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Abstract

Science revolves around the best way of conducting an experiment to obtain insightful

results. Experiments with maximal information content can be found by computational

experimental design (ED) strategies that identify optimal conditions under which to perform

the experiment. Several criteria have been proposed to measure the information content,

each emphasizing different aspects of the design goal, i.e., reduction of uncertainty. Where

experiments are complex or expensive, second sight is at the budget governing the achiev-

able amount of information. In this context, the design objectives cost and information gain

are often incommensurable, though dependent. By casting the ED task into a multiple-crite-

ria optimization problem, a set of trade-off designs is derived that approximates the Pareto-

frontier which is instrumental for exploring preferable designs. In this work, we present a

computational methodology for multiple-criteria ED of information-rich experiments that

accounts for virtually any set of design criteria. The methodology is implemented for the

case of 13C metabolic flux analysis (MFA), which is arguably the most expensive type

among the ‘omics’ technologies, featuring dozens of design parameters (tracer composition,

analytical platform, measurement selection etc.). Supported by an innovative visualization

scheme, we demonstrate with two realistic showcases that the use of multiple criteria

reveals deep insights into the conflicting interplay between information carriers and cost

factors that are not amendable to single-objective ED. For instance, tandem mass spec-

trometry turns out as best-in-class with respect to information gain, while it delivers this infor-

mation quality cheaper than the other, routinely applied analytical technologies. Therewith,

our Pareto approach to ED offers the investigator great flexibilities in the conception phase

of a study to balance costs and benefits.

Author summary

Designing experiments is obligatory in the biosciences to valorize their scientific outcome.

When the experiments are expensive, unfortunately, in practice often the costs emerge to
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be showstoppers. In this situation the question arises: How to get the most out of the

experiment for your invest in terms of time and money? We approach this question by

formulating the design task as a multiple-criteria optimization problem. Its solution pro-

duces a set of Pareto-optimal design proposals that feature the trade-off between informa-

tion gain, as measured by different metrics, and the costs. Then, exploration of the design

proposals allows us to make the best decision on information-economic experiments

under given circumstances. Implemented in the field of isotope-based metabolic flux anal-

ysis, practical application of the Pareto approach provides detailed insight into the tight

interplay of plenty of information carriers and cost factors. Supported by an innovative

tailored visual representation scheme, the investigator is enabled to explore the options

before conducting the experiment. With a practical showcase at hand, our computational

study highlights the benefits of incorporating multiple information criteria apart from the

costs, balancing the shortcomings of conventional single-objective experimental design

strategies.

Introduction

The successful design of tailor-made cell factories in the biotechnological and pharmaceutical

industries needs firm understanding of the cellular functions and their underlying molecular

mechanisms [1–3]. The key to get the most insight from an experiment is a careful experimen-

tal design (ED), precisely, the selection of experimental settings and measurements that harvest

a maximum of information about the quantities of interest. In this context, there is growing

interest in computer-aided modeling to guide the experimental choices [4–8]. Existing design

techniques can be broadly divided into statistical approaches that strive to maximize the statis-

tical confidence of inferring model parameters and information-theoretic approaches identify-

ing informative designs to tackle the principal identifiability problem [9–11]. These techniques

have been applied in various studies to deduce information-optimal settings to tackle the fol-

lowing questions:

• Which experimental-analytical settings are particularly informative? Which combinations

are not worthy to be tried?

• How are design parameters related?

• How beneficial is the incorporation of additional data?

For quantify the information gain, several optimality criteria (or precision scores) have

been suggested, all approximating the average statistical confidence of parameter estimates

[12,13]. Typically, the information criterion to be used for the ED is decided ad hoc, since the

most “suited” one is not known in advance. Favoring a single criterion in the planning phase,

however, may well lead to improvements in that criterion at the expense of a decline of others,

taking the risk to under-explore the design space and, eventually, deriving misleading design

decisions [14]. To remedy this limitation, several information criteria could be simultaneously

taken into account.

Although information remains a key criterion for science, it comes at a cost. In practice,

resource-oriented considerations shape ED strategies, especially when experiments are exten-

sive, time-consuming and labor-intense. For example when organisms exhibit slow growth

rates, complicated experimental and sample preparation protocols are involved, or a large
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number of data has to be analyzed semi-manually. Consequently, from an economic point of

view questions on the design of experiments are:

• What are major cost contributors? How are the total costs allocated?

• How broad are the expected information ranges?

• What information level can be achieved at a certain expense?

These questions motivate to explore the experimental settings to select those that are informa-

tive and offer this information in a cost-efficient manner. Clearly, such information-economic

considerations need cost models that contemplate all major factors (equipment, replicates,

analysis time, etc.) and relate them to the information carriers. For instance, increasing the

number of samples positively affects the information gain while, at the same time, it raises the

costs, implying that here the goals “maximize information” and “minimize cost” are

incommensurable.

Pareto-optimality and decision making

That said, finding an informative, yet cost-efficient experimental setting out of the space of

alternate designs is a nontrivial task: First, the space of options may be extensively large and

secondly, several related, but potentially conflicting design objectives need to be optimized

simultaneously. Here, a common solution concept is to optimize a weighted sum of the single

criteria [6,15]. However, in real-world scenarios the objectives are hardly expressible in the

same “currency” and appropriate weights to translate between them are not known before the

experiment. Consequently, in scenarios where the ability to explore the whole space of design

alternatives should be maintained, a fixed-weight solution cannot be utilized [16]. To over-

come the limitations of weighted-sum single-objective approaches, the ED task can be casted

into a multi-objective optimization (MOO) formulation [17]. Multi-objective (MO) ED comes

with an important conceptual difference, compared to single-objective ED: When objectives

are conflicting, instead of one specific solution, a whole set of—in terms of the objectives—

equally good, compromise EDs is obtained where none of the designs is better than the others

in terms of all criteria. These compromise EDs, denoted Pareto-optimal EDs, determine the

Pareto front in the objective space (Fig 1). When the objectives are not in competition, a char-

acteristic that cannot be known for real-world problems a priori, the MO-ED task degenerates

to an ordinary ED problem.

The trade-off decision on the experiment is then made after examining the Pareto front and

inspecting the related Pareto-optimal designs where (expert or newly available) information or

preferences can be considered in addition. However, to keep track of more than a few relations

is not only intrinsically challenging, it also calls for domain-specific solutions to interrogate

the high-dimensional Pareto-optimal results and to support exploration and interpretation

processes.

Focus of this work

We present a universal computational methodology for the design of informative, yet cost-

effective experiments. Our approach simultaneously optimizes many, potentially contradicting

information and cost metrics rather than a single one, therewith generalizing traditional ED

frameworks basing on the optimization of a single information criterion. To provide a visual

means for result exploration of Pareto-optimal EDs in potentially high-dimensional design

and objective spaces, we suggest a flexible solution using chord diagrams.
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To exemplify our information-economic Pareto approach, the MO-ED framework is

implemented for 13C metabolic flux analysis (13C MFA), which provides a computationally

challenging test bed owing to its enormous design space and diverse cost factors. Equipped

with the computational tools, the questions raised above were addressed by a comprehensive

investigation featuring the fungus Penicillium chrysogenum. In particular, two different sce-

narios were studied. First, all analytical platforms commonly applied for 13C MFA were pro-

filed with respect to their information-economic characteristics, using a single information

criterion. The study revealed that the specific measurement information delivered by tandem

mass spectrometry (MS/MS) cannot only increase flux information, but also enabled cost

savings by the choice of cheaper tracers, emphasizing the potential of our approach. In the

second scenario we investigated whether including more than one information criterion

could provide a benefit for the decision process. Indeed, for the P. chrysogenum showcase a

variety of additional Pareto-optimal designs were offered, unlocking informed decision mak-

ing. In particular for, but not limited to, the domain of 13C MFA our findings show that the

use of several criteria balances shortcomings of conventional ED strategies and offers addi-

tional flexibilities for the experimenter, thus providing a methodology of direct practical

relevance.

Fig 1. Schematic diagram of information-economic experimental design. The task is to determine trade-off designs that constitute

the Pareto front (blue cycles, dashed blue line) in the objective space. The Pareto front trades-off information-rich, economic designs

from sub-optimal, dominated solutions (orange squares, gray area). All solutions located on the Pareto front are considered to be

equally good solutions of the MO-ED task.

https://doi.org/10.1371/journal.pcbi.1006533.g001
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Methods and models

General framework for multi-objective experimental design

Planning cost-efficient, informative experiments requires finding the “best” experimental-ana-

lytical trade-offs that, on the one hand, maximize the information gain, possibly in view of dif-

ferent information facets, while, on the other hand, keep the associated costs to a minimum.

Consequently, two formal ingredients are needed:

1. Information quantifiers which measure the (un)certainty of the unknown parameters of

system model under study (here the system model is a mimic of the real experiment). Sev-

eral criteria have been suggested which are based on the variance of the unknown model

parameters. Information gain then refers to the improvement in these criteria values by

making a different, “better” choice of the experimental settings (i.e., the inputs of the system

model).

2. A cost model of the thought experiment, which collects all factors that contribute to its

overall expenses.

Employing these criteria in the selection procedure of the ED formally amounts to a multi-

objective optimization (MOO) problem:

max α2Ω Φðα; θÞ

s:t: gðα; θÞ � 0

hðα; θÞ ¼ 0

l � α � u

ð1Þ

where the objective vector Φ is composed of a set of information and (negated) cost criteria.

The objective vector is a function of the design variables α, selected from the space O of

feasible designs. Remaining design parameters, which are constant, are collected in the vector

θ. Furthermore, the bounded design variables may be subject to inequality and equality

constraints.

Solving the MOO problem (1) means to find the set of all trade-off design solutions α� that

minimize the objectives in Φ without being dominated by another solution [18]. Here, a spe-

cific design α1 dominates another one α2, if (and only if) α1 is at least as good as α2 in all objec-

tives and better with respect to at least one, formally expressed byFi (α1)� Fi (α2), 8i and 9j:
Fj (α1)< Fj (α2) (gray shaded area in Fig 1). The set of all non-dominated solutions is referred

to as Pareto-optimal design set, and the corresponding achievable objective values are called

Pareto front.
Clearly, the concrete formulation of the MOO problem depends on the particular applica-

tion case, namely the underlying system model and the peculiarities of the experimental set-

tings. In this work, we selected a use-case from the domain of 13C metabolic flux analysis

(MFA), which is arguably the most expensive type of ‘omics’ technology, featuring dozens of

design variables. Before introducing the information and intricate cost models as well as the

analysis of Pareto-designs in high dimensions, the essential background to the application field

is provided, in particular the formulation of the system model.

13C metabolic flux analysis

Intracellular reaction rates (fluxes) describe the trafficking of metabolites which emerges as the

final outcome of all catalytic and regulatory processes acting within living cells [19]. Here, the

reactions within a biochemical network are characterized by a pair of flux values, net and

Trading-off information gain and costs in the design of carbon labeling experiments
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exchange fluxes [20], to express the respective proportions of material transported between the

reaction’s educts and products. At steady-state, the in- and outflows of each intermediate

metabolite are assumed to be constant and mass balanced, yielding the stoichiometric equation

system for the flux vector v:

S � v ¼ b; Cieq � v � cieq ð2Þ

with the stoichiometric matrix S and the vector b containing the extracellular rates (substrate

uptake, product formation or effluxes leading to biomass accumulation), accessible through

extracellular concentration profiles and biomass quantification. In addition, the fluxes may be

constrained in their allowable value range owing to physiological knowledge.

Since metabolic networks contain parallel paths and cycles, fluxes are not uniquely deter-

mined by Eq (2), at least not without additional assumptions. The indeterminacy implies that

the flux vector v can be parametrized through a certain (non-unique) sub-set of fluxes, the so

called free fluxes vfree [20]. The dimensionality of the vector vfree, i.e., dim(v) − rank(S), is

referred to as degrees of freedom (DoF). To resolve the DoFs, carbon labeling experiments

(CLEs) are conducted. In a CLE, isotopically labeled carbon sources, like [1-13C] glucose

enriched with a 13C isotope at the first position of the carbon backbone, are fed to the cells.

The labeled substrate is taken up by the cells and distributed through the metabolic pathways

to all intracellular metabolites, where it gives rise to characteristic labeling enrichment pat-

terns. Thus, the labeling patterns are the convoluted result of the routes, the 13C labeled sub-

strate takes, as well as the underlying metabolic fluxes. In isotopic steady-state 13C MFA, as

used in this work, intracellular free fluxes are inferred from the equilibrated labeling patterns

and external rate measurements by means of a computational flux fitting procedure that mini-

mizes the least-squares error between observed measurements and those that are simulated by

a computational network model [21].

For the model, carbon atom transitions have to be specified for each reaction step describ-

ing the fate of each carbon atom from the reactions’ educt to its corresponding product. Mass

balancing of the intracellular isotopic forms then yields a high-dimensional nonlinear alge-

braic equation system that relates the steady-state labeling state x, the administered labeled

tracer mixture xinp, and the free fluxes vfree [20]. Given vfree and xinp, the vector of steady-state

labeling states x (represented as isotopomers, cumomers, EMUs, or similar [20,22,23]) is

uniquely determined by [24]:

x ¼ x
�
vfree;xinp

�
ð3Þ

Note that CLEs that only differ in the tracer mixture are covered by the same formalism

through duplication of the network model and equating the free fluxes.

The full system-wide labeling state x is not accessible by any current measurement technol-

ogy. What can be observed are linear combinations of (relative) abundances for some of the

intracellular metabolites, such as mass isotopomer distributions or positional enrichments. Fig

2 shows characteristic sets of observations, henceforth denoted measurement groups, for the

analytical platforms employed in the field of 13C MFA.

All measurement groups available for an analytical device are organized in the measure-

ment matrix Mdev
meas that, owing to Eq (3), allows to simulate the measurement vector η:

η ¼ Mdev
meas � x

�
vfree; xinp

�
ð4Þ

which mimics the real measurements up to normalization to percentage scale [25]. Examples

for measurement matrices are given in S1 Text. Real measurements are unavoidably affected

Trading-off information gain and costs in the design of carbon labeling experiments
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by noise. In the context of 13C MFA, measurement noise is assumed to be independent, unbi-

ased, additive, and normally distributed with expectation 0 and standard deviation σdev
meas, as

represented by the measurement covariance matrix Σdev
meas [26]:

Σdev
meas ¼ diag

�
σdev

meas

�
ð5Þ

Since in the CLE’s planning phase real measurements are absent, from which measurement

standard deviations σdev
meas can be derived, measurement error models need to be formulated,

relating the measurements with their associated errors. For labeling measurements empirical

rule-of-thumb approximations of the measurement precision have been derived for specific

analytical setups. For instance, Crown et al. propose a precision of 0.4 mol% for their GC-MS

setup targeting proteinogenic amino acids [27]. In general, labeling errors depend on the mea-

surement technique, the instrument, the analytic protocols, they can vary between organisms,

analytes and the degree of label incorporation [28]. To arrive at realistic error approximations

that allow for a fair comparison of the analytical platforms, measurements and their standard

deviations were collected from published studies featuring different organisms, platforms

and various labeling contents. In total, more than 900 data points for six analytical platforms,

namely GC-MS, LC-MS, LC-MS/MS, 13C-NMR, 1H-NMR, and GC-C-IRMS were extracted

(S1 Text). For all analytical platforms, similar to the approach by Dauner et al. for 13C-NMR

[29], a regression line was fitted to the respective data set, yielding device-specific linear mea-

surement error models. These analytics-related error models provide empirical standard

Fig 2. Characteristic measurement information of analytical platforms for a C3 metabolite (C1-C2-C3). The techniques yield specific measurement groups

composed of sub-sets or linear combinations of isotopomers as indicated by gray boxes. As an example, 1H-NMR and 13C-NMR measurements for C2, C-IRMS for the

total fraction of unlabeled and one-labeled carbon content, MS for the intact precursor ion and MS/MS measurement for the combination of complete precursor and

C2-C3 fragment ion, delivering in effect positional information, are shown. For 13C MFA only the carbon backbone of the metabolites and metabolite fractions are

relevant. Further details are found in S1 Text.

https://doi.org/10.1371/journal.pcbi.1006533.g002
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deviations σdev
meas for any given measured vector η:

σdev
meas

�
ndev

rep;meas

�
¼ a
�
ndev

rep;meas

�
�
�
bdev

1
� ηþ bdev

2

�
ð6Þ

where bdev
1
; bdev

2
are the device-specific regression coefficients (S1 Text). Generally, by increas-

ing the number of repetitions ndev
rep;meas (i.e., technical replicates), the error estimates are believed

to become more reliable. This is accounted for in the error models (6) by a scaling factor (a)

which tends to 1 for the case of many repetitions (see S2 Appendix for details).

Covariance-based information measures

Several statistical approaches have been developed to predict the approximate amount of infor-

mation to be derived from the planned CLE or CLE series. When some pre-knowledge on the

expected flux map v̂ free is available (which we assume in this work), a widely adopted local

information measure is the Fisher information matrix (FIM) [9,13,26]:

FIM ¼
@ η
@ vfree

�
�
�
�
�
v̂ free

 !T

� Σdev
meas �

@ η
@ vfree

�
�
�
�
�
v̂ free

ð7Þ

whose inversion yields the flux covariance matrix:

Covðv̂ free;αÞ ¼ FIM� 1 ð8Þ

which depends on the design point (v̂ free) and the design parameters (α). As a precondition for

stable numeric calculation of the flux covariance matrix, the FIM needs to fulfill two condi-

tions [30]: First, its minimal singular value λmin (FIM) needs to be larger than a threshold:

lminðFIMÞ > t1 > 0 ð9Þ

and secondly, its condition number has to be bounded:

condðFIMÞ < t2 <1 ð10Þ

The fulfillment of the conditions (9) and (10) implies that the standard deviations of the

free fluxes—as represented by the main diagonal of the covariance matrix—remain bounded

and, thus, the flux vector is said to be statistically identifiable. First, it should be remarked, that

this is a slightly stronger variant of practical identifiability as defined by Raue et al. in [31] and

secondly, statistically identifiable fluxes are per se structurally identifiable [32]. If either one of

the conditions (9) and (10) is violated, fluxes causing the violation have to be excluded from

the FIM. Eventually, this leads to models that vary in terms of their DoFs, a fact which needs

careful treatment when comparing different experimental setups with respect to their informa-

tion content.

For quantifying the information content of a CLE several information quality criteria have

been proposed that aggregate the covariance matrix to a single number [9,12,13]. The most

prominent ones are the determinant (D), the average-variance (A), and eigenvalue (E) criteria.

Ultimately, all these criteria provide a means for the shape of the confidence ellipsoid in the

vicinity of a given design point (v̂ free in our case), each emphasizing particular geometrical

aspects [12] (Fig 3).

For example, the D-criterion strives to minimize the volume of the confidence ellipsoid (or

the geometric mean of the flux confidence intervals):

FD;p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðCovÞ2p

p
ð11Þ
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with p the dimension of Cov (with arguments omitted for brevity) while the A-criterion aims

to minimize the diagonal of the smallest bounding box that contains the confidence ellipsoid

(or the arithmetic mean of the flux confidence intervals):

FA;p ¼ traceðCovÞ=p ð12Þ

Hence, the A-criterion is expected to provide designs that are more robust against flux correla-

tions than those based on the D-criterion. Notice that the explicit consideration of the dimen-

sion p of the covariance matrix in the formulation of criteria (11) and (12) intends to make the

criterion values comparable for models differing in the number of free fluxes. In contrast, the

E-criterion:

FE ¼ lmaxðCovÞ=lminðCovÞ ð13Þ

constitutes a dimension independent measure that strives to improve worst case designs by

preventing the Fisher matrix from becoming singular. Besides these quantitative information

measures, an obvious quality criterion is the number of free fluxes that can be statistically iden-

tified by the ED setting, expressed by:

FDoF ¼ dimðCovÞ ð14Þ

With these information measures at hand, the information gain of a 13C MFA study can be

influenced by the targeted selection of the input mixture compositions (xinp), the measured

groups observable by the analytical device (Mdev
meas), as well as the corresponding measurement

errors (σdev
meas

�
ndev
rep;meas

�
), i.e., the interval in which the true measurements are believed to lie in

to a certain probability, triggered by the number of repeats.

ED approaches in 13C MFA revisited

The choice of isotopically labeled substrate species, either in pure form or in a mixture, dictates

the emerging labeling states of the observable metabolites and therefore significantly impacts

Fig 3. Geometrical interpretation of covariance based information criteria.

https://doi.org/10.1371/journal.pcbi.1006533.g003
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flux information [25,33]. Several recent field studies yielded information-optimal tracers in a

variety of biological systems and give evidence for a high diversity of flux standard deviations

depending on the substrate or substrate mixture. For instance, Walther et al. showed that

[1,2-13C]-labeled glucose and mixtures of [3-13C]- and [3,4-13C]-glucose increase statistical

identifiability when used with fully labeled glutamate for lung cell carcinoma [34]. Crown et al.

identified [3,4-13C]- and [2,3,4,5,6-13C]-labeled glucose to be favorable for elucidating reaction

rates in the oxidative pentose phosphate pathway (PPP) and pyruvate carboxylase flux, respec-

tively, based on a small scale network with two free fluxes [35]. Later on, the same group deter-

mined [1,2-13C]-, [5,6-13C]-, and [1,6-13C]-labeled glucose as best single tracers for Escherichia
coli wild type [36]. A study of Metallo et al. suggested [1,2-13C]-labeled glucose to be the opti-

mal commercial tracer for most fluxes in the PPP and glycolysis in lung carcinoma cell lines

while uniformly labeled glutamine provided optimal results for tricarboxylic acid cycle (TCA)

fluxes [37]. In theoretical studies, [3,4,5,6-13C]-glucose and [2,3,4,5,6-13C]-glucose resulted to

have to best information yield in plants and mammalian cells, respectively [38,39]. Araúzo-

Bravo et al. calculated mixtures of 70% unlabeled, 10% U-13C- and 20% [1,2-13C]-labeled glu-

cose to be optimal for flux determination in the cyanobacterium Synechocystis sp. PCC6802

[40]. Schellenberger et al. applied a Monte Carlo sampling technique for experimental tracer

design to a large-scale Escherichia coli network and found positional [1-13C] or [6-13C] labeled

glucoses to be superior over a commonly used mixture of 20% uniform and 80% unlabeled

glucose [41]. Here, unusual multi-positional labeling, in particular [5,6-13C]-, [1,2,5-13C]-,

[1,2-13C]-, [1,2,3-13C]-, and [2,3-13C]-glucose, resulted in a higher identifiability than single

positional labeling. Nonetheless, no single tracer has been found to outperform all others, an

observation which was experimentally confirmed by Crown et al. comparing the outcome of

14 CLEs in Escherichia coli [27]. Importantly, the studies also disclosed a high redundancy in

the measurement data, meaning that not all observations effectively contribute to the informa-

tion gain, although they come at a certain cost. One option to raise flux identifiability that

recently has become compelling through advances in lab standardization and miniaturization

[42], is the conduction of multiple independent, so called parallel CLEs under identical condi-

tions, each with a different tracer [43] (and references therein). Concurrent fitting of all label-

ing patterns with a single model obviously increases the measurement-to-flux ratio but, at the

same time, also the measurement redundancies. Still, in these and other theoretical and practi-

cal studies a part of the fluxes remained non-identifiable [27,44]. Interestingly, a study of Bou-

vin et al. [45] exemplified, also using a MO-ED approach, that it is indeed possible to find

CLEs with comparable information content, but considerably different tracer costs.

In contrast to the work on tracer design, measurement setups have not yet been the target

of ED in the field of 13C MFA. The primary analytical methods that are employed are NMR

and MS. For both, analytical devices differ not only in the principally observable metabolite/

isotopomer spectrum, achievable fragmentation patterns (Fig 2) and the measurement accu-

racy and sensitivity, but also in terms of analysis speed/throughput, and purchase/maintenance

costs (S1 and S2 Text). Since comparative investigations on the inter-platform information

content of CLEs for 13C MFA are scarce, in essence, it is still an open question which analytical

platform delivers maximal flux information and what the information benefit of multiple-

device applications is compared to single-device usage.

A low-level cost model for 13C MFA

For considering economic aspects, the cost contribution of the isotopically labeled substrates,

the experimental setup and the analytical technologies are to be specified. Additionally, not

only the measurement time on the device, but also spectra evaluation and proofreading

Trading-off information gain and costs in the design of carbon labeling experiments
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processes, possibly with the need for manual post-correction, contribute to the workload. Con-

sequently, such direct and hidden factors play a part in the overall CLE costs. Till now, if at all,

only 13C labeled tracers have been considered in CLE costs examinations while further experi-

mental-analytical efforts were neglected so far (see e.g. [45]), meaning that a fine-grained cost

function which relates all cost factors to the design parameters has to be set up. The overall

cost function of a 13C MFA study is composed of three parts, the experimental, the analytical,

and the modeling part. However, the modeling costs such as setting up an adequate model,

working through the 13C MFA workflow, calculating and interpreting results etc., heavily

depend on the use case and are therefore not considered in the following.

Costs of the labeling experiment CCLE. Experimental costs of a single CLE are composed

of two parts: the costs of the isotopic substrate mixture and the costs for the technical setup

and execution of the experiment, while taking culture volume, substrate concentration and

labeling duration into account. Costs for all tracers are collected in the substrate cost vector

Cinp. For a specified mixture composition, represented by the vector of tracer fractions xinp,

the total substrate costs can be readily derived.

The technical setup of the experiment Cexp, i.e., consumables, media components etc., and

the costs for wage payment (Cwork) contributes with a cost offset. Here, a given working time

twork,exp for setting up and controlling the experiment is considered. All in all, the experimental

cost contributions of one CLE considered in this work are:

CCLE ¼ xT
inp �Cinp þ Cexp þ twork;exp � Cwork ð15Þ

where the elements of the tracer fraction vector xinp fulfill

X

i

xinp;i ¼ 1:0; xinp;i 2 ½0; 1�; 8i ð16Þ

Analytical costs Cdev
ANA. Device-specific analytical costs Cdev

ANA associated with a CLE depend

on the devices’ prices, the acquisition method applied, the number of samples measured and

the effort of spectra analysis. In this study, the costs of the instrument are allocated to a time

span of five years. With that, the cost per time unit of machine usage is calculated (assuming

that the device is operated at full load) providing the basic price for measuring a single sample

(Csample). The CLE’s acquisition costs are then derived by multiplying this value with the num-

ber of samples nsamples taken in the CLE.

Notice that, of these collected samples, not necessarily all spectra are actually considered in

an ED, meaning that single measurement groups may remain unevaluated and, thus, do not

contribute to the analytical costs. On the other hand, each measurement group can be evalu-

ated up to nsamples times, which increases the analysis times and the costs proportionally. Here,

it is reasonable to assume that the groups consisting of a certain number of peaks, ndev
mgroup;peaks,

are evaluated en bloc. In this way, the impact of repeated measurements, collected in the vector

ndev
rep;meas, on the flux standard deviations is coupled with an increase of effort for sample analysis

and peak integration. The costs of the peak evaluation then scales linearly with the time needed

for a single spectra evaluation, twork,ana, and the wage payment. Summarizing, the device-
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specific analytical costs of one CLE are given by:

Cdev
ANA ¼ nrsample � Csample

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
aquisition

þ
Xnmgroups

mgroup¼1

ndev
rep;mgroup � n

dev
mgroup;peaks

 !

� twork;ana � Cwork

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
peak evaluation

ð17Þ

Device-specific total cost criterion. Finally, the expected total CLE costs Fdev
Costs are

expressed as a function of the design parameters, namely the 13C-labeled substrate mixture

and the contributing measurement groups and their biological and technical repeats:

Φdev
Costs ¼

Xncle

cle¼1

�
CCLE;cleðxinp;cleÞ þ Cdev

ANA;cle

�
Mdev

meas;cle;n
dev
rep;meas;cle

��
ð18Þ

where the subscript “cle” indicates the affiliation of the design parameters to the cleth experi-

ment. The design constants, chosen according to the experimental-analytical CLE setup, are

omitted for brevity.

Solution of the MO-ED problem

Together, the information and cost criteria Eqs (11)–(14), (18) make up the set of goal func-

tions out of which the objective vector Φ of the MO-ED problem Eq (1) is composed. The

design vector α is subject to inequality and equality constraints such as the invertibility condi-

tions on the Fisher matrix (9) and (10), constraints for weights, as well as constraints imposed

by reasonable practical resource considerations, e.g., a maximum number of replicates. Since

exact handling of integer-valued replicate numbers would result in NP-complete mixed integer

nonlinear optimization problems [46], the optimization problem is relaxed by allowing the

replicates to take non-integer values. The solution for the relaxed problem is then “rounded”

to integers. The full formulation of the MO-ED problem is given in S2 Text.

Solving Eq (1) means to numerically approximate the (potentially infinite) design set α� by

an ensemble of Pareto-optimal results [47,48], optimally uniformly distributed covering the

whole Pareto front. Particularly successful among these algorithms with respect to conver-

gence and extensity of Pareto front approximation are those based on Particle Swarm Optimi-

zation (PSO) with update mechanisms to ensure that the solution ensemble is well-dispersed

over the front [49]. For this work, the jMetal (Metaheuristic Algorithms in Java) library, a suite

of state-of-the-art MO algorithms is utilized [50]. jMetal is linked to the high-performance 13C

MFA simulator 13CFLUX2 [51] via a Java Native Interface (JNI) that enables jMetal to call

13CFLUX2 methods. While 13CFLUX2 is used to evaluate the objectives and takes care of the

feasibility of the design parameters, the solution of the MO problem is steered by jMetal rou-

tines (Fig 4).

Initially, all experimental, analytical and simulation settings as well as the network model

(incl. free flux set and flux values), measurement error models and input species with their

respective costs are specified. Depending on the measurement selection proposed by jMetal,

the measurement error model is evaluated for the suggested mixture composition in

13CFLUX2 while also taking the number of replicates into account. In turn, statistical flux

identifiability is tested and, if one of the invertibility criteria fails, the free flux set is adapted in

an iterative procedure: Non-identifiable fluxes are eliminated one-at-a-time by constraining

them to their nominal values beginning with the worst determined one, eventually providing

the effective number of statistically identifiable fluxes, i.e, p. From the resulting covariance

matrix the local information measuresΦD,p etc. are calculated. Furthermore, the expected CLE
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costsΦdev
Costs are evaluated according to the cost model, given the experimental specification.

The objective values are then passed to jMetal, calling the SMPSO algorithm (the rationale for

the choice of SMPSO and its parameters is given in S2 Text).

Starting with an initial population created randomly, the swarm is evolved driven by poly-

nomial mutation rules that trigger the choice of the design parameters. In this way, new swarm

candidates are proposed out of which Pareto-optimal solutions are selected. The best Pareto

solutions are stored in an archive where for each iteration the crowding distance is used to

decide which swarm individuals remain in the archive to achieve maximal coverage of the

designs. For the newly generated swarm members, measurement values are predicted in silico
according to the 13C MFA model using 13CFLUX2 and the corresponding standard deviations

are derived from the associated error models. This process cycle is restarted with the next gen-

eration of particles until the stopping criterion (i.e., maximum number of generations) is

reached. Finally, the archive containing the (best known) Pareto-optimal ensemble is returned

and subjected to visual analysis.

A domain-specific visualization model for inspecting Pareto-optimal

designs

Having the Pareto front approximation at hand, the final step of ED involves decision making

on the next experiment. In the context of 13C MFA, decision making means to find the most

suited experimental-analytical setup out of the range of analytical platforms, input mixture

compositions, sets of observable metabolites and replicate numbers. These quantities have dif-

ferent contextual meanings, scales and importance, in the sense of affecting the objective val-

ues. Hence, the visual interpretation of MO-ED results faces two challenges:

1. The curvature of the Pareto front (approximation) in the objective space, i.e., its spread,

diversity, shape, location, and distribution, needs to be accessible, both to verify solution

quality as well as for the purpose of trade-off analysis. Because there is no general Pareto-

Fig 4. Diagram showing the coupling the 13CFLUX2 simulator and the jMetal library.

https://doi.org/10.1371/journal.pcbi.1006533.g004
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dominance preserving mapping from a higher-dimensional space to a lower-dimensional

one [52], the task of visualizing Pareto fronts in more than three dimensions is a MO prob-

lem in its own right [53].

2. The Pareto front in the objective space is to be linked with the Pareto-optimal designs in

the design space which is made up by all possible substrate mixtures and measurement con-

figurations. Since, however, the Pareto-optimal solutions are spread within the high-dimen-

sional space, these sets need to be adequately compressed before visual exploration.

To tackle these challenges a tailor-made visual interpretation workflow was created (Fig 5).

The workflow is composed of three modules, applying different information visualization

techniques that (a) allow for visual assessment of the Pareto front, (b) relate the objective with

the most important elements of the design space, and (c) compress presentation of the less

important design elements.

Pareto front visualization with scatter plots. For the visualization of Pareto frontiers,

scatter plots are arguably the most common scheme, although they do not scale well with

Fig 5. Visual elements for the interpretation of MO-ED results in the context of 13C MFA. A: Chord diagram linking designs and objective (circular node elements)

by inlying chords, here for the case of two objectivesΦD;p;Φ
dev
Costs (right segment) and four input substrate species (left segments). An example is given with three

substrates contributing to a design, roughly 25% Substrate1, 0% Substrate2, 50% Substrate3, and 25% Substrate4. The proportions in which the substrate species

contribute is indicated by percentages. In addition, the (relative) frequency with which a certain proportion of a substrate species is proposed among the Pareto-

optimal solutions is displayed by histograms located at the left outer bands. Information and cost values are scaled to the range of 0–100%. The graphic is created with

Circos [54] (www.circos.ca). B: 2D scatter diagram representing the Pareto front with the dominated objective region being grayed-out. The slope of the Pareto front

reflects the progressive increase in cost per information gain. The region of the Pareto front in the vicinity of a jump (green arrow) reveals that a higher information

value requires the addition of at least one costly input substrate or measurement group which leads to a large cost increase. To the contrary, densely populated flat

Pareto fronts indicate that CLE costs can be tuned well. The black bar on the right indicates the overall cost spread. C: Ternary triangles are commonly used in 13C

MFA to represent mixture designs with three tracer species. The dashed lines relate the design point (yellow star) on the CD and the Pareto frontier with the mixture

composition.

https://doi.org/10.1371/journal.pcbi.1006533.g005
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higher dimensions. In moderate dimensions, as it is the case in the context of this work, 2D

scatter plots are still capable of showing the distribution of the objective values and conveying

the shape of the Pareto front (Fig 5B).

Linking Pareto front and design space by chord diagrams. Keeping the interrelation

between Pareto fronts and sets is central for decision making. Here, the challenge is to provide

a high-level visual result summary that informs about common features and differences when

comparing MO-ED results determined for different analytical platforms. For this purpose

chord diagrams (CD) are used. CDs are circular graphs consisting of segmented nodes and

inlying “chords” relating entities located within the node segments by arcs. The CD in Fig 5A

shows an example how a specific tracer composition is related to the information and cost cri-

terion values through arc connections. One color is assigned to each tracer. The proportion

with which the tracer contributes to the mixture determines the origin of the arc while its end

is given by the associated criterion value. Furthermore, the circular node segments are deco-

rated with additional information supporting result interpretation.

Substrate mixtures are of predominant interest in 13C MFA and central for design deci-

sions. Therefore, input species were selected for the node segments arranged on the left hemi-

cycle while the Pareto-optimal criteria values are summarized by node segments located on the

right hemicycle. Here, the criteria node segments are arranged as nested bands, depending on

the number of objectives (Fig 5A for the case of two objectives and four input species). Note

that while in the case of two objectives related objective values can be neatly aligned, this is no

longer to be the case for three and more objectives that contradict each other (S5 Text). The

chords connecting left and right hemicycles represent an overlay of all substrate mixture com-

positions that are proposed as trade-off designs. The relative frequencies with which a specific

input species proportion are proposed among all Pareto solutions is reported as histograms

located at the outer band of the respective substrate.

Compressing input and measurement designs. CDs yield a visual summary, overviewing

the range of Pareto-optimal mixtures and their relation to the Pareto front. When it comes to

the step of decision making, the practitioner is interested in representative classes of the mix-

ture compositions. Particularly, in cases where the proposed designs are spread over almost all

possible mixtures it is important to guide the experimenter’s choice. Therefore, the Pareto-

optimal mixtures are pruned and scrutinized by grouping them in line with their similarity.

Precisely, hierarchical clustering with the Euclidean distance metric is applied accounting for

the mixture compositions, the information value, and the costs. This yields a sequence of

nested tracer sets, henceforth denoted substrate clusters which are displayed by dendrograms.

Furthermore, in the special case of a three-component substrate cluster, the mixture can be

conveniently represented by a ternary triangle (Fig 5C) [25]. Finally, for each emerging sub-

strate cluster replicate numbers for each measurement group are presented by histograms (S4

and S5 Text).

Results

We developed a framework for information-economic design of CLEs, which we now put into

practice.

Case study: Design of a CLE with P. chrysogenum
P. chrysogenum is the primary microbial cell factory for the production of penicillin G and V.

Although metabolic engineering strategies have led to strongly improved production efficien-

cies, the yields of P. chrysogenum are still far below the theoretical maximum [55]. In this situa-

tion, 13C MFA is a powerful technique to detect pathway bottlenecks and to guide metabolic
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engineering efforts. Therefore, this case study explores the Pareto-optimal experimental design

spaces in an industrially relevant setting.

Experimental setup. A scale-down chemostat setup with glucose as sole carbon source

was assumed: Bioreactor working volume of 250 mL, 20 g/L glucose, and a conservative label-

ing period of six residence times [56]. Sample volumes were sufficient to generate up to a max-

imum of ten technical replicates per sample. The CLE was conducted once.

Tracers. Sales prices of ten commercially available glucose species (cf. Table 1) were

inquired with a purity of 99%, except for unlabeled [12C]-glucose that has a purity of 98%.

Prices range from 0.30 EUR/g for unlabeled glucose to 1293.00 EUR/g for [5-13C]-labeled

glucose.

Measurement configuration. Measurement setups were collected from the literature and

used for the generation of the measurement error models (Table 1).

Cost function. Platform-specific cost functions were compiled for all analytical platforms

as described before. Details on the parameters of the cost functions are documented in S2

Text.
13C MFA network model. A metabolic network model of P. chrysogenum was set up

based on existing knowledge [57–59] such that the measurement configurations of the analytic

platforms under consideration were covered. The model comprises the central metabolic path-

ways, namely glycolysis/ gluconeogenesis, the pentose phosphate pathway (PPP), the TCA,

anaplerotic reactions, amino acid biosynthesis as well as the penicillin synthesis pathway. It is

composed of 73 metabolites and 124 reactions, 25 thereof reversible. Reactions were allocated

to four compartments (extracellular, cytosolic, mitochondrial, peroxisomal). In total 117 reac-

tions were supplemented with carbon atom mappings. The model has 34 free fluxes (12 net, 22

exchange [20]). A reference flux distribution was chosen after calibrating the model with in-

house data. The specification of the P. chrysogenum network model including carbon atom

mappings, reaction directionalities, flux values and constraints, as well as extracellular rate

measurements used in this work is given in the supplementary information along with a

graphical representation of the network (S3 Text).

Using a typical reference tracer mixture, 60% [1-13C]-, 20% [U-13C]-, and 20% [12C]-glu-

cose, the set of statistically identifiable fluxes was determined for each analytical platform:

LC-MS and LC-MS/MS measurements statistically identified 26 of the free fluxes (76%).

GC-MS and 13C-NMR were capable to statistically determine 24 and 22 free fluxes, respec-

tively (71 and 65%) whereas the majority of free fluxes remained non-identifiable for

GC-C-IRMS and 1H-NMR. These platforms were only capable to determine 32 and 15% of

the free fluxes, respectively. Statistically (non-)identifiable fluxes are documented in S3 Text.

Given the large number of measured metabolites and isotopic patterns present in the MS/MS

mode, it is not surprising that LC-MS/MS performed best in the category “number of

Table 1. Design parameters for MO-ED case study.

Tracers:

[1-13C]-, [2-13C]-, [3-13C]-, [4-13C]-, [5-13C]-, [6-13C]-, [1,2-13C]-,

[1,6-13C]-, [U-13C]-glucose

Labeling measurement configurations (#metabolites, # meas. groups, #peaks):

GC-MS (amino acids): 14, 32, 169

LC-MS (central carbon intermediates and amino acids):

34, 34, 197

LC-MS/MS (central carbon intermediates and amino acids):

34, 34, 287
13C-NMR (amino acids): 17, 50, 156

https://doi.org/10.1371/journal.pcbi.1006533.t001
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statistically identifiable fluxes”, interestingly sharing the first position with LC-MS. Due to the

much lower number of statistically identifiable fluxes as compared to the other four platforms,
1H-NMR and GC-C-IRMS were not further examined in this work.

To make an analytical platform comparison between GC-MS, LC-MS, LC-MS/MS, and
13C-NMR as fair as possible, the metabolic model was pruned: Those fluxes that are statistically

non-identifiable for any of the four platforms were constrained to their reference values,

thereby eliminating their contribution to the information matrices. This step reduced the

degrees of freedom of the P. chrysogenum model from 34 to 21 (10 net, 11 exchange free

fluxes). The resulting reduced model constituted the basis for the MO-ED studies. Notice, that

although the reduced model is statistically identifiable within the reference setup, this does not

guarantee full statistical flux identifiability for other design constellations.

A note on model dimensionality. Despite D- and A-information criteria (11) and (12),

respectively, correct for the effect of differing dimensionality of the covariance matrix, we

found in initial test runs that models with a lower number of free fluxes tended to be favored

over models with full dimension p = 21. Since we are typically interested in determining as

many fluxes as possible, the dimensionality criterionΦDoF has been added as obligate optimal-

ity criteria to the objective vector, which effectively diminished the trend to freeze free fluxes in

favor of better D-, A-, or E-criteria values. Nevertheless, models with lower dimensionality still

contributed to the Pareto-optimal solutions. Owing to the iterative constraining procedure to

assure statistical flux identifiability, these lower dimensional models potentially differ in terms

of free flux sets. However, to not over-complicate result interpretation, results with the full ref-

erence model dimensionality, p = 21, were filtered and only these are discussed in the follow-

ing. For clarity, the models’ dimensionality is explicitly indicated by subscripts.

Profiling analytical platforms: Information and cost trade-offs

With the 13C MFA P. chrysogenum model of at hand, two scenarios differing in the composi-

tion of the design objectives were studied. The goal of this first scenario was to profile the ana-

lytical platforms according to their information-cost trade-offs and to explore the underlying

Pareto-optimal designs. To this end, three objectives were considered, two information criteria

and the cost criterion:

• maximize the degrees of freedom p

• maximize flux confidence, as measured by the D-criterion

• minimize the costs of the CLE

Thus, the objective vector is represented by:

Φ ¼
�
ΦDoF ΦD;p � Φdev

Costs

�T
ð19Þ

Due to the number of objectives involved, the MO-ED problem (1) with (19) is hitherto

denoted 3D-MO-ED task. Pareto-optimal solutions were calculated and objective values were

recorded along with the identifiers of the statistically (non-)identifiable fluxes as well as the

number of replicates for each single measurement group. Solutions obtained with models of

maximal dimension, p = 21, are discussed in the following (the complete sets of Pareto sets

and fronts are provided in S1 Data).

Comparing Pareto-optimal solutions: Potentials and risks. In order to access the prin-

cipal possibilities of the analytical platforms with respect to the objective values, first their

spread was compared as indicator of the variance of the Pareto designs (Fig 6).
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With regard to maximal information, as measured by the D-criterion, LC-MS/MS

(ΦLC� MSMS
D;21;max ¼ 6; 333) was followed by 13C-NMR (Φ

13C� NMR
D;21;max ¼ 1; 867), LC-MS (ΦLC� MS

D;21;max ¼ 665),

and GC-MS (ΦGC� MS
D;21;max ¼ 417). On the other hand, the minimal D-criterion value was found for

a LC-MS/MS design followed by LC- and GC-MS. Interestingly, the spread was smallest for
13C-NMR and largest for LC-MS/MS, implying that 3D-MO-EDs for LC-MS/MS need to be

designed carefully to get the most of a CLE. In contrast, the information content by 13C-NMR

was fairly high, even in an (information) worst case scenario. Concerning the costs, designs

expenses varied over at least one order of magnitude for all platforms (1:5 � ΦLC� MSMS
Costs;21 � 17:4,

1:7 � ΦLC� MS
Costs;21 � 36:7, 1:8 � ΦGC� MS

Costs;21 � 33:9, 3:8 � Φ
13C� NMR
Costs;21 � 33:1 k€), thus, the overall

cheapest designs were possible with LC-MS/MS.

How superior are cross-platform applications?. Intuitively, using more than one

analytical device could boost both, information and cost measures. To investigate this, the

3D-MO-ED study was repeated for selected platform combinations, in particular:

• GC-MS + LC-MS being the nowadays most frequently used techniques;

• 1H-NMR + 13C-NMR providing absolute positional labeling enrichments and labeling infor-

mation about neighboring labeling patterns where the analysis can be performed on the

same device (with slight modifications);

• 13C-NMR + LC-MS/MS delivering complementary, highly-resolved labeling information.

Increases in costs for the multi-platform applications remained in ranges that could be

expected. With respect to information, a combination of GC-MS and LC-MS increased the

Fig 6. Ranges of Pareto-optimal D-criterion values ΦD,21 versus costs ΦCosts of the 3D-MO-ED problem for different analytical platforms and platform

combinations filtered for solutions with full model dimensionality (p = 21). Pareto frontiers connect lower left and upper right corners of the boxes (see also the

Pareto fronts in Fig 7). Axes are log scaled. See supplementary information for results for p< 21 (S4 Text).

https://doi.org/10.1371/journal.pcbi.1006533.g006
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D-criterion value considerably (ΦGC=LC� MS
D;21;max ¼ 1; 282, Fig 6). This value was exceeded by a factor

of 1.65 by the combination of the two NMR techniques (Φ
1H=13C� NMR
D;21;max ¼ 2; 119). Finally, the

information obtained with a combination of LC-MS/MS and 13C-NMR amounted to the over-

all highest information value (ΦLC� MSMS=13C� NMR
D;21;max ¼ 7; 858), a plus of 24% compared to LC-MS/

MS alone which was, however, bought by an up to 100% increase in costs.

Integrating GC-MS and LC-MS data showed the highest increase in terms of overall statisti-

cal flux information gain. We explain this by the orthogonal information supplied by the two

platforms: Roughly, fragmented amino acids on the one hand and non-fragmented central

carbon intermediates on the other. All in all, in this case study, LC-MS/MS together with
13C-NMR outperformed all other scenarios studied. Still, LC-MS/MS alone delivers a five-fold

higher information value than a combination of GC- and LC-MS.

Exploring Pareto-optimal designs. Aiming at an in-depth platform comparison, the

Pareto-optimal CLE designs were examined further. In Fig 7, input mixture designs are related

with the objective values utilizing CDs. Furthermore, scatter plots and dendrograms show the

Pareto fronts and emerging substrate clusters, respectively.

Apart from low-information CLE designs, Pareto fronts of all platforms are well-populated

and show clear profiles with only very few discontinuities (the jiggling fronts for low-informa-

tion CLEs point to a broad variety of CLE settings contributing to these designs). These step

increases were attributed to the addition of costly substrates, mostly [1,2-13C]- and [1,6-13C]-

glucose. Apart from these rare cases, the scatter plots convey that slight changes in the mixture

do not have a harsh effect on the D-criterion value, as indicated by the stable course of the

curves. On the other hand, the CDs reveal how specific input species are linked with informa-

tion and costs. For instance, cheap unlabeled glucose contributes to less informative mixtures

in case of LC-MS and 13C-NMR while it contributes to highly informative mixtures for

LC-MS/MS. Thus, CDs deliver characteristic, platform-specific footprints of the Pareto

optima. Beyond the labeled species, dendrograms show commonalities and differences in sub-

strate mixture clusters, e.g., a ~20/80 mixture of [U-13C]- and [1,6-13C]-glucose was suggested

for GC-MS, LC-MS, and 13C-NMR but not for LC-MS/MS and at least one cluster with high

[1,2-13C]-glucose content was found across all platforms.

While LC-MS/MS performs best with respect to the D-criterion value, taking the economic

perspective, it also shows the least costs of all platforms studied. This seems puzzling since the

high number of manual peak evaluations could be expected to increase the overall costs signifi-

cantly. However, Fig 7 reveals that the effective cost advantage of LC-MS/MS originates from

the fact that, except for [1,2-13C]-glucose, exclusively comparably cheap substrates were

selected. For all other platforms, [1,6-13C]-glucose participates in the most informative sub-

strate mixtures which, in turn, leads to a considerable increase in overall costs. Not surprising,
13C-NMR shows the highest costs among all analytical devices, due to purchasing costs as well

as long analytical acquisition times which are both up to ten times higher as compared to the

other devices. Generally, the predominant part of the costs is constituted by the substrate

prices (CCLE), while the analytical costs (Cdev
ANA) contribute with an offset.

Regarding the mixture design, six out of the ten available substrate species contribute to

Pareto-optimal sets, namely [12C]-, [1-13C]-, [6-13C]-, [1,2-13C]-, [1,6-13C]-, and [U-13C]-glu-

cose, while high-cost singly labeled [2-13C]-, [3-13C]-, [4-13C]-, [5-13C]-glucoses were not

selected. Interestingly, expensive [1,2-13C]-glucose and [1,6-13C]-glucose species contribute to

information-high mixtures for GC-MS, LC-MS, and 13C-NMR. Remarkably, these substrates

can increase the statistical identifiability by ~50%. In the LC-MS setting, also [6-13C]-glucose

raises the D-criterion value. On the other hand, cheap unlabeled glucose contributes primarily

to mixtures with lower information criterion values while uniformly labeled glucose is used in

Trading-off information gain and costs in the design of carbon labeling experiments

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006533 October 31, 2018 19 / 30

https://doi.org/10.1371/journal.pcbi.1006533


a wide variety of compositions whose information values are spread over the complete range.

Overall, for the different platforms a medium number of clusters was determined, among

which also commonly used mixtures like [12C]-, [1-13C]-, and [U-13C]-glucose occurred.

To examine whether principally non-informative measurement groups exist, Pareto-opti-

mal measurement groups and replicate numbers were extracted for each substrate mixture

cluster (detailed results are provided in S4 Text and S3 File). Overall, analysis of the results

shows a clear tendency to use most measurements groups with a high number of analytical

replicates. This is explained by minimal extra costs of an additional replicate, especially

when compared to those of the substrates. In case of LS-MS/MS, only few measurements were

less frequently selected, e.g., 2,3-phosphoglycerate, glyceraldehyde-3-phosphate, or malate,

Fig 7. 3D-MO-ED results for GC-MS, LC-MS, LC-MS/MS, and 13C-NMR filtered for models with maximal degree of freedom (p = 21). Top: Chord diagrams

relate tracer compositions with D-criterion values and costs by showing an overlay of all Pareto-optimal tracer designs. Substrate species that contributed less than 1%

to a mixture are omitted for clarity. Mid: Scatter plots showing Pareto fronts. Overall costs (black) are itemized into experimental (red) and analytical (blue) parts. Step

increases of the fronts in costs are attributed to the addition of isotopically labeled substrate species as indicated. In regions of low D-criterion values, the wriggled

characteristics of the graphs originates from frequent switching between input substrates and measurement replicates. Cost axes are log-scaled. Bottom: Substrate

clusters. D-criterion, costs and input species hierarchically clustered by minimal Euclidean distance. For the compositions average values are given and values below

1% are omitted for clarity. Gray bars scale with the frequency of the clusters. The length of the edges (distance) represents the dissimilarities of the mixtures. Enlarged

versions of the chord diagrams are provided in S4 Text.

https://doi.org/10.1371/journal.pcbi.1006533.g007
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arguably because these measurement groups provided only minor extra information with

respect to flux confidence. For 13C-NMR either integration of the measurement group at maxi-

mal replicate numbers or the omission of the complete group was proposed while in case of

LC-MS replicate numbers were indeed selected gradually starting with five replicates upwards.

Expectedly, cost-beneficial designs delivered more diverse replicate patterns than cost-inten-

sive ones. In particular, this holds for the in each case cheapest mixture clusters for GC-MS,

LC-MS, LC-MS/MS, and 13C-NMR (S4 Text and S2 File). In any of those cases the proposed

measurements strongly varied with respect to measurement groups and replicate numbers.

Contrary, visual analysis reveals furthermore that optimal substrate species are conserved for

platform combinations. The tight interplay between Pareto-optimal tracers, measurements

and flux information manifested in complex device-specific correlation patterns (S4 Text and

S1 File).

Multiple information criteria

The previous study revealed detailed insights into trade-off CLE designs for P. chrysogenum
that relied on the commonly used D-criterion as quantitative information measure. With

our second scenario we aimed to study the impact of including additional information crite-

ria on the MO-EDs. To this end, the objective vector is extended by A- and E-information

criteria:

Φ ¼
�
ΦDoF ΦD;p ΦA;p ΦE � Φdev

Costs

�T
ð20Þ

The MO-ED scenario (1) with (20), henceforth referred to as 5D-MO-ED, was performed

along the same lines as the 3D-MO-ED study. In the following, selected results are presented

and related to the outcomes of the previous ED results. Detailed results are given in the

S5 Text.

An investigative analysis of multi-criteria CLE designs. 5D Pareto-optima obtained,

again after filtering solutions for full-dimensional models (p = 21), unravel highly complex

relationships between the different information objectives and the costs. This becomes quite

obvious from the 5D-MO-ED CDs provided in S5 Text and S1 File. In particular, the density

of edge crossings between the information criterion values (which cannot be disentangled by

rearranging the order of the arcs) evidences the mutual incompatibility of the objectives, in

particular for LC-based platforms. The CD footprints clearly demonstrate that, compared

to the 3D study, 5D Pareto-optimal designs show a higher degree of variation in the selection

of substrate species. In each case, at least eight of the ten available tracers contribute to

Pareto-optimal designs. Interestingly, one of the most costly substrates, [1,6-13C]-glucose con-

tributes to a variety of designs across all platforms. Also [12C]-, [1-13C]-, [6-13C]-, [U-13C]-,

[1,2-13C]-glucoses participate in a broad range of mixtures, while costly positionally labeled

[2-13C]-, [3-13C]-, [4-13C]-, [5-13C]-species remain under-represented.

For a closer inspection of the relations between the objectives, 5D-MO-ED Pareto fronts

were projected to 2D scatter plots. To compare the results with those derived in the first sce-

nario, 3D-MO-ED Pareto-optimal criterion values were incorporated into the plots. Results

for LC-MS/MS are shown in Fig 8, while the corresponding outcomes for the other platforms

are found in S5 Text, S1 and S2 Files.

In any case, the emerging point clouds exhibit complex, highly curved shapes. Connected

regions in the objective space indicate a flexible choice of trade-off designs while concisely

shaped correlations between two objectives reflect a lack of alternative designs, at least for solu-

tions considering full model dimensionality.
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First and as expected, 5D-MO-ED solutions for LC-MS/MS in Fig 8 show the same or

lower Pareto-optimal D-criterion values than those of 3D-MO-EDs. Since 3D-MO-ED is a

special case of 5D-MO-ED, this is regarded as cross-check that the MO framework produces

reliable results. The lower D-criterion values in the 5D-MO-ED scenario are attributed to

increases in other objectives, especially the A-criterion. Strikingly, 3D-MO-ED Pareto-optimal

designs have only low A-objective values while 5D-MO-EDs with high D- and A-criterion val-

ues exist. On the other hand, 3D-MO-EDs with high D-criterion values have also high E-crite-

rion values. While 5D-MO-ED designs with high D- and A- as well as D- and E-criterion

Fig 8. Pareto fronts obtained for LC-MS/MS filtered for solutions with full model dimensionality (p = 21). Colored scatter plots represent 2D

projections of the Pareto front approximation for the 5D-MO-ED scenario, the 3D-MO-ED Pareto front is shown in black. Design costs are color-

coded. For comparability, all criterion values are normalized to [0,1]. Complete Pareto fronts are provided in S1 Data.

https://doi.org/10.1371/journal.pcbi.1006533.g008
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values exist, this is not the case for E- and A-optimal designs, clearly demonstrating that A-

and E-criteria are incommensurable. Further findings for LC-MS/MS are:

• Compared to 3D-MO-ED designs, top-priced 5D-MO-ED designs are more than twice as

expensive.

• Highly A-informative designs mandate for costly CLEs whereas a wide variety of moderately

costly D- and E-informative designs is proposed.

This explains that the preference of the 3D-MO-ED solution towards high E-criteria values

occurred not by chance, but triggered by cost considerations.

Studying 5D-MO-ED solution scatter plots for the remaining analytical platforms reveals

some quite different characteristics:

• LC-MS: designs with high D-/A-criterion values are possible, but not those with high D-/E-

and A-/E-criterion values.

• GC-MS: joint D-/E- and A-/D-optimal designs exist, while designs with high A-/E-criterion

values are not found.

• 13C-NMR: A-/D-/E-objectives are coherent, meaning that designs are available that deliver

high values for all three criteria with only minor conflicts.

• Costs of 3D-MO-ED and 5D-MO-ED Pareto designs are comparably similar for LC-MS,

GC-MS, and 13C-NMR.

Despite these differences, A-informative designs are the most expensive ones across all

investigated platforms. To conclude, in both scenarios a wide variety of designs was observed,

where 5D-MO-ED results provide a super-set of the 3D-MO-EDs as enabled by the consider-

ation of two additional objectives. Thus, EDs with many objectives unlock multifaceted addi-

tional insights into alternative experimental settings, as demonstrated here for the 13C MFA

case study with P. chrysogenum.

Discussion

Intracellular fluxes are of special importance, as they describe the trafficking of metabolites

which emerges as the final outcome of all catalytic and regulatory processes acting within liv-

ing cells. Model-based 13C MFA is the gold standard for the quantification of intracellular met-

abolic fluxes. A smart combination of tracers and measured labeling patterns, i.e., the tracer

composition, measurement groups, number of replicate measurements, are the key to accurate

flux determination. Since 13C MFA studies remain complicated and costly, experimental

design can safeguard against sub-optimal resource utilization. Using the concept of single-

objective ED previous studies provided valuable indications for informative tracer mixtures.

These studies have been performed for specific measurement setups and without considering

economic aspects in experiment and analytics. To exploit the full power of ED in 13C MFA,

here we generalized existing work by simultaneously taking several information quality mea-

sures as well as several experimental-analytical cost contributors into account. With a large-

scale 13C MFA model and realistic measurement setups at hand, widely used analytical plat-

forms were compared with respect to information-economic design options. With that, tracer

and measurement design was performed simultaneously rather than independently. The

MO-ED technique for designing informative, yet economic experiments, as showcased with

the P. chrysogenum application study, is transferable to virtually any model-based approach

and experimental-analytical setup, e.g., to plan parallel CLEs.
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Opportunities, challenges, and new insights

MO-ED enables the determination of design ensembles that seek to balance mutually exclusive

information- and cost-objectives. Understanding the characteristics of the Pareto sets and the

relationships between the different objectives is invaluable to guide the decision process on

how to perform the next experiment. However, the sheer size of the design space and the many

and various properties of the design parameters pose new challenges for the exploration proce-

dure. First, searching for Pareto-optimal sets exhaustively over the whole, high-dimensional

design space is compute-intensive and requires the efficient evaluation of the system model.

Here, this challenge was tackled by connecting the high-performance simulator 13CFLUX2

with the optimization library jMetal. Second, a tailored visual analysis workflow was invented

that tracks down Pareto-optimal designs thereby relating tracers, measurement groups, repli-

cate numbers, costs, and information measures by means of graphical representations, starting

from most relevant (input species) to less informative features (replicates). This workflow aids

the scientist to weigh the insights against the costs and, thus, guides decision making.

Deviations from the reference design point, a caveat?

ED studies were performed for a reference flux distribution representing prior information

about the expected fluxes. It is, however, likely that the actual flux distribution under which a

CLE is conducted differs from the assumed one. Because the information criteria used in this

work rely on local statistical measures, actual Pareto-optimal designs may be widely different

from the suggested ones. To investigate the robustness of the 3D-MO-ED Pareto designs in

terms of information gain with respect to deviations from the reference flux values, for each

platform 10,000 flux distributions were randomly sampled in the bounding box of the corre-

sponding confidence ellipsoids. For the in each case most informative 3D-MO design setting,

the D-information criteria values were calculated (for instance in case of LC-MS/MS for

pure [1,2-13C]-glucose). In all cases, the average information value of Pareto-optimal results

remained in the upper third suggesting that the determined MO-ED designs are reasonably

robust (S4 Text and S3 File).

Pareto-optimal input substrates

The set of Pareto-optimal labeled tracers for CLEs was found to be remarkably similar across

all investigated platforms and platform combinations, e.g., [3-13C]-, [4-13C]-, and [5-13C]-glu-

cose rarely contribute to the designs. However, the quantitative composition of the Pareto-opti-

mal tracers varies widely. Often used, inexpensive substrate mixtures consisting of [1-13C]-,

[U-13C]-, and [12C]-glucoses provide moderate statistical identifiability for LC-MS/MS. Several

former single-objective ED studies found [1,2-13C]-glucose to be particularly informative (cf.

Sec ED approaches in 13C MFA revisited). Although this tracer is more expensive than stan-

dard mixtures, our results show that [1,2-13C]-glucose is beneficial to achieve a higher degree

of flux confidence across all studied platforms. Our study also reveals that the use of other,

more expensive substrate species such as [1,6-13C]-glucose, which seldom have been suggested

by conventional ED studies before, is mandatory when a high degree of flux confidence is

needed (as measured by the D-criterion), especially for GC-MS, LC-MS, 13C-NMR, GC-MS/

LC-MS, 1H-NMR/13C-NMR. These findings yield a generalized view on existing work that

focuses on single objective ED aspects.

Cost breakdowns

The study delivers detailed experimental and analytical cost reports for all analytical platforms.

3D-MO-ED results demonstrate, not surprisingly, that the substrate species of choice are the
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main contributor of the costs. On the other hand, often almost the complete available measure-

ment spectrum, including the maximal number of replicates, contributed to the Pareto-opti-

mal designs arguably because, compared to the substrates, additional measurements come

almost for free while they always increase the statistical information gain of the CLE. Only for

inexpensive substrate mixtures some measurement groups did not contribute to the designs,

most likely due to their redundancy. Hence, savings in analytical costs are possible but only

achievable to a lesser extent. Interestingly, robust A-optimal designs emerge to be the most

expensive ones across all investigated analytical platforms.

The benefit of considering multiple information criteria

Traditional 1D 13C MFA experimental planning techniques as first proposed by Möllney et al.

[25] capture the “value” of a CLE in a single scalar measure of information content which is of

limited value. By generalizing the 1D formulation to nD, strikingly, our study demonstrated

that the latter gives a much more comprehensive view on Pareto-optimal designs, therewith

opening up new possibilities for the experimenter in the planning phase of an experiment.

The competition between single criteria is reflected in diverse, partly orthogonal designs. For

instance, A-/D- and E-/D-optimal designs but no A/E-optimal designs co-exist for LC-MS/

MS. The ability to account for a range of information criteria allows to pro-actively countering

undesired side effects caused by (a priori unknown) flux correlations and, thus, could increase

the design’s reliability. Importantly, these results were found to be specific to the analytical

platform under consideration. Clearly, this wealth of additional insights comes at a computa-

tional cost. Here, the generalized ED framework has taken advantage of recent algorithmic

advances in 13C MFA [23,51], which paved the way for complex field studies such as reported

in this work.

Analytical platforms for 13C MFA

Statistical flux identifiability with a comprehensive metabolic network of P. chrysogenum varies

strongly among the measurement techniques. Even acknowledging long analysis times and

high equipment costs, LC-MS/MS provides EDs with 50% less costs than other devices due to

the use of cheaper input substrates. Simultaneously, LC-MS/MS yields up to ~300% higher

information values as compared to the other techniques. Remarkably, the first scenario showed

that the spread of Pareto-optimal designs has the highest coverage for LC-MS/MS, thus offer-

ing more options to the investigator than GC-MS, LC-MS, and 13C-NMR.

13C MFA design à la carte
Eventually, the goal of 13C MFA is to measure metabolic fluxes with the highest possible pre-

cision. Hence, the question arises whether the extra effort of MO-ED pays off in practice. A

use case scenario may be as follows: An ED is desired with overall equally well determined

fluxes and as little flux correlations as possible. Analyzing the 5D-MO-ED results with a

high E-criterion value, corresponding designs may yield large flux confidence regions. In

contrast, A-optimal designs indeed deliver superior designs in the sense of overall flux preci-

sion. However, by inspecting the costs associated with A-optimal designs, it becomes appar-

ent that CLEs with A-criterion values overrun the budget. In this situation, alternate A-

optimal designs satisfying certain cost constraints can be readily identified and even further

ranked by their E- and/or D-criteria values. Having localized the desired Pareto-set(s), the

associated designs can be further explored in depth providing detailed specifications of sub-

strate composition and the measurement setup. Operated in that way, we believe MO-ED to
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become a useful new tool for prospective and rational planning of experiments under full

cost control.

Besides deploying the framework to further application fields, there are several options to

follow up this work. Technically, dependencies of the MO-EDs on the local design points

should be diminished, e.g., by incorporation of global sensitivity analysis [60] or other more

advanced design techniques [61] into the framework, to handle scenarios when pre-knowledge

on the model parameters is absent. Practically, introducing interactive features to the visual

analysis such as browsing, querying, filtering, or sorting could boost the quick understanding

relationships within and in-between Pareto sets.
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45. Bouvin J, Cajot S, Huys PD, Ampofo-Asiama J, Anné J, van Impe J, et al. Multi-objective experimental

design for 13C-based metabolic flux analysis. Math Biosci. 2015; 268: 22–30. https://doi.org/10.1016/j.

mbs.2015.08.002 PMID: 26265092

46. Wolsey LA, Nemhauser GL. Integer and Combinatorial Optimization. Wiley-Interscience; 1999.

47. Coello CAC, Lamont GB, van Veldhuizen DA. Evolutionary Algorithms for Solving Multi-Objective Prob-

lems Springer US; 2007. https://doi.org/10.1007/978-0-387-36797-2

48. Deb K. Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley & Sons, Ltd. 2001.

49. Kennedy J, Eberhart R. Particle swarm optimization. Proceedings of ICNN’95—International Confer-

ence on Neural Networks. 1995. pp. 1942–1948.

50. Durillo JJ, Nebro AJ. jMetal: A Java framework for multi-objective optimization. Adv Eng Softw. 2011;

42: 760–771. https://doi.org/10.1016/j.advengsoft.2011.05.014
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52. Köppen M, Yoshida K. Visualization of Pareto-sets in evolutionary multi-objective optimization. Pro-

ceedings—7th International Conference on Hybrid Intelligent Systems, HIS 2007. 2007. pp. 156–161.
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