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Abstract

Phenotypic plasticity describes the phenotypic variation of a trait when a genotype is exposed to 

different environments. Understanding the genetic control of phenotypic plasticity in crops such as 

maize is of paramount importance for maintaining and increasing yields in a world experiencing 

climate change. Here, we report the results of genome-wide association analyses of multiple 

phenotypes and two measures of phenotypic plasticity in the maize nested association mapping 

(US-NAM) population grown in multiple environments and genotyped with ~2.5 million single 

nucleotide polymorphisms (SNPs). We show that across all traits the candidate genes for mean 

phenotype values and plasticity measures form structurally and functionally distinct groups. Such 

independent genetic control suggests that breeders will be able to select semi-independently for 

mean phenotype values and plasticity, thereby generating varieties with both high mean phenotype 

values and levels of plasticity that are appropriate for the target performance environments.

Phenotypic plasticity describes the phenotypic variation of a trait that occurs when a 

genotype is exposed to different environments1. Variation in plastic responses among 

genotypes is described as genotype-environment interaction (GxE)2, which is an important 

factor in plant breeding3,4. Understanding these interactions is important because 

agricultural systems will need to feed ~9 billion people by 2050, requiring a 60% increase in 

productivity compared to current levels5 while also accounting for different and increasingly 

variable weather patterns6. If plasticity is under genetic control, then genes exist that control 

the phenotypic mean and plastic response separately or together7; thus, it may be possible to 

breed for optimized, locally adapted cultivars that take advantage of certain environmental 

conditions and outperform more widely adapted cultivars8. Conversely, a lack of a plastic 

response may be better for some phenotypes such as disease resistance.

*Corresponding author: schnable@iastate.edu. CORRESPONDING AUTHOR: Correspondence to Patrick S. Schnable.
AUTHOR CONTRIBUTIONS
AK, SS, and PSS conceived the study. SS contributed to data collection and quality control. AK analyzed the data and interpreted the 
results. DN provided guidance with statistical analyses. AK and PSS wrote the manuscript.

COMPETING FINANCIAL INTERESTS
The authors declare no competing financial interests.

HHS Public Access
Author manuscript
Nat Plants. Author manuscript; available in PMC 2018 October 31.

Published in final edited form as:
Nat Plants. 2017 September ; 3(9): 715–723. doi:10.1038/s41477-017-0007-7.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Recent studies concluded that genomic prediction for yield stability in rye9 and wheat10 

could be effective. However, to fully exploit plasticity it is important to understand its 

genetic architecture. Three genetic models for the control of plasticity have been proposed. 

First, the overdominance model states that heterozygosity at genes causes plastic 

responses11. Second, the allelic sensitivity model states that differentially environmentally 

sensitive alleles of genes that affect mean phenotypes are responsible for plastic 

responses12,13. Third, the structural (or regulatory) gene model states that plastic responses 

are caused by the regulation of mean phenotype genes by genes that integrate environmental 

stimuli14,15. Numerous studies involving modest numbers of genotypes have found evidence 

for both the allelic sensitivity and structural gene models to varying degrees in various 

organisms and phenotypes9,16–20.

The genetic mechanism(s) responsible for plasticity has profound implications for its use in 

plant breeding. For example, if the allelic sensitivity model holds, breeders may need to 

make trade-offs between mean phenotypes and plasticity because the same genes control 

these properties. However, if the structural gene model holds, the selective constraint 

between the mean phenotype and its plasticity is at least less stringent than the allelic 

sensitivity model, and there is potential to exploit plastic response while also increasing 

mean phenotype values.

Phenotypic plasticity has not yet been studied in a large and diverse population of a single 

species. Maize (Zea mays ssp. mays) accounted for ~37% of worldwide cereal production in 

201421 and is used for human consumption, livestock feed, biofuels, and as an industrial 

feedstock. Maize is a diverse species with rapidly decaying linkage disequilibrium (LD) 

(2-10 kb)22,23, and inbred lines can easily be replicated across locations. This makes it a 

useful species for association mapping and studying plasticity. In this study, we analyzed 23 

agronomically relevant phenotypes and measured their plasticities on ~5,000 recombinant 

inbred lines (RILs) in the US nested association mapping (US-NAM) population. Using 

Bayesian Finlay-Wilkinson regression24,25 and GWAS we show that the candidate genes 

associated with mean phenotypes and their plasticities are structurally and functionally 

distinct across all 23 phenotypes, suggesting that there is some flexibility in the selective 

constraints between a phenotype and its plasticity.

RESULTS

Variability in plasticity.

Trait values for 23 phenotypes (Supplementary Table 1) measured in 4-11 environments on 

the ~5,000 NAM RILs were used as inputs for Bayesian Finlay-Wilkinson regressions 

(FWR)24–26 on each phenotype. FWR estimates a genotypic main effect and slope for each 

RIL from which a residual for each observation can be calculated and a residual variance 

estimated. The FWR slope measures the linear response of a RIL to the environment, 

relative to all other RILs in the population. A FWR slope of one denotes a RIL exhibiting 

the population average response to the environment, while a slope of zero denotes a RIL 

exhibiting no response to the environment. The residual variance for each RIL serves as a 

measure of model fit with larger residual variances indicating poor fits to the linear model 

due to environmental variables that were not modeled, non-linear responses to the 
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environment, or lack of genetic basis for the environmental response27,28. Genetic 

correlations between the mean phenotype values and plasticities for each phenotype are 

moderate to strong for many of the phenotypes (Supplementary Figure 1).

All 23 phenotypes demonstrated variability in linear plasticity (variances ranged from 0.021 

to 0.734) and the dispersion of different phenotypes was assessed by the quartile coefficient 

of dispersion (QCD) (Figure 1). The ratio of two QCDs measures how dispersed two 

distributions are relative to each other. For example, linear plasticity for growing degree days 

(GDD) to flowering was more dispersed than linear plasticity for absolute time to flowering 

(2.66 and 1.81 times more dispersed for silking and tasseling, respectively). Because thermal 

time is the primary driver of development in maize29 and 13/26 of the US-NAM 

subpopulations have a tropical parent line23,30, we tested for an association between tropical, 

temperate, or mixed germplasm and dispersion in the linear plasticity of flowering time. 

Germplasm group was not associated with absolute days to silking or tasseling (Kruskal-

Wallis test, p = 0.46 and p = 0.45, respectively), but was associated with GDD to silking and 

tasseling (Kruskal-Wallis test, p = 0.006 and p = 0.001, respectively) (Supplementary Figure 

2). In both cases, the dispersion in tropical and temperate germplasm differed (two-sided 

Mann-Whitney U test, p = 0.002 for GDD to silking and p = 0.0001 for GDD to tasseling).

Non-linear plasticities were more dispersed than linear plasticities for 22/23 phenotypes 

except in the case of GDD anthesis-silking interval (0.83 times as dispersed). Asynchronous 

male and female flowering can be adaptive in some environments31. Because the NAM 

parents were drawn from both temperate and tropical germplasm, this greater dispersion of 

environmental responses may reflect adaptation of the parental lines to diverse 

environments.

Variance explained by genome-wide SNPs.

The 2,452,207 SNPs were hierarchically assigned to six categories relative to genes using a 

scheme modified from Rodgers-Melnick et al.32: exons, 5kb upstream of a gene, 5kb 

downstream of a gene, introns, MNase hypersensitive (HS), and intergenic regions. For 

example, the exon category contains SNPs found in coding sequences, and the 5kb upstream 

category contains SNPs found no more than 5kb upstream of the transcription start site that 

are also not in the coding sequence of a gene. SNPs within each category were used to 

construct genetic relationship matrices and the variance explained by each class was 

estimated for each phenotype and plasticity measure (Supplementary Figure 3). As observed 

by Rodgers-Melnick et al.32, variants in exons and HS regions explain the most variance for 

mean phenotype values (Figure 2). A similar trend was observed for the linear plasticity of 

the traits. The total variance explained by exonic SNPs for linear plasticities was less than 

that for mean phenotype values (14.6±2.8% vs. 25.3±2.3%, respectively), increasing the 

relative importance of regulatory variants within 5kb of genes. Very little variance was 

explained by genome-wide SNPs for non-linear plasticities (Supplementary Figure 3). 

Exonic SNPs explained a non-zero proportion of the variance in only five cases for non-

linear plasticity, indicating the importance of regulatory variation in the control of this 

phenotypic measure.
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Genome-wide association.

Mean phenotype values and their plasticities were used as inputs for GWAS using 

FarmCPU33 and 2,452,207 SNPs. SNPs exceeding a 1% FDR threshold were declared 

statistically significant (Supplementary Table 2; Supplementary Figure 4). This generated 

977 unique SNPs that were associated with at least one mean phenotype value or plasticity 

measure (Supplementary Table 2). Only four SNPs were associated with more than one 

measure of a single phenotype. The relative proportions of significant SNPs identified for 

mean phenotype values and their plasticities varied across phenotypes (Figure 3a). No 

significant SNPs were identified for the non-linear plasticity of 2/23 (8.7%) phenotypes: ear 

length and leaf length. More significant SNPs were identified for the plasticities of 8/23 

(34.8%) phenotypes than for the corresponding mean phenotype values. We also compared 

our associated SNPs to those from a traditional GWAS using the same measurements of 14 

traits in US-NAM34. We assumed that two SNPs tagged the same region if windows 

centered on each SNP overlapped and the SNPs were associated with the same phenotype. 

At a window size of 20 kb, 32.4% of mean phenotype and 22.2% of linear plasticity 

windows overlapped with a window from Wallace et al.34, and all phenotypic measures had 

non-zero overlaps at all window sizes (Figure 3b). These overlaps were greater than 

expected by chance for mean phenotype values and linear plasticities at all window sizes 

(permutation test, p < 0.05) but not for non-linear plasticities.

Genomic distribution of significant SNPs.

We quantified the enrichment or depletion of significant SNPs in different annotation 

categories for mean phenotype values and linear and non-linear plasticities relative to the 

input distribution of SNPs. Significant SNPs for mean phenotype values were enriched for 

hits in exons (exact binomial test, p = 2.28×10−5) and 5kb upstream of genes (exact binomial 

test, p = 0.0007) and depleted for hits in intergenic regions more than 5 kb from genes (exact 

binomial test, p = 8.98×10−12). Significant SNPs for linear plasticities were also enriched in 

exons (exact binomial test, p = 0.00088) and depleted in intergenic regions (exact binomial 

test, p = 1.82×10−5). The genomic distribution of significant SNPs for non-linear plasticity 

was not significantly different from that of the input SNPs (χ2 test, χ2 = 7.67, df = 3, p = 

0.0533).

Candidate genes for mean phenotype values and their plasticities are distinct.

Candidate genes were defined as those falling within 20kb windows centered on each 

significant SNP. This identified 1,158 unique candidate genes (Supplementary Table 3). 

More candidate genes were associated with both the mean phenotype value and linear 

plasticity of at least one trait than expected by chance (Fisher’s exact test, 3.07-6.83-fold 

enrichment, p = 4.56×10−11) (Figure 4a). Of the 1,158 unique candidate genes only 33 

(2.8%) were associated with multiple measures of at least one phenotype (Figure 4a) and of 

these only eight genes representing 4 windows were associated with the mean phenotype 

and the linear plasticity of the same phenotype. For example, two SNPs within 2.5 kb of 

each other tagged three genes on chromosome 2 for the mean phenotypic value and linear 

plasticity of total kernel volume. One of these genes (GRMZM2G372074) has rice and 

Arabidopsis orthologs annotated as seed storage proteins and is tagged by a SNP ~400 bp 

Kusmec et al. Page 4

Nat Plants. Author manuscript; available in PMC 2018 October 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



upstream of the transcription start site. The low degree of overlap between candidate genes 

for mean phenotype values and plasticity measures was conserved across windows of 

4-100kb, where the number of overlapping genes never exceeded 1.18% of the total (Figure 

4b).

Gene Ontology (GO) term enrichment.

GO enrichment analysis was performed on candidate genes across all phenotypes grouped 

by mean phenotype or plasticity measure using the hypergeometric test at a 1% FDR 

threshold. Enriched terms in this analysis indicate potential common strategies that have 

evolved across phenotypes for expression of the mean phenotype or responding to the 

environment. This identified 230 enriched GO terms in the biological process ontology 

(Supplementary Table 4), and only 52 (22.6%) were enriched for multiple measures of a 

phenotype (Figure 4c). Uniquely enriched terms for linear plasticity candidate genes 

included biosynthesis of hormones such as abscisic acid, maintenance of shoot apical 

meristem and floral organ identities, flower morphogenesis, and positive gravitropism. 

Surprisingly, these candidate genes were also uniquely enriched for DNA methylation, and 

candidate genes for both mean phenotypic value and linear plasticity were enriched for 

H3K9 methylation, implicating epigenetic marks in plasticity. Another notable enriched 

term is positive regulation of developmental heterochrony, or regulation of the rate at which 

developmental time points are reached. A candidate (GRMZM2G035944), associated with 

the linear plasticity of ear height, is annotated with this term and is a TCP family 

transcription factor35. This family includes teosinte-branched1 and is implicated in leaf 

morphogenesis in maize and rice36. Results for the cellular component and molecular 

function ontologies can be found in Supplementary Tables 5 and 6, respectively.

Protein-protein interaction networks.

We also assessed GO term enrichment for the candidate genes for each phenotype’s 

components and their validated and predicted interaction partners in a maize PPI network37 

using BiNGO38 (Supplementary Tables 7, 8, and 9) and a 1% FDR threshold. This analysis 

provided greater insight into the different biological mechanisms by which plastic responses 

might influence the expression of different phenotypes. As an example, the mean total kernel 

volume candidate genes and their predicted interaction partners are uniquely enriched for 

hormone, defense molecule, and glucose biosynthesis genes. Candidates and interaction 

partners for the linear plasticity of total kernel volume were uniquely enriched for signaling, 

post-translational protein modification, and histone phosphorylation process terms. This 

example suggests the existence of interacting subnetworks and regulatory layers where 

environmental responses are integrated to affect the expression of signaling proteins and the 

activities of metabolic and catabolic pathways that produce a phenotype.

DISCUSSION

The genetic control of phenotypic plasticity has been variously attributed to heterozygosity 

at relevant genes (overdominance)11, differential environmental sensitivity of alleles of a 

gene (allelic sensitivity)12,13, or genes that affect the expression of the phenotype and genes 

that react to the environment (structural gene model)14,15. In this study it was not possible to 
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evaluate the extent to which overdominance contributes to phenotypic plasticity in maize 

because the US-NAM population is inbred. There is, however, limited evidence for a role for 

overdominance in the plastic response of other organisms2. Furthermore, little evidence has 

been found for overdominance in other maize traits, e.g., grain yield heterosis39. 

Distinguishing between the allelic sensitivity and structural gene models is a test of 

pleiotropy, commonly assessed by mapping two traits and comparing the similarity between 

their respective significant SNPs/candidate genes. We have shown that the genetic 

architectures underlying mean phenotype values and two measures of plasticity for 23 

phenotypes map to distinct genomic regions containing functionally distinct genes in the 

maize US-NAM population, which strongly supports the structural gene model.

This work is conceptually similar to previous work focused on mapping genotype-specific 

environmental variances or variance QTLs40. While these approaches and our approach both 

seek to map measures of GxE to the genome, we have focused on GxE caused by macro-

environmental variation (i.e., environmental variation common to all individuals grown in a 

common location) while previous work has focused on that caused by micro-environmental 

variation (i.e., environmental variation unique to each individual)40. Both macro- and micro-

environmental variation can cause GxE but at different scales, which is likely to act through 

both similar and different pathways. Thus, our study is complementary to existing work on 

variance QTLs.

Here we have used a Bayesian formulation of the Finlay-Wilkinson model25, which has 

allowed us to derive our estimates of the genotype-specific mean and response to the 

environment simultaneously. Although the prior distributions for genotype-specific 

intercepts and slopes are assumed independent in the Bayesian model, this does not preclude 

dependence in the posterior distributions.

As in other studies on phenotypic plasticity15, we observe moderate to strong genetic 

correlations between the mean and plasticity of most phenotypes (Supplementary Figure 1). 

We found only 4/977 SNPs that were significantly associated with both the mean and 

plasticity of the same phenotype, providing a small amount of support for the allelic 

sensitivity model in maize. This degree of overlap is insufficient to explain the observed 

genetic correlations. Co-localization of loci is the classical expectation for genetically 

correlated phenotypes, although it is not sufficient to prove identical genetic control. At least 

one genetic variant must be associated strongly enough with two different phenotypes to 

observe co-localization. It is possible that lack of co-localization observed in this study is the 

result of false negatives arising from a lack of statistical power due to small effect sizes on 

the two phenotypes and/or rare alleles. Such a scenario may have an outsized effect when 

mapping plasticity because its heritability is generally smaller than that of the mean 

(Supplementary Figure 3). Even if two loci co-localize, this co-localization may be a 

spurious result due to strong LD between multiple genetic variants41, although this scenario 

can only be distinguished with fine-mapping. Another possible explanation for the existence 

of genetic correlations in the absence of co-localization of significant loci is “mediated 

pleiotropy” where one phenotype lies on the causal path to another phenotype41. In this 

scenario we would expect to see evidence of interactions between candidate genes for the 

two phenotypes or their co-localization in similar pathways. We performed a non-exhaustive 

Kusmec et al. Page 6

Nat Plants. Author manuscript; available in PMC 2018 October 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



survey of a maize protein-protein interaction network37 and found predicted interactions 

between some pairs of candidate genes for the mean and plasticity of the same phenotype 

(unpublished results), a result that is at least consistent with “mediated pleiotropy”.

Similar to the results of Li et al.42, we found that SNPs in exons and regulatory regions 

explained the largest proportions of the phenotypic variance for mean phenotype values. Our 

results differ from those of Rodgers-Melnick et al.32 in that we de-prioritized MNase HS 

regions so that they only contained putative open chromatin in intergenic regions. Using the 

same assignment scheme as Rodgers-Melnick et al.32, we obtained results with similar 

conclusions (data not shown). Genome-wide SNPs in coding sequences explained less 

variation in the two plasticity measures, increasing the relative importance of regulatory 

variation.

The genomic distributions of our associated SNPs for mean phenotype values and both 

plasticity measures were enriched for coding sequence and gene-proximal variation and 

depleted for intergenic variation similar to the results of Wallace et al.34. We also observed 

that our mean phenotype-associated variants overlapped significantly with the trait-

associated SNPs from Wallace et al.34, although this overlap was less than 100%. This is 

likely due to the different statistical models used to calculate input phenotypes. Wallace et 
al. used a mixed linear model to compute RIL BLUPs, adjusting for environmental and 

genotype-environment interaction effects. We calculated mean phenotype values using the 

FWR model, which considers each RIL’s response to different environments. While these 

quantities are different, the amount of co-localization observed indicates that they are 

measuring similar genetic signals. Although the input phenotypes of Wallace et al.34 are 

very different from our linear plasticity measure, we find significant overlaps in this 

comparison, indicating that the regulation of genotype-environment interactions in maize is 

complex.

Our candidate genes for mean phenotype values and plasticity parameters were structurally 

distinct for each phenotype, and this observation was consistent across varying window sizes 

and when using the mixed linear model (MLM) instead of FarmCPU (unpublished results). 

Li et al.4 recently mapped flowering time and its coefficient of variation (CV) in US-NAM 

and found that all but three QTL for flowering time CV overlapped with QTL for mean 

flowering time. Hence, their results support the allelic sensitivity model for the plasticity of 

flowering time. Although our results provide strong evidence for the structural gene model 

for plasticity, they also provide some evidence for the allelic sensitivity model, and it is 

unlikely that only one of these models explains the genetic control of plasticity. In addition 

to the use of different SNPs, a different GWAS model, and a different measure of plasticity 

(coefficient of variation), the support intervals for the QTL identified by Li et al.43 are large 

(9.2±7.8 Mb mean±s.d.). Because these support intervals are so large, it is not possible to 

discount the possibility that the genes underlying them are different.

The number of candidate genes identified for either plasticity measure is relatively small 

compared to the number of candidate genes for mean phenotype values. There are three 

possible reasons for this. First, inference for statistics other than the mean often requires 

more data, increasing the sample size required for GWAS44. Additionally, error propagation 
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in the calculation of slopes and residual variances will decrease the signal-to-noise ratio, 

making association mapping of these measures more difficult. Increasing the number of 

environments in which phenotypes were evaluated would be expected to improve our power 

to detect plasticity loci.

Second, we have made the critical assumption that the plasticity of these phenotypes is a 

linear function of the environment. While this may be a good approximation for some 

phenotypes, it is undoubtedly not good for all phenotypes. However, precise estimation of 

higher order coefficients requires increasingly larger datasets. Finlay-Wilkinson regression is 

nevertheless a satisfactory instrument for identifying general trends in phenotypic responses 

across environments and has been widely used by plant breeders26,45.

Third, while the environmental index used as an explanatory variable in the regression was 

calculated from the phenotypes of the genotypes grown in that environment, which is the 

classical index, this choice is not optimal. A better choice of environmental index would 

incorporate weather data for each tested environment as has been done in genomic 

selection46,47. This requires not only sufficient phenotypic observations to estimate precisely 

additional model coefficients but also appropriate types and densities of weather data for 

environmental characterization. As field-based high-throughput phenotyping methods 

continue to be developed, development of environmental characterization methods is 

expected to help to fill in this gap in plasticity modeling.

Finally, we also observed that our candidate genes for mean phenotype values and plasticity 

measures were enriched for different GO terms. This structural and functional distinctness 

agrees well with our intuition that epistasis, which has proven difficult to identify via GWAS 

(e.g., Buckler et al.31), is a natural consequence of gene regulatory and biochemical 

networks. By separately mapping the mean phenotype value and plasticity of a single trait 

we can assess potential gene-gene interactions between candidate genes through analysis of 

protein-protein interactions, co-expression, and eQTLs.

It is important to consider not only the genetic and environmental factors influencing 

phenotypes, but also the gene-environment interactions that contribute to their plastic 

responses. We have provided evidence that the genetic architectures for mean phenotype 

values and plasticity are distinct and biologically complementary. While our study strongly 

supports the structural gene model and provides minimal support for the allelic sensitivity 

model, our observed genetic correlations and the results of previous mapping16–20 and 

artificial selection studies48–50 support a mixed model where phenotypic plasticity is caused 

by both differential expression of alleles across environments and gene-gene interactions. 

The plasticity of any one phenotype is likely to lie on a continuum between these two 

alternatives where the mixture of these two mechanisms differs by both phenotype and 

organism. These results can be used to explore how maize has adapted to diverse 

environments during its evolutionary history and under the pressure of artificial selection 

and to introduce genetic components into crop-growth models, allowing more accurate 

simulation of environmental and management decisions. While breeding for high-yielding, 

low plasticity cultivars is the ultimate goal of plant breeding, climate change will make the 

production of such cultivars more difficult as environments become more extreme and 
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variable. Based on our results and with more detailed analysis of the interactions between 

specific environmental factors and genes and their effects on plasticity, it may be possible for 

breeders to select for cultivars that produce high yields by exploiting certain characteristics 

of the target performance environment.

METHODS

Phenotypes.

Values for 21 phenotypes were downloaded from Panzea (file 

“traitMatrix_maize282NAM_v15-130212.txt” at http://www.panzea.org/#!phenotypes/

c1m50 accessed March 2015). These phenotypes were measured on the US-NAM 

population30 planted in 2-11 environments (Supplementary Table 1). Outliers were removed 

as follows. First, phenotypes measured in only one or two environments were removed. 

Second, the interquartile ranges (IQR) were calculated for each RIL across environments 

and for each environment across RILs within a phenotype. Any trait measurements of RILs 

that were more than 1.5 times larger or smaller than either of the IQRs was removed. Finally, 

for a given phenotype any RIL that was not measured in at least three environments was 

removed. This filter removed 4-11% of available observations, leaving 16,000-44,000 

observations for each phenotype (Supplementary Table 1). Two additional phenotypes, 

height above ear and kernel depth, were calculated using the downloaded data. Height above 

ear was calculated as the difference between plant height and ear height. Kernel depth was 

calculated as one-half the difference between ear diameter and cob diameter.

Stability analysis.

The plasticity of each phenotype was assessed using a Bayesian Finlay-Wilkinson regression 

(FWR) procedure implemented in the FW R package24–26. The FW package jointly 

estimates the parameters of the genotype-specific Finlay-Wilkinson regression equation

yi j = μ + gi + 1 + bi h j + ϵi j

where yij is the phenotype of the ith RIL measured in the j environment, gi is the main effect 

of the ith RIL, hj is the main effect of the jth environment, ϵij is an error term assumed to be 

IID normal with mean zero and variance σϵ
2, and (1 + bi) is the change in expected 

performance of the ith RIL per unit change in the environmental effect (hj). All parameters 

are treated as random effects where

g = gi ~N 0, Aσg
2

b = bi ~N 0, Aσb
2

h = h j ~N 0, Hσh
2

and A and H are variance-covariance matrices for varieties and environments, respectively. 

Computing these parameters using a genomic relationship matrix as A confounded 

population structure with parameter estimates and led to genome-wide inflation of test 
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statistics during association analysis (data not shown). Thus, regression parameters were 

estimated using A = H = I, where I is the identity matrix. Values of gi estimate genotypic 

mean phenotype values (mean phenotype values hereafter). FW returns estimates of bi, and 

these estimates were transformed by adding the value one so that RILs that did not respond 

to the environment had a slope of zero. The estimate of (1 + bi) was recorded as a measure 

of a RIL’s linear response to the environment24. The variance of the ϵij’s for each RIL was 

recorded as a measure of the non-linearity in that RIL’s response to the environment27,28. 

These residual variances were log-transformed for further analysis.

The genetic correlations between the mean phenotype values, linear plasticities, and non-

linear plasticities for each phenotype were calculated using sommer51. The kinship matrix 

used 973,965 SNPs (see “Genotype Processing”) and the “Normalized_IBS” option of 

TASSEL v5.052,53

We assessed the dispersion of slopes and residual variances for each phenotype using the 

quartile coefficient of dispersion. Dispersion coefficients for days to silking, days to 

tasseling, growing degree days (GDD) to silking, and GDD to tasseling were tested for 

associations with temperate, tropical, and mixed germplasm group assignments from Yan et 
al.23. Variances within each germplasm group-phenotype combination were homogeneous 

(Brown-Forsythe test). Differences among groups were assessed using the Kruskal-Wallis 

test, and pairwise comparisons between groups were conducted using the Mann-Whitney U 

test.

Sample collection.

Four types of tissues were collected for RNA extraction: immature unpollinated ears, tassels, 

shoots, and roots from the 26 NAM founders plus Mo17. Immature ears were harvested at 

~68 DAP. Samples from three plants of each inbred were pooled for homogenization in 

liquid nitrogen and RNA extraction. Ear sizes ranged from 0.5 to 3 inches; only the ear tips 

(the top 1/3-1/5 of each ear) were collected. Tassels were harvested ~60 DAP and samples 

from three plants of each inbred were pooled. Shoot and root tissues were collected from 

seedlings germinated using the paper roll method54 at 4-5 DAP. Two to three inches of the 

top (or bottom) tips from shoots and roots, respectively, were collected and frozen in liquid 

nitrogen for immediate homogenization and RNA extraction. Shoot apices were collected 

from seedlings grown in a controlled growth chamber at 14 DAP (light cycles: 15/9 h; 

temperature: 25 °C/20 °C; light intensity: ~900 μmol/m2s). Three to six manually collected 

shoot apices were pooled per genotype.

RNA extraction, library construction, and sequencing.

All RNA extractions were performed with the Qiagen RNeasy Plant Mini kit (Cat# 74904), 

according to the manufacturer’s protocol. Total RNA was eluted twice with 30 μL nuclease-

free water. The RNA samples were quantified by Nanodrop (model ND-1000, Thermo 

Scientific, Wilmington, DE). 1 μg total RNA from each line was used to prepare indexed 

RNA libraries using the Illumina protocol outlined in “TruSeq RNA Sample Preparation 

Guide” (Part# 15008136 Rev. A, November 2010). Indexed libraries were quality checked 

via Bioanalyzer (Agilent Technologies, Santa Clara, CA) before sequencing. Shoot apex 
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libraries were sequenced using an Illumina Genome Analyzer II with 76 cycles of single-end 

reads. All other libraries were sequenced using an Illumina Hi-seq 2000 instrument with 110 

cycles of chemistry and imaging, resulting in paired-end (PE) sequencing reads with length 

of 2×101 bp.

SNP calling.

We supplemented the RNA-seq data described above with that from Li et al.42 The 

following procedures were performed separately on the reads for each NAM parent. Reads 

were trimmed using custom scripts based on the functionality of Lucy55. First, each raw 

RNA-seq read was scanned for quality, and bases with PHRED quality value <1556,57, i.e., 

error rates of ≥3%, were removed by trimming. Then each read was examined in two phases. 

In the first phase, reads were scanned starting at each end and nucleotides with quality 

values lower than the threshold were removed. The remaining nucleotides were scanned 

again using overlapping windows of 10 bp and sequences beyond the last window with 

average quality value less than the specified threshold were truncated.

Trimmed reads were aligned to Maize RefGen_v2 using GSNAP58 as paired-end fragments. 

If a pair of reads could not be aligned as fragments, they were treated as singletons for 

alignment. Confidently mapped paired-end and single-end reads were used for subsequent 

analyses if they mapped uniquely (≤2 mismatches every 36 bp and less than 5 bases for 

every 75 bp as tails). Reads from all tissues were pooled for each NAM parent prior to SNP 

calling.

The coordinates of confident and single (unique) alignments that passed our filtering criteria 

were used for SNP discovery. Polymorphisms at each potential SNP site were carefully 

examined and putative homozygous SNPs were identified using the following criteria:

• The first and last 3 aligned bases of each read were discarded

• Each polymorphic bases must have at least a PHRED base quality value of 20 

(<1% error rate)

• At least five unique reads must support the base-pair call

• Polymorphic bases must have two and only two alleles

• The alternative allele must be supported by at least 80% of all aligned reads 

covering that position

This identified 4,011,524 SNPs across all tissues and lines.

Genotype processing.

SNPs from maize HapMap159 and HapMap222 were downloaded from Panzea 

(www.panzea.org) and merged with the RNA-seq SNPs using the consensus mode of PLINK 

v1.0760. The merged SNPs were filtered by removing SNPs with a call rate <0.4 and a minor 

allele frequency <0.1. Scores for ~1,000 tagging SNPs directly genotyped on the US-NAM 

RILs were obtained from Panzea. Using these tagging SNPs and pedigree data, the merged 

SNPs were imputed onto the US-NAM RILs with custom Perl scripts following Yu et al.30. 

Following imputation, SNPs with a call rate <0.4 and a minor allele frequency <0.05 were 
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removed. These SNPs were further filtered by linkage disequilibrium using the indep-

pairwise function of PLINK60 with a window size of 100 SNPs and a step size of 10 SNPs 

(Supplementary Figure 5). Using this method two sets of 2,452,207 and 973,965 SNPs were 

created by discarding one SNP from pairs with r2 exceeding 0.7 and 0.4, respectively.

Variance component estimation.

Zea mays gene models from the AGPv2 filtered gene set were downloaded from http://

ftp.maizesequence.org/release-5b/filtered-set/ (accessed 3 March 2016). MNase 

hypersensitivity (HS) regions32 were downloaded from http://cbsusrv04.tc.cornell.edu/users/

panzea/download.aspx?filegroupid=26 (accessed 2 August 2016) and converted to AGPv2 

coordinates using CrossMap 0.2.461 and the AGPv3 to AGPv2 chain file from ftp://

ftp.ensemblgenomes.org/pub/release-31/plants/assembly_chain/zea_mays/. SNPs were 

hierarchically assigned to one of six annotation categories according to their position relative 

to genes: exons, 5kb upstream of a gene model, 5kb downstream of a gene model, introns, 

MNase HS regions, and intergenic regions. Kinship matrices for each category were 

constructed using GCTA 1.2662. These kinship matrices were used in the MultiBLUP 

method of LDAK 4.663 to estimate the variance explained by each annotation category for 

each phenotype and plasticity measure32,64.

GWAS strategy.

To find associations between genomic regions and mean phenotypic values, linear responses 

to environmental effects, and non-linear responses to environmental effects, we performed 

GWAS using estimates of RIL main effects, slopes, and residual variances from the fit of the 

Finlay-Wilkinson model as response variables. To control for population structure the set of 

973,965 SNPs was used for principal components analysis using the prcomp function in R65 

with the center and scale arguments set to true. The first three principal components, 

explaining 6.7% of the variation, separated individuals into the 25 NAM subpopulations 

(Supplementary Figure 6) and were selected for use as covariates in GWAS.

GWAS for RIL main effects, slopes, and residual variances from Bayesian FWR was 

conducted on the set of 2,452,207 SNPs using FarmCPU33. FarmCPU was modified using 

Rcpp66, RcppEigen67, and RcppParallel68 packages to speed up the single marker regression 

tests, which decreased the average runtime by ~66%. We used the optimum bin selection 

procedure with bin sizes of 5, 10, 50, and 100 kb; 10, 20, 30, or 36 selected pseudo-

quantitative trait nucleotides; and at most 20 iterations. Statistical significance was assessed 

by applying a 1% FDR to q-values69 calculated by the qvalue package70.

Using the GenomicRanges71 package in R, we defined 10kb windows centered on each 

significant SNP. All AGPv2 gene models that overlapped a window were selected as 

candidate genes. We also assessed the overlap of our results with those of Wallace et al.34 

using the same phenotype data for 14 phenotypes. Significant SNPs from each study were 

considered as overlapping if windows of 4, 10, 20, 30, 40, 50, or 100 kb centered on each 

SNP overlapped. Statistical significance was assessed using a permutation test where 1,000 

sets of random SNPs were selected for each phenotype’s mean value, linear plasticity, and 

non-linear plasticity from our study, accounting for the proximity of each SNP to genes.
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Enrichment of associated SNPs.

SNPs in the input dataset and each of the three GWAS-hit sets were tallied separately by 

annotation category. We removed categories in the GWAS-hit sets with fewer than five 

expected hits using the input dataset as the null. Remaining categories were tested for 

significance by a chi-square goodness of fit test using R65. Individual categories were tested 

for enrichment at the α = 0.05 level using a two-sided exact binomial test and Bonferroni 

correction in R.

Gene Ontology (GO) term enrichment.

Candidate genes were associated with Arabidopsis thaliana orthologs retrieved from 

Gramene Mart (http://www.gramene.org; release 50, accessed 18 April 2016), and A. 
thaliana gene ontology annotations were downloaded from ftp://ftp.arabidopsis.org/home/

tair/Ontologies/Gene_Ontology/ (accessed 6 April 2016). Enrichment of GO terms within 

sets of candidate genes for mean phenotypic values and plasticity measures was determined 

separately using the hypergeometric test and a 1% FDR threshold.

Protein-protein interaction network.

High-confidence experimentally validated and predicted protein-protein interactions (PPI) 

were downloaded from a maize PPI network37. Subnetworks were defined for each measure 

of each phenotype by selecting candidate genes and any proteins with which they interacted 

from the full network. These subnetworks were tested for enrichment of GO terms using the 

hypergeometric test and a 1% FDR threshold using Cytoscape72 and BiNGO38.

Data availability.

Phenotype, genotypes, maize gene models, and annotation files are publically available 

through the URLs given in the appropriate section. RNA-seq reads were deposited at NCBI 

SRA under SRA050451 (shoot apex) and SRA050790 (ear, tassel, shoot, and root). The 

SNPs derived from the RNA-seq reads are available from NCBI dbSNP handle PSLAB, 

batch number 1062224.

Code availability.

Except where noted analyses were performed using custom scripts. They are available upon 

request. Our modified code for FarmCPU (designated FarmCPUpp) is available on Github at 

https://github.com/amkusmec/FarmCPUpp.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Quartile coefficients of dispersion for the linear and non-linear plasticities of 23 phenotypes. 

The number of environments used to calculate plasticity is given in parentheses. See 

Supplementary Table 1 for the number of RILs measured for each phenotype.
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Figure 2. 
Mean percent variance explained by genome-wide SNPs hierarchically assigned to 

annotation categories. Error bars represent one standard error of the mean. n = 23 for each 

phenotypic measure and annotation category.
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Figure 3. 
a. Relative proportions of SNPs associated with mean phenotype values and linear and non-

linear plasticities for 23 phenotypes. The percentage of plasticity-associated SNPs is greater 

than 50% (dashed black line) for 11/23 phenotypes. b. Percentage of overlapping windows 

centered on associated SNPs for mean phenotype values and linear and non-linear 

plasticities with windows centered on SNPs from Wallace et al.34. Closed circles denote 

windows for which more overlaps were observed than expected by chance (two-sided 

permutation test) at the α = 0.05 level; open circles denote windows that do not differ 

significantly from the null hypothesis.
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Figure 4. 
a. Number of candidate genes (n = 1,158) identified for mean phenotype values and a 

plasticity measure. Asterisks indicate enrichment at the α = 0.05 level (two-sided Fisher’s 

exact test). b. Number of overlapping candidate genes and total candidate genes at different 

window sizes. Total genes are those falling within a window of the given size centered on 

each significant SNP. Overlapping genes are those candidate genes that fall within a window 

for a mean phenotype value and a window for a plasticity measure of the same phenotype. c. 
Number of GO terms (n = 230) enriched for pools of candidate genes at a 1% FDR threshold 

(two-sided hypergeometric test).
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