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Abstract

Purpose: The purpose of this study was to develop a model that accurately predicts mortality 

among injured children based on components of the initial patient evaluation and that is 

generalizable to diverse acute care settings. Important predictive variables obtained in an 

emergency setting are frequently missing in even large national databases, limiting their 

effectiveness for developing predictions. In this study, a model predicting pediatric trauma 

mortality was developed using a national database and methods to handle missing data that may 

avoid biases that can occur restricting analyses to complete cases.

Methods: Records of pediatric patients included in the National Pediatric Trauma Registry 

(NPTR) between 1996 and 1999 were used as a training set in a logistic regression model to 

predict hospital mortality using vital signs, Glasgow Coma Scale (GCS) score, and intubation 

status. Multiple imputation was applied to handle missing data. The model was tested using 

independent data from the NPTR and National Trauma Data Bank (NTDB).

Results: Complete case analysis identified only GCS-eye and intubation status as predictors of 

mortality. A model based on complete case analysis had good discrimination (c-index = 0.784) and 

excellent calibration (Hosmer-Lemeshow c-statistic, 6.8) ( p > 0.05). Using multiple imputation, 

three additional predictors of mortality (systolic blood pressure, pulse, and GCS-motor) were 

identified and improved model performance was observed. The model developed using multiple 

imputation had excellent discrimination (c-index, 0.947– 0.973) in both test datasets. Calibration 

was better in the NPTR testing set than in the NTDB (Hosmer-Lemeshow c-statistic, 9.2 for NPTR 

[ p > 0.05] and 258.2 for NTDB [ p < 0.05]). At a probability cutoff that minimized 

misclassification in the training set, the false-negative and false-negative rates of the model were 

Address for reprints: Randall S. Burd, MD, PhD, UMDNJ-Robert Wood Johnson Medical School, Department of Surgery, Division of 
Pediatric Surgery, One Robert Wood Johnson Place, P.O. Box 19, New Brunswick, NJ 08903; burdrs@umdnj.edu. 

HHS Public Access
Author manuscript
J Trauma. Author manuscript; available in PMC 2018 October 31.

Published in final edited form as:
J Trauma. 2006 April ; 60(4): 792–801. doi:10.1097/01.ta.0000214589.02515.dd.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



better than those obtained with either the Revised Trauma Score (RTS) or Pediatric Trauma Score 

using data from the NPTR testing set. Although the false-positive rates were lower with the RTS 

using data from the NTDB, the false-negative rates of the proposed model and the RTS were 

similar in this test dataset.

Conclusions: Using multiple imputation to handle missing data, a model predicting pediatric 

trauma mortality was developed that compared favorably with existing trauma scores. Application 

of these methods may produce predictive trauma models that are more statistically reliable and 

applicable in clinical practice.
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Trauma is an important threat to the health of children with injuries, resulting in more deaths 

in children than all other causes combined.1 Because injured children have better outcomes 

at centers with specialized trauma care, appropriate transport to these centers may reduce 

morbidity and mortality.2,3 Early identification of children with severe injuries facilitates 

transport to designated trauma centers where specialized care can be given. Appropriate 

triage can also predict the level of initial hospital manpower and other resources needed and 

determine the need for transfer to a specialized trauma center after arrival to a hospital with 

limited trauma expertise. Because only 5% of injured children need the resources of a 

trauma center, a rapid method to classify the severity of injury and to get the patients to the 

appropriate facility is needed.4 Nondesignated trauma centers can treat children with less 

severe injuries, whereas trauma centers are needed to treat more severely injured children. 

Undertriage puts children at risk of being treated at a hospital not equipped to deliver 

specialized trauma care and rehabilitation. Overtriage to trauma centers dilutes the resources 

needed for caring for severely injured children.

There remains a need for an effective pediatric-specific trauma triage instrument. Features of 

the optimal triage tool include accuracy, reproducibility, flexibility, and ease of application at 

the location of injury. A triage tool that is accurate will avoid misclassification and have 

acceptable overtriage and undertriage rates. A reproducible tool will be accurate when 

applied in different environments (e.g., in different regions of the country or in a rural versus 

urban setting) or by different raters. A tool that can be used in only one institution will have 

limited use and not gain widespread acceptance. A tool that is flexible will be able to easily 

evolve as the care for injured children improves and the categories of triage change. Because 

a triage tool needs to be used in the prehospital setting, it should be based on a simple set of 

variables. On-scene caregivers, who are treating trauma patients and need to rapidly 

transport critically ill children, and physicians in the emergency room cannot be expected to 

use a complex triage system.

Several trauma scoring systems have been used to triage injured children. The Revised 

Trauma Score (RTS) is a phys-iologic score based on systolic blood pressure (SBP), 

respiratory rate (RR), and Glasgow Coma Scale (GCS) scores.5 Although derived using 

adult trauma data, the RTS has been validated as a potentially useful triage tool in children.6 

The Pediatric Trauma Score (PTS) was developed as a pediatric-specific alternative to the 
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RTS and combines physiologic and anatomic variables including weight, airway status, SBP, 

central nervous system status, presence of an open wound, and presence of fractures.7,8 

Although PTS has been shown to correlate with injury severity in children, this score 

includes subjective variables that may not be easy to obtain in an acute care setting. A 

significant advantage of the PTS over the RTS has not been shown.8,9 The Age-Specific 

Pediatric Trauma Score (ASPTS) has been recently created from a state trauma database 

using logistic regression methods and incorporates the use of age-adjusted vital signs and 

GCS scores to predict injury severity and probability of mortality.10 Because the specificity 

of the ASPTS is better than the RTS, the ASPTS is a promising alternative to the RTS and 

deserves further study as a pediatric trauma triage tool in a separate dataset or in a clinical 

setting.

The purpose of this study was to develop a model based on components of the initial patient 

evaluation that accurately predicts hospital mortality among injured children. Although 

triage decisions can be based on other measures of severity of illness, the model was 

evaluated as a triage tool using mortality as the principal measure of outcome. Based on 

triage targets established by a consensus panel of the Florida Trauma Triage Study, the goal 

of this study was to develop a tool that achieves an overtriage rate of <30% and an 

undertriage rate of <5%.11 As with previous trauma scores, initial vital signs and GCS 

scores were considered as potential predictors. In addition to these physiologic parameters, 

intubation status was also evaluated as a predictor because this feature is easy to identify in 

an acute care setting and conveys an increased likelihood of severe injury. The model was 

developed and tested using data obtained from two separate national datasets and compared 

with currently available triage scores. Because variables obtained in an emergency setting 

are frequently missing in trauma databases, methods to handle missing data were used to 

avoid bias in the final model.12

METHODS

Data Sources and Subject Selection

This study has been approved by the Institutional Review Board at UMDNJ-Robert Wood 

Johnson Medical School. The NPTR is a database, started in 1985, that tracks the 

management and outcome of injured children treated at participating pediatric trauma 

centers or pediatric hospitals. Data (n = 35,385) from the registry obtained between 1996 

and 1999 were used as the training set and additional data obtained between 1999 and 2001 

(n = 15,818) were used as the first testing set. Additional testing of the model was performed 

using data obtained from the NTDB, a database started in 1989 that contains over 730,000 

cases from 268 adult and pediatric trauma centers. Because some trauma centers have may 

have reported data to both the NPTR and NTDB, only records in the NTDB from 2002 and 

2003 (n = 16,868) were used to prevent overlap with data from the NPTR. Records were 

excluded from analysis in the training and testing sets if age was >17 years or was not 

recorded, vital signs were outside of normal physiologic range (SBP > 200, p > 250, RR > 

80), or hospital mortality was not reported.
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Development of Prognostic Models

Input variables selected for modeling included the following clinical features recorded in the 

emergency room: SBP, pulse, RR, components of the GCS score (GCS; GCS-eye, GCS-

motor, and GCS-verbal), mechanism of injury (penetrating or blunt), and intubation status 

(not intubated or intubated). The outcome variable studied was hospital mortality. Pulse is 

not available in the NTDB and was handled as missing and was imputed as described below.

An analysis was performed to assess the pattern of missing data and evaluate how missing 

data might impact modeling. Missing data were observed for all input variables except 

mechanism of injury, with the proportion of missing data varying between 1% and 29% of 

cases (Table 1). The relationship between the absence of each variable and other covariates 

was evaluated using univariate logistic regression, and between data absence and mortality 

using x2 analysis.

Modeling only using cases with complete data in all fields (complete case analysis) requires 

that the cases represent a random sample of the entire dataset. This type of missing data 

pattern is called missing completely at random (MCAR). When data are MCAR, no 

relationship can be expected between data absence and outcome. A more general missing 

data pattern, missing at random (MAR), occurs when the probability that a data point is 

missing may depend on the values of other variables that were measured but not on the true 

value of the data point that is missing.13 Most methods for imputing missing data, such as 

multiple imputation, re-quire that the missing data pattern is MAR. Direct proof that a 

missing data pattern is MAR requires, however, that the missing data are known. Although a 

MAR data pattern must be assumed and cannot be proven, a relationship between absence of 

a given variable and the values of other covariates provides evidence of a potential MAR 

pattern. Because the missing data pattern was not MCAR (see Results, below), we assumed 

that the missing data pattern was MAR and applied multiple imputation to impute missing 

values.

An introduction to multiple imputation can be found in several excellent sources.14–16 With 

the increasing availability of software that can perform multiple imputation, this powerful 

method now has been applied to a range of clinical problems.16–19 Multiple imputation 

involves three phases. First, missing data are filled in n times to generate n complete 

datasets. Missing data are replaced in each of the n datasets with possible values that 

represent the uncertainty of the correct missing value rather than with a single value such as 

a median, mean, or mode. Each of these n imputed datasets are “complete” with measured 

and imputed values. The n imputated datasets are then analyzed using conventional methods 

ordinarily used for complete case analysis. Finally, the results of the statistical analyses on 

each imputed dataset are combined to give a final result.

Multiple imputation was used to construct 10 imputed datasets from the training data. Values 

were imputed using a regression that included age, SBP, pulse, RR, GCS-eye, GCS-motor, 

GCS-verbal, GCS-total, mechanism of injury (penetrating or blunt), and intubation status. 

Because the normal ranges of SBP, pulse, and RR differ by age, these variables were 

standardized to improve comparison among all subjects after imputation. The mean and 
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standard deviation of SBP at each age were obtained from the training set and used to 

standardize each recorded value of SBP in the imputed datasets using the equation:

Recorded SBP − mean SBP for patient age
STDEV of SBP for patient age

Pulse and RR were similarly standardized. Standardized vital signs, components of the GCS, 

and intubation status were then used as predictors in logistic regression analyses performed 

on each imputed dataset. The results of the analyses performed on each of the 10 imputed 

datasets were then combined to give the final result.

Model Validation

Because each testing dataset contained missing data, multiple imputation was performed to 

“complete” each testing dataset. Data from the training set and each testing set were merged. 

Multiple imputation (n = 10) was then performed on the merged datasets. A separate 

imputation was performed for each testing dataset. After imputation, vitals signs in the 

testing datasets were standardized using mean and standard deviation values obtained from 

the training dataset. The logistic regression model developed from the training dataset was 

used to calculate an estimated probability of hospital mortality for each case in the imputed 

testing datasets. The mean of the probabilities for each case was calculated and compared 

with the observed mortality to assess the predictive capacity of the model.

Discrimination of the model was evaluated by calculating the area under the ROC curve or 

c-index. Calibration (goodness of fit) of the model was assessed using the Hosmer-

Lemeshow (H-L) statistics. Cases were ordered based on the probability of mortality 

estimated by the model and grouped into deciles (c-statistic) or decines (h-statistic). The 

expected and observed number of outcomes in each partition were compared. An H-L 

statistic < 15.5 (8 degrees of freedom; p 0.05) shows that there is no significant difference 

between observed and predicted values and excellent goodness of fit, while an H-L statistic 

> 15.5 shows a significant difference between observed and predicted values and poor 

goodness of fit. Calibration was also graphically displayed by plotting predicted and 

observed mortality across all risk ranges. The slope of the calibration curve was calculated 

using linear regression. The R2 value represents the proportion of variation of the dependent 

variable (observed mortality rate) that is predicted from the independent variable (predicted 

mortality rate). An R2 value of 1.0 indicates that all points lie on a straight line and that the 

predicted mortality rate is able to predict the actual mortality rate with 100% certainty. A 

perfectly calibrated model will have a slope of 1 and a y-intercept at 0.

The model was also compared with RTS and PTS. A cutoff probability was determined in 

the training dataset that resulted in the least misclassification of cases (false-positive and 

false-negative rates assumed to be equivalent). The RTS was calculated in each testing 

dataset using imputed vital sign and GCS values. A value of RTS < 12 was used to designate 

a high potential for mortality.5 The PTS was calculated for most subjects in the NPTR 

testing set (93% of records) but was not available in the NTDB. A score of < 9 was 

considered to indicate a high potential for mortality.7 On the basis of these cutoff points, 

sensitivity, specificity, and predictive values were calculated for the individual scores. 
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Overtriage (false-positive) rate was defined as (1-specificity), whereas undertriage (false-

negative) rate was defined as (1-sensitivity).

Statistical Software

SPSS 12.0 (SPSS Inc., Chicago, IL) was used to perform univariate logistic regression and 

to analyze continuous variables using the unpaired Student’s t test, ordinal variables using 

the Mann-Whitney U test, and groups using x2 analyses. Multiple imputation and 

development of the final logistic regression model was performed using SAS 8.2 (PROC MI 

and PROC MIANALYZE, SAS Institute, Cary, NC).16

RESULTS

Overview of Data

The mortality in the NPTR training set was 2.9%, in the NPTR testing set was 2.6%, and in 

the NTDB dataset was 3.1%. Variables used for modeling in the three datasets are shown in 

Table 1. In the three datasets, standardized SBP and GCS were lower whereas standardized 

pulse was higher among subjects who died. Subjects who died were more commonly 

intubated than those who survived. Patients in the NPTR who died were younger than those 

who survived, whereas those in the NTDB who died were older than those who survived. 

Although no differences in standardized respiratory rate were observed in the NPTR, the 

standardized respiratory rate was lower among patients in the NTDB who died. The 

frequency of penetrating injuries among survivors and non-survivors was similar in the 

NPTR, but more pene-trating injuries were observed among nonsurvivors in the NTDB 

(Table 1).

Missing variables were frequently observed among those who died. Although there were 

1,008 deaths in the NPTR training set, only 17 deaths (0.07%) were observed among 23,689 

subjects with complete data for the 7 variables used to model. A logistic regression model 

based on these data had good discrimination (ability to discriminate between patients who 

live and those who die; c-index = 0.784) and excellent calibration (accuracy of predicting the 

mortality rate; H-L c-statistic = 6.4). Lower GCS-eye and intubation status were the only 

significant predictors of mortality in the final model (Table 2). When evaluated in each 

testing dataset, discrimination of the model was excellent (c-index = 0.965 in NPTR testing 

set and 0.940 in NTDB), whereas calibration was not as good (H-L c-statistic = 242.6 in 

NPTR testing set and 398.1 in NTDB).

Development of an Improved Model

To develop a model with improved performance, the feasibility and effectiveness of multiple 

imputation was evaluated. As shown in Table 1, missing values were observed for all 

variables used for modeling except mechanism of injury and age (records were not included 

for analysis if age was not available). Values were most commonly missing for components 

of the GCS. Data patterns in which some or all components of GCS were missing were most 

frequent. A similar missing data pattern was observed in the NPTR and the NTDB (Table 3). 

In the NPTR training set, missing values of each variable were less common among 

survivors than among nonsurvivors ( p < 0.001). Univariate logistic models show that the 
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absence of variables used to model mortality was potentially associated with other variables 

(Table 4). GCS-eye, GCS-motor, and intubation status were associated with the absence of 

each modeling variable, whereas pulse was associated with the absence of all but one 

variable.

Multiple imputation was performed to complete missing data fields in the NPTR training set. 

Ten imputations were performed to obtain values for 31,495 previously missing values 

among the seven variables used for modeling. Data from the original incomplete dataset 

were similar to those obtained by imputation (Table 5). The addition of age as a covariate 

was not associated with any improvement in either discrimination or calibration of the 

model. Compared with the model developed using complete case analysis, the model 

developed using multiple imputation included three additional significant variables 

(standardized SBP, standardized pulse, and GCS-motor; Table 6). The model obtained using 

multiple imputation had improved discrimination (c-index = 0.958 versus 0.784) but 

decreased calibration (H-L c-statistic, 25.7 versus 6.8). In the final model, each unit decrease 

in GCS-eye resulted in a 37% increase in risk of death, while each unit decrease in GCS-

motor resulted in a 59% increase in risk of death. The risk of mortality was 19 times higher 

when the subject was intubated.

Assessment of Model Performance

The logistic regression model was tested using independent data from the NPTR and data 

from the NTDB. For each subject, the probability of mortality was calculated from each 

logistic regression equation using observed or imputed values of vitals signs, GCS 

components, and intubation status. The model obtained using multiple imputation had better 

performance than the model based on complete data when evaluated using NPTR testing set 

data, but had similar performance using NTDB data (Table 7). Subgroups with a blunt or 

penetrating mechanism of injury were separately analyzed. Excellent discrimination was 

observed in the test data (c-index, 0.947– 0.973) regardless of mechanism of injury. Model 

calibration, however, was more variable, being generally better for the NPTR data than the 

NTDB dataset (Table 8). The calibration curves showed that the model over-predicted rather 

than under-predicted mortality in the NTDB dataset (Fig. 1). Using probability estimates in 

the training set, a cut-off probability of 0.009% resulted in the least misclassification (false-

positive rate equal to false-negative rate). This cut-off value led to a similar misclassification 

in the NPTR testing set but higher misclassification in the NTDB (Table 9). The proposed 

model had a higher positive predictive value and accuracy than either the RTS or PTS using 

NPTR testing set data (p < 0.001), but performed worse than the RTS using NTDB data (p < 
0.001; Table 9).

DISCUSSION

In the current study, we have developed and tested a model predicting pediatric trauma 

mortality using the NPTR and NTDB. While the size and case-mix differences of these 

databases are advantages for developing and testing a prog-nostic trauma model, both 

databases have a significant amount of missing data. This problem may be more apparent 

among variables obtained in a prehospital setting or in the emergency room because absence 

Burd et al. Page 7

J Trauma. Author manuscript; available in PMC 2018 October 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



variables in these settings may be related to the severity of injury.12 Although smaller or 

regional databases may have less missing data, we felt that the advantages of these larger 

datasets justified their use and the application of methods for handling missing data.

In previous trauma studies, two methods have been used to handle missing data. The most 

common method has been to restrict the analysis to subjects for whom values of all 

modeling variables are complete.10 When the number of records with missing variables 

represents a small fraction of the total number of records, complete case analysis is an 

acceptable method for handling missing data, since exclusion of records with incomplete 

data may have only minimal impact on the relative contribution of predictors. When 

complete case analysis is applied to datasets with a significant amount of missing data, 

omission of incomplete data may lead to biased results when the remaining cases are not 

representative of the larger population that the data are in-tended to represent. Biases that 

may result include both inclusion of nonpredictive covariates or omission of predictive 

covariates. Because of these limitations, it is appropriate to assess the likelihood that data are 

MCAR before proceeding with complete case analysis. Other methods for handling missing 

data have included ad hoc methods such as inserting the mean, median, or mode values in 

missing data fields.20 These methods are convenient but generally produce results with 

variances that are biased toward zero. Because of these biases, standard measures for 

uncertainty of potential predictors such as standard error and p values can be inaccurate 

because these will not convey the true uncertainty of the missing data. Inaccurate estimates 

of uncertainly may result in a biased assessment of the relative contribution of individual 

predictors.13 Multiple imputation is a method for handling missing data that avoids the 

biases associated with complete case analysis or single imputation. With this method, 

statistical inferences can be made based on information contained in available complete data 

fields while reflecting the uncertainty related to data absence. Although this method has 

been increasingly used in a wide range of clinical studies, this method has, to our 

knowledge, been applied in only one study using trauma data.12

We first developed a predictive model using only records with complete data. After 

exclusion of records with at least one missing variable, only 69% of records remained from 

the original dataset. An analysis of the missing data pattern showed that components of the 

GCS were usually missing together. For this reason, it is unlikely that a step-wise backward 

elimination method would lead to an effective increase in the sample size because of the 

previously observed importance of GCS as a predictor of trauma mortality. A backward 

elimination method was also avoided because of the tendency for this methodology to lead 

to data overfitting. There was strong evidence that an analysis restricted to complete cases 

would lead to a less precise model. Since the mortality in the complete data substantially 

differed from that observed in the entire training dataset (0.07% versus 3%), data in the 

training set was unlikely to be MCAR. The observation that univariate analysis showed a 

strong correlation between the absence of potential predictors and mortality supported, but 

did not prove, that the data were not MCAR.

When the analysis was performed on the 23,695 cases with complete data, only GCS-eye 

and intubation status were identified as significant predictors of mortality. Using multiple 

imputation, we were able to increase the sample size by 45% (10,647 subjects) and increase 
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the number of subjects who died from 17 to 1,008. With the added statistical power, three 

additional variables were observed to be significant predictors of mortality (SBP, pulse, and 

GCS-motor), and the resulting model had improved higher discrimination. The inclusion of 

additional predictors suggested that information contained in the incomplete records was 

relevant to mortality prediction and was being incorporated into the final model. The 

application of multiple imputation provided insight into the relative contribution of 

individual predictors that was not achievable using complete case analysis alone.

Similar to previous triage tools, initial vital signs and components of the GCS were observed 

to be significant predictors of hospital mortality.5–10 In contrast to other studies that have 

found RR to be an important predictor of mortality, either alone or in combination with other 

variables, we did not observe RR to be an important predictor of hospital mortality. This 

difference may be attributable to our representation of RR as a monotonic variable rather 

than scoring RR for the predictive value of both tachypnea and diminished RR, as is done in 

the RTS and ASPTS. Similarly, components of the initial GCS were observed to be 

significant predictors of hospital mortality, most likely reflecting the importance of head 

injury as a cause of mortality among injured children. The relative contribution of GCS-

motor to the final model is consistent with the previous finding that GCS-motor contains 

most of the predictive power of the GCS in relationship to mortality.21 It is interesting to 

note that GCS-motor was not identified as a significant covariate in the model based only on 

complete cases. Intubation status proved to be the covariate with the largest predictive 

capacity. Although anatomic variables that require interpretation have been described as a 

limitation of other trauma scores, intubation status is straightforward enough to determine 

even in an acute care setting and easily conveys severity of injury.

To evaluate performance of the proposed model, we first applied the methods described by 

Justice et al.22 These authors describe a scheme for evaluating models using the related 

concepts of accuracy and generalizibility. Accuracy is assessed using conventional methods 

for evaluating discrimination and calibration. Generalizibility is assessed by evaluating 

whether the accuracy of the model is both reproducible and transportable. Reproducibility is 

defined as the maintenance of accuracy in data obtained from the same source as the training 

set. Transportability is defined as the maintenance of accuracy in data obtained from a 

different but related population or collected using methods different from those used to 

obtain the training data.

Based on performance using the NPTR training set, the proposed model was found to be 

accurate since it satisfied conventional standards of discrimination and calibration. The 

model was also observed to be reproducible because it had adequate discrimination and 

calibration using unique data from the NPTR, the same dataset used for training. The 

transportability of the model was more limited. Using the NTDB testing data, discrimination 

of the model was excellent but calibration was not as good. An analysis of the calibration 

curves shows that application of the model in the NTDB resulted in overtriage because 

predicted mortality was generally higher than actual mortality. While the reproducibility of 

predictive models has been frequently performed, evaluation of transport-ability has 

frequently been omitted in previous studies.10,20 The current findings emphasize that 
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assessment of reproducibility alone may lead to an overoptimistic assessment of the 

predictive capacity of a model.

Several explanations may account for the more limited transportability of the model to the 

NTDB database. The NPTR and NTDB datasets were obtained from different types of 

trauma centers. Centers reporting to the NPTR were generally pediatric trauma centers, 

whereas hospitals reporting to the NTDB included both adult and pediatric trauma centers. 

These differences are important since the outcome of children treated at pediatric trauma 

centers may be better than those treated at adult trauma centers.2,3 In addition, the profile of 

children in each dataset differed; children in the NPTR were younger and less frequently 

sustained penetrating injuries than those in NTDB. Although we deliberately used a minimal 

set of predictors in the model, additional variables may need to be added to the proposed 

model to improve calibration across datasets obtained from different populations. Potential 

variables to include in future refinements of the model include the mechanism or intent of 

injury, transport time, and prehospital treatments.

A second measure of model performance relates to its clinical applicability. Although a 

predictive model may be statistically valid, it may not have clinical value.23 One way that we 

assessed the clinical value of our model was to evaluate it against predetermined standards 

of overtriage and undertriage. The model achieved our prestudy goal of achieving an 

undertriage rate of <5% using both testing datasets, comparing favorably with the RTS and 

PTS. In contrast, the model achieved the prestudy goal of an overtriage rate of <30% only 

using data from the NPTR. An advantage of the model over the RTS and PTS was observed 

using NPTR data but not using NTDB data. Overtriage and undertriage are both critical 

factors to measure when evaluating a triage tool but do not have equivalent importance. 

Misclassifying patients who have high risk for mortality (undertriage) may have an impact 

on outcome, whereas misclassifying those who have low risk for mortality (overtriage) may 

lead to increased resource utilization. Emphasizing undertriage as a measure of clinical 

value, the proposed model performed equivalently to both the RTS and PTS.

There are limitations of the proposed model that will serve as the basis for future 

modification and evaluation. One limitation of the proposed model is that it predicts 

mortality alone. Although mortality is a simple criterion upon which to base triage decisions, 

it is a complex variable. The implications for resource utilization and trauma center 

readiness can be different when a death occurs in the emergency room versus when it occurs 

at the end of an extended hospitalization. For this reason, predicting the time of trauma death 

may be as important as predicting death.

In contrast to previous trauma triage tools, the proposed model does not rely on a simple 

score, but depends on a series of calculations that includes standardization of vital signs for 

age. Although decision tools that use a score to aid clinical decision making have been 

successful in other settings, the poor usability of even simple triage scores in a prehospital 

and acute care settings has been recognized.24 The age-dependency of vital signs necessarily 

requires a complex method for handling these variables in pediatric trauma patients. For 

example, the ASPTS uses scoring based on age-related vital sign ranges.10 As medical care 

moves toward electronic acquisition and storage of data, the use of predictive models that 
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require more than simple calculations will become more practical. The problem of 

calculation and immediate interpretation by the user will be replaced by the challenge of 

providing devices that have adequate user interface and feedback.

The proposed model has additional limitations that are also found in other triage tools. The 

GCS is an important component of the model that can be difficult to assess in an acute care 

setting. Because of the importance of head trau-ma as a cause of pediatric trauma mortality, 

this variable is common to other trauma scores that have been evaluated in children, 

including the RTS, PTS, and ASPTS.5–10 Components of the GCS, particularly GCS-verbal, 

can be difficult to assess in critically ill or intubated patients.25 Age-related adjustments are 

also needed when the GCS is applied to younger children, making application of GCS to 

these patients more difficult. The frequent absence of components of the GCS reflects the 

difficulties related to assessing this variable. Previous studies have handled this problem by 

either omitting records with incomplete GCS or using the lowest possible score when 

components of the GCS (particularly GCS-verbal in intubated patients) cannot be accurately 

accessed.26 Application of regression methods such as multiple imputation to predict 

missing GCS components is a preferred solution since this will prevent loss of valuable data 

and avoid biases that may arise from ad hoc methods of data completion.

The proposed model is also intolerant of missing data. Similar to other trauma triage tools, 

every variable is required before a prediction can be obtained. In prehospital or other acute 

care settings, even simple variables such as vital signs may not be easy to immediately 

obtain because of the need for rapid stabilization and transport. Estimation of missing values 

using methods such as multiple imputation or Bayesian methods may become practical even 

in a prehospital setting as computer technologies are incorporated into these locations. We 

envision that a computer-based prediction model similar to that proposed here will be 

incorporated directly into the electronic medical record of each injured patient. When 

needed predictors are missing or have not yet been obtained, available data from an 

individual patient can be added to a larger existing dataset and multiple imputation 

performed to “complete” missing data fields for that patient. The now “complete” patient 

data can then be used to estimate the probability of mortality using a logistic regression 

equation similar to that described.

Early and accurate triage will likely reduce the morbidity and mortality of injured children.
2,3 Although it may have higher accuracy than existing triage tools, the proposed model will 

require further validation that necessarily includes prospective testing. The current study 

highlights the challenges of developing a triage tool and proposes a preliminary model for 

usage in clinical settings. The goal of our work is this area is to develop a triage tool that 

meets acceptable standards of undertriage and overtriage and can easily be implemented in 

real world settings.
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Fig. 1. 
Calibration curve showing actual mortality rates across deciles of predicted mortality risk for 

test cases. Data obtained from NPTR training set (A), NPTR testing set (B) and NTDB (C). 

The line with square bullets represents the actual prediction in each decile; the dashed line 

represents perfect prediction. The vertical bars indicate the number of cases in each risk 

group.
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Table 1

Univariate Analysis of Variables in Training and Testing Sets

Variable

NPTR Training Set NPTR Testing Set NTDB Testing Set

All 
Patients

(n = 
34,342)

Alive
(n = 33,334)

Dead
(n = 1,008)

All 
Patients

(n = 
14,200)

Alive
(n = 13,824)

Dead
(n = 376)

All Patients
(n = 16,868)

Alive
(n = 16,339)

Dead
(n = 529)

Age, years (mean ± SD) 8 ± 5 
(0)

8 ± 5 (0) 7 ± 5 (0)† 7.8 
± 5.0 
(0)

7.9 ± 5.0 (0) 7.1 ± 5.5 

(0)*
10.6 ± 5.6 

(0)
10.5 ± 5.6 

(0)
11.3 
± 6.3 

(0)*

Standardized SBP 0.0 
± 1.0 
(6)

0.0 ± 1.0 (5) − 0.8 ± 1.8 

(23)†
0.0 

± 1.0 
(7)

0.0 ± 1.0 (6) − 0.5 
± 1.6 

(24)†

0.0 ± 1.3(16) 0.1 ± 1.1(16)  −2.2 
± 3.1 

(11)†

 (mean ± SD)

Standardized pulse 0.0 
± 1.0 
(2)

0.0 ± 1.0 (1) 0.2 ± 1.7 

(21)†
0.0 

± 1.0 
(2)

0.0 ± 1.0 (1) 0.4 ± 1.6 

(20)†
−(100) −(100) −(100)

 (mean ± SD)

Standardized RR 0.0 
± 1.0 
(12)

0.0 ± 1.0 (9) 0.1 ± 1.8 
(92)

0.0 
± 1.1 
(12)

0.0 ± 1.1(9) 0.39 
± 1.6 
(93)

−0.3 ± 1.2 
(14)

−0.2 ± 1.1 
(13)

 −2.4 
± 2.1 

(29)†

 (mean ± SD)

GCS

 Eye (median)  4 (22)  4 (20)  2 (28)†  4 (25)  4 (25)  3 (16)†  4 (22)  4 (23)  1 (13)†

 Verbal (median)  5 (29)  5 (25)  3 (97)†  5 (33)  5 (32)  4 (97)†  5 (24)  5 (24)  1 (14)†

 Motor (median)  6 (26)  6 (23)  5 (49)†  6 (31)  6 (30)  5 (54)†  6 (23)  6 (23)  1 (13)†

 Total (median) 15 (24) 15 (21) 10 (97)† 15 (23) 15 (21) 11 (97)† 15 (22) 15 (22)  3 (11)†

 Indubated (%) 12 (1)  9 (1) 97 (6)† 11 (1)  8 (1) 94 (3)†  8 (0)  6 (0) 61 (0)†

 Penetrating injury (%)  7 (0)  7 (0)  8 (0)  6 (0)  6 (0)  6 (0)  7 (6)  7 (6) 17 (6)†

%
missing indicated in parentheses.

*
p < 0.01 compared to surviving patients.

†
p < 0.001.

NPTR, National Pediatric Trauma Registry; NTDB, National Trauma Data Bank; SD, standard deviation, SBP, systolic blood pressure; ROC, 
receiver operating characteristic; —, pulse not available in the NTDB dataset.
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Table 2

Logistic Regression Analysis of Risk of Death in Pediatric Trauma Patients Based on Complete Data (n 

23,695) in NPTR Training Set

Variable Coefficient SE p value Odds Ratio 95% CI
Lower Limit

95% CI
Upper Limit

Intercept ‒1.95 1.21 0.107

SBP—standardized ‒0.01 0.23 0.942 0.98 0.61 1.57

Pulse—standardized  0.44 0.23 0.058 1.55 0.98 2.45

RR—standardized ‒0.18 0.23 0.436 0.83 0.52 1.32

GCS-eye ‒0.77 0.36 0.036 0.46 0.22 0.95

GCS-motor ‒0.37 0.31 0.228 0.68 0.37 1.26

GCS-verbal ‒0.13 0.34 0.693 0.87 0.44 1.73

Intubated  2.63 0.67 0.0001 13.96 13.68 52.87

SE, standard error;CI, confidence interval; SBP, systolic blood pressure; RR, respiratory rate; GCS, Glasgow Coma Scale.
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Table 3

Missing Data Patterns in the NPTR (Training and Testing Sets) and NTDB*

SBP Pulse RR GCS-eye GCS-motor GCS-verbal GCS-total Intubation
Status

Cases With
Pattern (%)

NPTR

+ + + + + + + + 67

+ + + − − − − + 10

+ + + − − − + +  5

+ + − − − − − +  3

+ + − + − − − +  3

− + + + + + + +  2

+ + − + + − − +  2

− + + − − − − +  2

NTDB

+ − + + + + + + 68

− − − − − − − + 10

+ − + − − − − +  9

− − + + + + + +  3

+ − − + + + + +  3

− − + − − − − +  2

+
, data is present

−
, data is absent

*
missing data patterns are shown that occur in at least 2% of subjects.

NPTR, National Pediatric Trauma Registry; NTDB, National Trauma Data Bank; SBP, systolic blood pressure; RR, respiratory rate; GCS, Glasgow 
Coma Scale.
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Table 4

Associations Between Missingness Data and Variables in NPTR Training Dataset and Mortality

Variables Used for Imputation

Absence of: Age SBP P RR GCS-eye GCS-motor GCS-verbal GCS-total Penetrating
Injury

Intubation
Status

Outcome
Mortality

SBP X NA X X X X X — X X X

Pulse — X NA — X X — X — X X

RR X — X NA X X X X X X X

GCS-eye X X X X NA X X X X X X

GCS-motor X — X X X NA X X — X X

GCS-verbal X X X X X X NA X — X X

Intubation Status — — — — X X — — X NA X

X, associated using univariate logistic regression ( p < 0.05); —, no association using univariate logistic regression; NA, not applicable; SBP, 
systolic blood pressure; RR, respiratory rate; GCS, Glasgow Coma Scale.
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Table 5

Comparison of Values from the Original NPTR Training Dataset with Values From the 10 Imputed Datasets

Variable Original Data Imputed Datasets

SBP—standardized 0.0(−7.5–4.9) 0.0(−7.4–5.0)

 (mean [range] )

Pulse—standardized 0.0(−5.1–5.6) 0.0(−5.1–6.6)

 (mean [range] )

RR—standardized 0.0(−4.7–11.5) 0.0(−4.4–11.9)

 (mean [range] )

GCS-eye (median [range] )  4(1–4)   4(1–4)

GCS-motor (median [range] )  5(1–5)   5(1–5)

GCS-verbal (median [range] )  6(1–6)   6(1–6)

Intubated (%)  7 11

SBP, systolic blood pressure; RR, respiratory rate; GCS, Glasgow Coma Scale.

J Trauma. Author manuscript; available in PMC 2018 October 31.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Burd et al. Page 20

Table 6

Logistic Regression Analysis of Risk of Death in Pediatric Trauma Patients Based on Imputed NPTR Training 

Data (n = 34,342)

Variable Coefficient SE P value Odds Ratio 95% CI
Lower Limit

95% CI
Upper Limit

Intercept −1.471 0.331

SBP—standardized −0.387 0.034 <0.0001   0.679   0.635   0.726

Pulse—standardized −0.131 0.037  0.0006   0.877   0.815   0.944

RR—standardized −0.007 0.038  0.852   0.993   0.922   1.071

GCS-eye −0.375 0.055 <0.0001   0.687   0.617   0.765

GCS-motor −0.589 0.038 <0.0001   0.555   0.515   0.598

GCS-verbal  0.020 0.070  0.776   1.020   0.888   1.172

Intubated  2.953 0.170 <0.0001   19.163   13.736   26.775

CI, confidence interval; SE, standard error; SBP, systolic blood pressure; RR, respiratory rate; GCS, Glasgow Coma Scale.
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Table 7

Comparison of Discrimination and Calibration of Models Developed Using Complete Case Analysis and 

Multiple Imputation

Dataset
Model Based on
Complete Case

Analysis

Model Based on
Multiple

Imputation

Discrimination (c-index)

 NPTR testing data 0.965 0.972

 NTDB 0.940 0.947

Calibration (H-L c-statistic)

 NPTR testing data  242.6  9.2

 NTDB  398.1  258.2

Calibration (R2)

 NPTR testing data 0.793 0.996

 NTDB 0.922 0.877
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Table 8

Evaluation of Discrimination and Calibration on Testing Datasets

Testing Dataset Records (n) Actual
Mortality (%)

C-index
(95% CI)

H-L
c-statistic

H-L
h-statistic R

2

NPTR testing data (all cases) 14,200 2.6 0.972 (0.966, 0.978)  9.2  6.8 0.996

NPTR testing data (blunt mechanism) 13,312 2.7 0.973 (0.967, 0.979)  8.4  11.8 0.987

NPTR testing data (penetrating mechanism)   888 2.6 0.952 (0.916, 0.988)  12.7  19.0 0.451

NTDB (all cases*) 16,868 3.1 0.947 (0.936, 0.959) 258.2 377.3 0.877

NTDB (blunt mechanism*) 14,700 2.8 0.953 (0.941, 0.965) 209.2 411.6 0.849

NTDB (penetrating mechanism*)  1,080 7.8 0.966 (0.943, 0.990)  19.9  18.4 0.696

*
Pulse estimated using multiple imputation in all cases. CI, confidence interval; H-L, Hosmer-Lemeshow.
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Table 9

Comparison of the Predictive Validity of the Proposed Model with the Revised Trauma Score (RTS) and 

Pediatric Trauma Score (PTS)*

Testing Dataset Sensitivity Specificity Undertriage
(1-sensitivity)

Overtriage
(1-sensitivity)

Positive
Predictive Value

Negative
Predictive Value Accuracy

NPTR testing data

Proposed model 96(94–98) 91(90–91) 4(2–6) 9(9–10) 22(20–24) 99 (99–99) 91(90–91)

 RTS 95(93–97) 71(70–72)‖ 5(3–7) 29(28–30)‖ 8(7–9)‖ 99 (99–99) 72(71–72)‖

 PTS†  99(98–100)§ 71(70–71)‖ 1(0–2)§ 29(29–30)‖ 7(6–8)‖ 99 (99–99) 71(70–72)‖

NTDB‡

 Proposed model 97(95–98) 60(59–61) 3(2–5) 40(39–41) 7(7–8) 99 (99–99) 61(60–62)

 RTS 94(92–96) 70(69–71)‖ 6(4–8) 30(29–31)‖ 9(9–10)‖ 99 (99–99) 71(70–72)‖

*
All indicated values are percentages; 95% confidence intervals indicated in parentheses.

†
based on values available in the NPTR database (n = 13,135).

‡
PTS not available in the NTDB.

§
P < 0.01.

‖
P < 0.001 compare to proposed modelw
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