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Copy number variation (CNV) describes both genomic deletions, defined as “loss” of 

genetic material, and genomic duplications, defined as a “gain” of an additional copy of an 

existing DNA sequence. As illustrated in Figure 1, CNV can range in size from 50 base pairs 

(bp) up to several megabases (Mb) or even entire chromosomes, in contrast to a single 

nucleotide polymorphism (SNP) altering only a single nucleotide base. CNV occurs 

ubiquitously throughout the genome and constitutes an important part of the genetic 

diversity in the human population with increasingly recognized clinical impact.1 Presently, 

the identification of CNV is limited by several factors including DNA-quality, the data 
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generation platform, and computational analysis. As a consequence, the study of CNV in the 

clinical setting lags far behind the analysis of SNPs.

CNV-detection and interpretation

Different data generation platforms (SNP-microarrays, chromosome microarrays (also 

known as comparative genomic hybridization or CGH) and next generation sequencing) 

allow genome-wide detection of CNV.1 The current review will focus on SNP-microarray-

based CNV analysis, since large collections of stroke patients have previously been 

genotyped using SNP-microarrays.2 From an efficiency standpoint, these samples can be 

directly re-utilized for CNV-analysis without extra material costs. However, the use of SNP 

arrays for CNV detection has some limitations:

1. The resolution of SNP-microarray analyses (i.e. the minimal size of the variants 

that can be reliably detected) is inversely related to SNP-density of the platform. 

Hence, low SNP-density arrays are less useful. Moreover, as shown in Figure 2, 

the distribution of annotated SNPs across the genome (Figure 2A) and on a 

typical microarray (Figure 2B) is highly non-random. The SNP density is 

particularly low in genomic regions with segmental duplications, as well as 

around the centromere (Figure 2D). These regions are prone to CNV, as indicated 

in Figure 2C. As a consequence, the resolution of SNP-microarray studies varies 

across the genome and is particularly low in regions with high frequency of 

CNV.

2. Noise in microarray datasets is an important source of false-positive CNV-

findings. Some noise components can be adjusted for by pair-wise comparison of 

samples or by more sophisticated identification of independent noise 

components. 3,4

The clinical interpretation of a specific CNV-finding may be difficult or uncertain.5 In 

general, very large (> 500 kilobase) and rare (<1%) CNVs are more likely to be disease-

associated than small and common ones, but size alone is not crucial. Large CNVs can be 

benign while small ones can be clinically important.5,6 Rather than the physical length, the 

total number of genes within the CNV, as well as the function of the affected genes (protein-

coding or non-coding, coding for dosage-sensitive or dosage-insensitive proteins) are likely 

to determine the clinical importance.5,7 Currently, the clinical interpretation of many CNV-

findings remains unclear.7,8 Moreover, in large CNVs covering many different genes, it may 

be difficult to pinpoint the specific disease-causing gene.

Anticipating the disclosure of incidental (“unsolicited”) pathogenic findings is an ongoing 

challenge for all genome-wide diagnostic methods, including CNV detection. For example, 

well-established pathogenic variants may be found in genes not related to the phenotype of 

interest. Genetic counseling of patients prior to CNV analysis, as usually offered to patients 

in a clinical context, could anticipate and assist with incidental findings as well as unclear 

findings (variants of unknown significance).9 However, patient-data in large epidemiologic 

studies are usually anonymized –with neither the scientists nor participants well prepared to 

deal with incidental findings.
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CNV in stroke patients

As listed below and as demonstrated in Table 1, ischemic stroke has been associated with 

several different types of CNV-findings:

1. Common risk-variants: The lipoprotein (a) gene (LPA) contains a repeated 

domain of 114 amino-acids that occurs in a highly variable number of copies (1 

to >40). Individuals with lower copy numbers (<22 repeats) have an 

approximately two-fold higher risk of ischemic stroke than those with larger 

isoforms.25 Multiplex ligation-dependent probe amplification (MLPA) is the 

gold-standard to analyze this CNV.

2. Rare disease-causing variants: A large (749,000 bp) duplication encompassing 

six protein-coding genes (COL4A1, COL4A2, RAB20, NAXD, CARS2, ING1) 

genes as well as several non-protein-coding genes was found in a young patient 

with recurrent lacunar infarcts due to small vessel disease and in eleven affected 

family members.16 The CNV was identified during next-generation sequencing 

analysis and was confirmed by array comparative genome hybridization.

3. Global genomic imbalance: An excess burden of large, gene-disrupting CNVs 

was found in stroke patients with unfavorable functional outcome after three 

months, compared to patients with favorable outcome.26 SNP-microarrays from 

previous GWAS were re-utilized to study CNV.

4. Variants of unknown significance (VUS): a large (> 3.1 Mb) duplication 

encompassing eight protein-coding genes (SCOC, CLGN, ELMOD2, TBC1D9, 
RNF150, ZNF330, IL15, INPP4B) was detected in a 19-year-old boy with 

ischemic stroke due to spontaneous carotid artery dissection.11 This finding 

should be conservatively considered as variant of unknown significance (VUS), 

since the variant was novel and sporadic (i.e. non-familial) and since none of the 

duplicated genes are known candidate genes for cervical artery dissection.

Stroke patients with chromosome aberrations

Chromosome aberrations that are large enough to be analyzed by microscopy are rare in 

patients with non-syndromic cardiovascular diseases or stroke.27,28 An abnormal 

chromosome 13 was detected by light microscopic analysis of lymphocyte metaphase 

chromosomes in a young patient with recurrent stroke. Parallel SNP-microarray analysis 

revealed a complex rearrangement with multiple duplications.29 Some studies associated 

stroke with numerical aberrations including trisomy 21,30 Klinefelter syndrome31 and 

Turner syndrome.32 Somatic loss of the Y-chromosome is a common acquired aberration in 

male blood cells associated with age and smoking.33 An association between loss of the Y-

chromosome and cardiovascular outcomes is suspected,34 but rigorous analysis of 

mosaicism in cardiovascular patients is lacking.

CNV and ischemic stroke

Common CNV in several candidate genes was tested for association with ischemic stroke. A 

lower copy number of the DEFB4 gene was associated with ischemic stroke in a single 
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study.18 A meta-analysis of four CNV studies did not replicate prior CNV associations of 

GSTM1 and GSTT1 with stroke.35 Positive associations with ischemic stroke were reported 

with common CNVs in LPA and LDLR.36

As early as 2008, the impact of CNV was explored in 263 ischemic stroke patients and 275 

control subjects by analyzing microarray data from the first GWAS in ischemic stroke.37 A 

total of 408,000 SNPs were genotyped in each study subject, resulting in a resolution of 

CNV-detection of about 50,000 bp. In the stroke cohort, 231 CNVs were identified, widely 

distributed throughout the genome, with sizes up to 2.1 Mb. All reported variants were low-

frequency findings. None of the observed variants were unequivocally linked to ischemic 

stroke. In the stroke cohort, ischemic strokes were classified according to TOAST criteria,38 

but subtype analysis was not performed as the numbers were small and power was deemed 

insufficient.

CNV and cervical artery dissection (CeAD)

Dissection of the carotid or vertebral artery is a major cause of ischemic stroke in patients 

younger than 50 years. Dissection can occur spontaneously in young adults without known 

vascular risk factors, suggesting an underlying structural defect of the arterial wall, which 

was subsequently confirmed by electron-microscopic investigation of arterial biopsies.39 

Genetic analysis revealed rare point-mutations in different candidate genes associated with 

inherited connective tissue diseases, but this was only in a minority of the patients.40,41

In an early CNV study, 70 CeAD patients were phenotyped by an electron-microscopic 

analysis of a skin biopsy in order to detect connective tissue alterations.11 One patient with 

carotid artery dissection and a history of aortic disease had a large deletion covering the 

entirety of the COL3A1 and COL5A2 genes.11 Another patient carried a large recurrent 

duplication of chromosome 16p13 including the MYH11 and ABCC6 genes, a rare finding 

in the normal population that predisposes to aortic aneurysm and dissection.42,43 Four 

further patients with CNV of the MYH11/ABCC6 locus were identified in a subsequent 

exploration of 833 CeAD patients.12 This latter CNV-study of CeAD did not detect 

association with variation in a particular locus, but found association with variation in a 

predefined set of genes involved in cardiovascular system development.

CNV and hemorrhagic stroke

CNV was studied in 23 Korean patients with ruptured intracranial aneurysms by 

comparative genomic hybridization (CGH) with 4,030 BAC (bacterial artificial 

chromosome)-clones covering the entire human genome at a resolution of 1 Mbp. Each 

patient was analyzed separately and compared with a pooled reference DNA sample from 10 

gender-matched healthy subjects, but no definitive risk CNVs were detected.44 The CGH 

system used in this study was designed for the detection of very large (>1Mb) variants, 

which are usually rare. Further, for the study of rare variants, the sample size was notably 

small.

In another study, high-density (300K Illumina) SNP-microarrays from a GWAS of 191 

Japanese patients with aneurysmal subarachnoid hemorrhage and 282 controls were used for 

CNV exploration.45 CNV-findings were carefully validated by visual examination of the 
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genoplot images and overlapping analysis with the Database of Genomic Variants (DGV - 

http://dgv.tcag.ca/dgv/app/home ). Moreover, selected findings were validated by 

quantitative PCR. Most CNV findings were distributed evenly across the chromosomes, but 

common variants in two regions (chr4:153210505–153212191 and chr10:6265006–

6267388) were significantly associated with the risk of SAH. These findings are pending 

replication in independent studies. No subsequent genome-wide CNV-studies of intracranial 

aneurysm have been published. Systematic explorations of the impact of CNV on 

intracerebral hemorrhage have yet to be published.

CNV and stroke pharmacokinetics

CNV occurs in many genes associated with drug absorption, distribution, metabolism and 

excretion, but until recently the influence of CNV on drug response was not well recognized.
46,47 Currently, the impact of CNV on drug response is increasingly perceived as a potential 

driver of drug efficacy. This may lead in the near future to more precise pharmacological 

targeting, including stroke-specific medications.

Outlook

Worldwide, stroke researchers have collected large numbers well-characterized stroke 

patients and genotyped them on high-density SNP-microarrays for genome-wide association 

studies of common SNPs.2 These microarrays could be re-analyzed to detect CNV without 

the need for extra material costs. Unfortunately, several obstacles may prevent scientists 

from initiating such large-scale CNV studies using these data, including: 1) the high 

proportion of false positive CNV-calls when using current CNV-detection algorithms; 2) the 

huge work-load of pair-wise comparing each sample with a referent sample; 3) the uncertain 

clinical interpretation of many CNV-findings, and; 4) the lack of a universally accepted 

reference set of CNV-findings (size, frequency) across ethnically-diverse human 

populations. Moreover, a significant fraction of the large CNV-findings seen in SNP-

microarray based CNV studies is expected to be rare (i.e. population frequency <0.01), 

which may have power implications regarding associations with specific phenotypes.48,49

In closing, the concept of CNV describes a large and highly heterogeneous set of genomic 

variants, including rare vs. common, benign vs. pathogenic, and inherited vs. de-novo. While 

current genetic epidemiological methods for the analysis of common variants with small 

relative risks are well-suited for large patient populations, optimal analytical methodologies 

for rare disease-causing mutations such as CNV remain uncertain. Rather than mere risk 

factors, pathogenic CNVs may also be considered as “inborn errors”. Thus, the study of rare 

pathogenic CNVs may lead stroke genetics back to a more individual or patient-centered 

clinical focus.
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Abbreviation of gene names

ABCC6 ATP Binding Cassette Subfamily C Member 6

AMY1 Amylase, Alpha 1A (Salivary)

CARS2 Cysteinyl-TRNA Synthetase 2, Mitochondrial

CLGN Calmegin

COL3A1 Collagen Type III Alpha 1 Chain

COL4A1 Collagen Type IV Alpha 1 Chain

COL4A2 Collagen Type IV Alpha 2 Chain

COL5A2 Collagen Type V Alpha 2 Chain

DEFB4 Defensin Beta 4A

ELMOD2 ELMO Domain Containing 2

GSTM1 Glutathione S-Transferase Mu 1

GSTT1 Glutathione S-Transferase Theta 1

IL15 Interleukin 15

ING1 Inhibitor Of Growth Family Member 1

INPP4B Inositol Polyphosphate-4-Phosphatase Type II B

KCNIP1 Potassium Voltage-Gated Channel Interacting Protein 1

LDLR Low Density Lipoprotein Receptor

LPA Lipoprotein(A)

MYH11 Myosin Heavy Chain 11

NAXD NAD(P)HX Dehydratase

NOTCH3 Notch (Drosophila) Homolog 3

RAB20 RAB20, Member RAS Oncogene Family

RNF150 Ring Finger Protein 150

SCOC Short Coiled-Coil Protein

SERPINC1 Serpin Family C Member 1

TBC1D9 TBC1 Domain Family Member 9

ZNF330 Zinc Finger Protein 330
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Figure 1. Types of genetic variation, ranked according to size (length of DNA in base pairs), 
detection methods, clinical impact and population frequency
SNP = single nucleotide polymorphism; indel = short insertion / deletion; VNTR = variable 

number of tandem repeats; LINE/SINE = long / short interspersed repetitive elements; FISH 

= fluorescent-labeled in-situ hybridization; LM = light-microscopy. NGS = next generation 

sequencing.
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Figure 2. CNV detection using SNP-microarrays
Fig. 2A. All annotated short variants from dbSNP (https://www.ncbi.nlm.nih.gov/SNP/), 

distributed over 100 Kb bins along chromosome 17; Fig. 2B: all SNPs from chromosome 17 

of the Illumina Omni 5 exome platform; Fig 2C. All CNVs of human chromosome 17 from 

the Database of Genomic Variants (DGV: http://dgv.tcag.ca/dgv/app/home); Fig. 2D. 

Idiogram of chromosome 17. Red bars delineate regions of uncertain mapping due to 

segmental duplications. Arrows point to regions with low SNP density in dbSNP. The low 

SNP-density is not outbalanced by SNP selection for the Illumina platform. Regions with 

low SNP density on the Illumina array appear to be very rich in CNV. Arrowhead indicates 

peri-centromeric region.
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