some existing correction schemes with reparametrization on SQM models,
28–30 the combination with neural network make it more attractive in two aspects. First, 

these other approaches are restricted by some physical approximations and functional forms 

used in the SQM model, while the neural network method is based on generic mathematical 

potentials to overcome the limitations of physical considerations and capture the high-level 

data on the entire reaction path more accurately and flexibly. Second, the existing “on-the-

fly” corrections rely on a semiempirical QM model with predefined parameters, while the 

QM/MM-NN corrections can be generalized to other multiscale or multistate simulations. 

For example, we can correct the QM/MM potential energy surface from the HF level to the 
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MP2 level to consider dynamical correlations or perform MD samplings on the excited state 

at the cost of calculations on the ground state. The “learn-on-the-fly” QM/MM-NN method 

would be addressed in our future work.

CONCLUSIONS

In summary, we developed a neural network method to predict the ab initio QM/MM 

potential energies for chemical reaction systems. On the basis of the high-dimensional 

neural network developed by Behler and Parrinello, three extensions have been developed 

for the potential energy predictions of QM/MM systems with a complex environment. (1) 

The semiempirical QM/MM simulations are performed initially, and then the energy 

difference between SQM/MM and ab initio QM/MM, rather than the absolute high-level 

potential energy, is predicted with NN. (2) The QM atomic charges at the SQM/MM level 

are introduced to NN in order to capture the polarization of the QM subsystem induced by 

the MM environment. (3) The information about the reaction coordinate is included in NN 

explicitly to enhance the overall accuracy on the entire reaction path. The improvement of 

the RC subnet is more important for larger systems.

Three reactions in water, the SN2 reaction of CH3Cl + Cl−, the proton transfer reaction of 

glycine, and the Claisen rearrangement reaction of AVE, were studied. The ab initio 

QM/MM potential energies were predicted with QM/MM-NN with the RMSE as 1.16, 1.25, 

and 2.21 kcal/mol, i.e., 8.4, 5.4, and 6.8 meV per atom, respectively. The free-energy profile 

along the reaction coordinate estimated from SQM/MM MD simulations was then 

reweighted with NN predicted potential energies. The results are consistent with the free 

energy difference that is reweighted with direct high-level calculations or obtained from ab 

initio QM/MM MD simulations. It was found that tens of configurations from each window 

along the reaction path are sufficient for NN optimizations, while hundreds or thousands of 

snapshots in each MD trajectory are required for reweighting, showing about 2 orders of 

magnitude speed-up of the present QM/MM-NN computations. This work opens up the 

possibility to combine the machine learning method with QM/MM calculations for long-

time dynamic simulations on large-scale biochemical systems.
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Figure 1. 
Schematic structure of a QM/MM-NN for a system containing N atoms in the QM 

subsystem. Here rQM and rMM are respectively the Cartesian coordinates of the atoms in the 

QM and MM subsystem, Gi
k  is the symmetry function that depends on rQM, and z is the 

reaction coordinate as a function of rQM. After semiempirical QM/MM calculations with 

rQM and rMM, the total QM/MM potential energy EQM/MM
L  at the low level and the Mulliken 

atomic charges Qi
L that have been polarized by the MM environment are known. The 

approximate free-energy profile as A(z) and its first derivative with respect to z are also 

provided from the low-level QM/MM MD simulations. Then the energy difference between 

two levels as ΔE is predicted with QM/MM-NN. Finally, the total QM/MM potential energy 

EQM/MM
H  at the high level is obtained.
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Figure 2. 
(a) Glycine intramolecular proton transfer reaction from zwitterion form (left) to neutral 

form (right). (b) Aliphatic Claisen rearrangement reaction of allyl vinyl ether (AVE).
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Figure 3. 
Accuracy of QM/MM-NN for the SN2 reaction. (a) Comparison of QM/MM-NN predicted 

potential energies (Epred) with that obtained from B3LYP/6–31G(d)/MM calculations (Eref). 

(b) Distribution of RMSEs along the reaction coordinate.
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Figure 4. 
Potential of mean force for the SN2 reaction. Different colors and shapes represent different 

methods (orange diamond: direct SCC-DFTB/MM MD; blue square: reweighted with 

B3LYP/6–31G(d)/MM potentials; red circle: reweighted with QM/MM-NN predicted 

potentials; green star: direct B3LYP/6–31G(d)/MM MD).

Shen et al. Page 26

J Chem Theory Comput. Author manuscript; available in PMC 2018 October 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Accuracy of QM/MM-NN for the proton transfer reaction of glycine. (a) Comparison of 

QM/MM-NN predicted potential energies (Epred) with that obtained from B3LYP/6–

31G(d)/MM calculations (Eref). (b) Distribution of RMSEs along the reaction coordinate.

Shen et al. Page 27

J Chem Theory Comput. Author manuscript; available in PMC 2018 October 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Potential of mean force for the proton transfer reaction of glycine. Different colors and 

shapes represent different methods (orange diamond: direct SCC-DFTB/MM MD; blue 

square: reweighted with B3LYP/6–31G(d)/MM potentials; red circle: reweighted with 

QM/MM-NN predicted potentials; green star: direct B3LYP/6–31G(d)/MM MD).
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Figure 7. 
Accuracy of QM/MM-NN for the Claisen rearrangement reaction of AVE. (a) Comparison 

of QM/MM-NN predicted potential energies (Epred) with that obtained from HF/6–

31G(d)/MM calculations (Eref). (b) Distribution of RMSEs along the reaction coordinate.
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Figure 8. 
Potential of mean force for the Claisen rearrangement reaction of AVE. Different colors and 

shapes represent different methods (orange diamond: direct SCC-DFTB/MM MD; blue 

square: reweighted with HF/6–31G(d)/MM potentials; red circle: reweighted with QM/MM-

NN predicted potentials; green star: direct HF/6–31G(d)/MM MD).
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Table 1.

Root Mean Squared Errors (kcal/mol) of Training and Testing Sets for SN2 Reaction with Q2 Values (in 

Parentheses)
b

training set testing set

20
a 1.15 1.16 (0.717)

30 1.13 1.17 (0.714)

40 1.12 1.18 (0.713)

60 1.11 1.14 (0.728)

80 1.09 1.15 (0.727)

a
Number of configurations selected from each window for training. For the SN2 reaction the total number of samplings in the training set is the 

product of 19 and this number.

b
Ab initio QM/MM potential energies for the SN2 reaction are predicted with QM/MM-NN. Five training sets with different sizes and one testing 

set are used.
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Table 2.

Root Mean Squared Errors (kcal/mol) of Training and Testing Sets for Proton Transfer Reaction of Glycine 

with Q2 Values (in Parentheses)
b

training set testing set

20
a 1.22 1.25 (0.971)

40 1.20 1.30 (0.969)

80 1.28 1.29 (0.970)

a
Number of configurations selected from each window for training. For the proton reaction of glycine the total number of samplings in the training 

set is the product of 25 and this number.

b
Ab initio QM/MM potential energies for the proton transfer reaction of glycine are predicted with QM/MM-NN. Three training sets with different 

sizes and one testing set are used.
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Table 3.

Root Mean Squared Errors (kcal/mol) of Training and Testing Sets for Claisen Rearrangement Reaction of 

AVE with Q2 Values (in Parentheses)
b

training set testing set

20
a 2.08 2.36 (0.950)

30 2.05 2.21 (0.955)

40 2.00 2.22 (0.955)

50 1.95 2.21 (0.955)

a
Number of configurations selected from each window for training. For the Claisen rearrangement reaction of AVE the total number of samplings 

in the training set is the product of 28 and this number.

b
Ab initio QM/MM potential energies for the Claisen rearrangement reaction of AVE are predicted with QM/MM-NN. Four training sets with 

different sizes and one testing set are used.
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