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INTRODUCTION
In oligometastatic patients, the adoption of stereotactic 
body radiation therapy (SBRT) is worldwide increasing. In 
this setting of disease, the increased interest regarding SBRT 
has been substantially related to two main factors: (i)  the 
hypothesis postulated by Weichselbaum and Hellman 
according to which during the metastatic phase an inter-
mediate state exists; it is defined “oligometastatic” and it is 
characterized by a limited number of metastases for which 
local treatment could be curative; (ii) the reported efficacy 

and safety profile following metastases-directed SBRT.1–4 
During these last years, the role of SBRT has been explored 
in several oligometastatic series, including liver oligomet-
astatic patients, with different results in terms of midterm 
local control.5–8 In many cases, an individualized approach 
was advocated8 as well as a dose–response relationship 
has been was documented to guarantee high-rates of local 
control.3–6 Apart from the dose delivered, the heterogeneity 
reported in literature in terms of local efficacy could be 
attributable to other factors, such as the patient selection as 
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Objective: To investigate metabolic parameters as 
predictive of local response after stereotactic body radi-
ation therapy (SBRT) for liver-oligometastases.
Methods: Inclusion criteria of the present retrospective 
study were: (a) liver oligometastases with controlled 
primary tumor; (b) absence of progressive disease ≥6 
months; (c) metastases ≤ 3; (d) evaluation of SBRT-re-
sponse by means of 18-fludeoxyglucose-PET/CT for at 
least two subsequent evaluations; (e) Karnofsky perfor-
mance status  >80; (f) life-expectancy  >6 months. 
The following metabolic parameters were defined 
semi-quantitatively for each metastases: (1) stand-
ardized uptake value (SUVmax; (2) SUV-mean; (3) 
metabolic tumor volume (MTV), tumor volume with 
a SUV  ≥3, threshold 40%; (4) total lesion glycolysis 
(TLG), i.e. the product of SUV-mean and MTV. Local 
control was defined as absence of recurrence in the 
field of irradiation.
Results: 41 liver metastases were analyzed. Pre-SBRT, 
median SUV-max was 8.7 (range, 4.5–23.59), median 

SUV-mean was 4.6 (range, 3–7.5), median MTV was 5.7 cc 
(range, 0.9–80.6) and median total lesion glycolysis was 
24.1 (range, 3.6–601.5). At statistical analysis, metastases 
with SUV-mean >5 (p 0.04; odds ratio 4.75, sensitivity = 
50%, specificity = 82.6%, area under the curve 0.66) and 
SUV-max >12 (p 0.02; odds ratio 5.03, sensitivity = 69%, 
specificity = 70%, area under the curve = 0.69) showed 
higher rates of infield-failure compared to the remaining 
lesions.
Conclusion: According to current findings, pre-SBRT 
SUV-max and SUV-mean could be predictable of local 
response in liver oligometastases.
Advances in knowledge: Present findings could support 
the hypothesis that fludeoxyglucose-PET/CT may be 
a powerful tool to predict tumor control. Specifically, 
current results might be helpful for clinicians in the deci-
sion-making process regarding liver oligometastatic 
patient selection as well as the individual therapy strati-
fication distinguishing between slowly local progressing 
patients and rapidly progressing patients.
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well as the intrinsic metastases-responsiveness to high-dose per 
fraction. To date, it remains an investigational issue the identifi-
cation of predictive factors of SBRT effectiveness in oligometa-
static patients. Possible parameters of SBRT efficacy could help 
clinicians to complete the ongoing process of precision medicine 
in oligometastatic patients.

In the present analysis, we explored the role of 18F-fluorode-
oxiglucose (FDG) metabolic parameters as predictive of LC 
response after SBRT for liver-oligometastases.

methods and MATERIALS
Study design
Inclusion criteria of the present retrospective study were: (a) liver 
oligometastases with controlled primary tumor; (b) absence of 
progressive disease ≥6 months; (c) number of metastases treated 
by SBRT ≤ 3; (d) staging by FDG-positron emission tomography 
integrated with CT (FDG-PET/CT) carried out at our Cancer 
Care Center; (e) evaluation of SBRT-response by means of 
FDG-PET/CT for at least two subsequent evaluations; (f) Karn-
ofsky performance status >80; (g) life-expectancy >6 months.

Definition of the metabolic parameters
Pre-SBRT, FDG-PET/CT three-dimensional (3D) scans (i.e. 
without gating) were performed with thepatient within the same 
fixation devices to be used for treatment, whereas in the post-
SBRT PET/CT 3D-scans no fixation device was adopted. The 
scans were performed with a Siemens Biograph mCT-S (64) 
system (Siemens, Knoxville, TN). Tomographic images were 
reconstructed by using the TrueX point spread function plus 
time of flight iterative reconstruction algorithm (3 iterations, 21 
subsets, and a 5 mm full-width at half-maximum Gaussian filter) 
and analyzed with the Siemens SyngoTrueD 3D VOI isocon-
tour tool (Siemens). PET acquisitions were started 60 min after 
administration of 2.96 MBq kg–1 of 18F; patients were enrolled if 
their blood glucose level was lower than 140 mg dl−1.

For the intent of the present study, the following FDG-metabolic 
parameters were retrospectively defined: (1) SUV-max [i.e. the 
highest uptake value over all pixels within the region of interest 
(ROI)]; (2) SUV-mean (i.e. the mean uptake value within the 
ROI); (3) metabolic tumor volume (MTV) (i.e. the total volume 
with an SUV of 3 or greater, threshold at 40%); (4) total lesion 
glycolysis (TLG) as an estimate of tumor metabolic rate (i.e. the 
product of SUV-mean and MTV). Both pre- and post-SBRT 
FDG-PET/CT data  sets were analyzed semi-quantitatively 
with Syngo Multimodality Workplace software (Siemens AG, 
Erlangen, Germany) by two nuclear physicians who were blinded 
to all imaging studies and clinical and pathological results. For 
each metastasis, the irregular isocontour ROI was determined on 
the basis of a fixed threshold for the FDG-SUV (e.g. SUV >3).9 
PET-CT SUV values were standardized according to the Euro-
pean Association for Nuclear Medicine procedure guidelines for 
tumor imaging, v. 2.0.10

SBRT procedures
Before SBRT, patients were staged with contrast CT-scan and 
PET/CT. A planning CT scan was acquired for all patients, 

who were positioned supine with their arms above the head; 
patients were immobilized by means of a thermoplastic body 
mask including a Styrofoam block for abdominal compression 
to minimize internal organ motion. Contrast-free and 3-phases 
contrast-enhanced were acquired in free-breathing mode at 3 
mm slice thickness. Planning CT images were co-registeredwith 
three-phases contrast-enhanced CT and PET/CT to identify of 
the gross tumor volume (GTV). The clinical target volumewas 
defined as equal to the GTV. The planning target volume (PTV) 
was generated from clinical target volume by adding an overall 
margin of 7–10 mm in the craniocaudal axis and 4–6 mm in the 
anteroposterior and lateral axes.3

The median prescribed dose was 45 Gy (range, 30–60 Gy) deliv-
ered in a median of six fractions (range, 3–10) on consecutive 
working days. The normal liver dose constraint was set at more 
than 700 cm3 of normal liver receiving less than 15 Gy. Image-
guided SBRT was performed by means of a megavoltage Cone 
beam CT before each daily session to minimize set up uncertain-
ties. All plans were performed by Rapid Arc, v. 10.0.28 (Varian 
Inc., Palo Alto, CA) volumetric modulated arc therapy.

Evaluation of tumor response
Evaluation of tumor response was assessed by means of 
FDG-PET/CT11 and abdomen CT-scan or MRI both with 
contrast medium, within 3 months after SBRT and every 3 
months, thereafter. Local failure was scored when there was 
evidence of tumor viability by either the SUV-max >6 or by the 
response evaluation criteria in solid tumour criteria of expansion 
of a solid mass with discrete borders within the treated planning 
target volume by 20% in the longest dimension relative to the 
most recent prior CT-scan.9

Statistical analysis
To summarize the most relevant features of the clinical variables, 
descriptive statistics were performed. All the categorical variables 
were analyzed with contingency tables with Fisher’s exact test or 
Pearson’s Χ2 test, whereas the continuous variables were analyzed 
by one-way analysis of variance, t-tests (with equal or unequal 
variance), or non-parametric Wilcoxon (Mann–Whitney) and 
Kruskal–Wallis tests. LC) was defined as the absence of local 
recurrence in field (in the prior irradiation field).

Logistic regression models were used to assess: (1) the impact 
of each clinical variables [biologically effective dose (BED), dose 
per fraction, type of primary tumor, tumor volume or GTV, 
maximum diameter of the metastasis] with LC and (2) pre-SBRT 
metabolic parameters (SUV-max, SUV-mean, MTV, and TLG 
considering pre- and post-SBRT values) with LC.

After each period of observation during follow up, metastases 
locally or distantly progressed were excluded from the statis-
tical analysis due to the subsequently administration of systemic 
drugs influencing the endpoints of the present study.

The receiver operating characteristic (ROC) curves were used 
to assess the sensitivity and specificity of pre-SBRT meta-
bolic parameters in correlation with the complete response of 
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metastases after SBRT. The area under the curve (AUC) was used 
to verify the accuracy.In the case of a moderately accurate test 
(AUC ≥0.7), the product of maximum sensitivity and specificity 
was chosen as the cut-off value.

A p-value of 0.05 or less was considered statistically significant. 
Statistical analysis was performed with SAS, v.  sion 9.4 (SAS 
Institute Inc., Cary, NC).

RESULTS
According to inclusion criteria, 41 liver metastases for 30 patients 
were selected from our Institutional database and analyzed.

Post-SBRT, the median follow up was 16 months (range, 
13–25months). The median interval between pre-SBRT PET/
CT and the first fraction of SBRT was 3 days (range, 2–5 days). 
Pre-SBRT, median SUV-max was 8.74 (range, 4.49–23.59), 
median SUV-mean was 4.6 (range, 3–7.46), median MTV was 
5.74  cm3 (range, 0.9–80.64 cm3) and median TLG was 24.1 
(range, 3.6–601.5). The median prescribed dose was 45 Gy (range, 
30–60 Gy) with median six fractions (range, 3–10). The median 
dose per fraction was 7.5 Gy (range, 5–20 Gy). The median BED 

estimated was 78.75 Gy (range, 48–180 Gy), where an α/β ratio 
equal to 10 was assumed for all the metastatic lesions. In Table 1, 
are summarized the metastases’ characteristics.

Post-SBRT, the mean values of SUV-max varied as follows for all 
the lesions here are analyzed: at 3 months (in comparison with 
baseline) −48% of reduction (25th percentile −68%; 75th percen-
tile −44%); at 6 months (in comparison with 3 months) −23% 
of reduction (25th percentile −22%; 75th percentile +38%); at 9 
months (in comparison with 6 months) −10% of reduction (25th 
percentile −26%; 75th percentile 0%); at 12 months (in compar-
ison with 9 months) −1.5% of reduction (25th percentile 0%; 
75th percentile 0%).

The mean values of SUV-mean varied as follows: at 3 months (in 
comparison with baseline) −31% of reduction (25th percentile 
−44%; 75th percentile −21%); at 6 months (in comparison with 
3 months)  +15% (25th percentile 0%; 75th percentile +34%); 
at 9 months (in comparison with 6 months) −5% of reduction 
(25th percentile −3%; 75th percentile 0%); at 12 months (in 
comparison with 9 months) −1.6% of reduction (25th percentile 
0%; 75th percentile 0%). In Table  2, the metastases’ metabolic 
responses during the period of observation are detailed. Lesions 
progressive in PET imaging also failed according to morpholog-
ical measurements by abdomen CT-scan or MRI.

Clinical-pathologic parameters and local control
No correlation was observed between pre-SBRT clinical-patho-
logic parameters and LC, as follow: maximum diameter [odds 
ratio (OR): 3.05; 95% CI: 0.8–11.1; p-value: 0.09)], GTV (OR: 
1.85; 95% CI: 0.5–6.6; p-value: 0.33)], BED (OR: 0.39; 95% CI: 
0.1–1.4; p-value: 0.15), type of primary tumor (OR: 0.35; 95% 
CI: 0.09–1.3; p-value: 0.12), dose per fraction (OR: 7.07; 95% CI: 
0.7–70.1; p-value: 0.09).

Metabolic parameters predictive of local control
At univariate logistic regression analysis, only high values of 
SUV-max and SUV-mean pre-SBRT revealed to be statisti-
cally related to local failure. In fact, a statistical significance 
was observed for increasing values by SUV-max >9. A moder-
ately accurate test (i.e. AUC ≥0.7) was recorded only in case of 
SUV-max >12 (p 0.008; OR10.5; sensitivity = 50%, specificity = 
91%, AUC = 0.7). Regarding SUV-mean, a statistical significance 

Table 1.  Summary of lesions’ characteristics treated with 
stereotactic body radiation therapy

Lesions’ number 41
Primitive cancer (lesions’ number)

Colorectal 16

Esophagus 9

Lung 8

Pancreas 4

Ovary 3

Breast 1

Mean diameter lesions (range) (cm) 2 (1–6)

Mean volume lesions (range) (cm3)

Clinical target volume 6 (1–71)

Planning target volume 25 (6–147)

Liver outside the planning target volumes 
receiving less than 15 Gy (range) (cm3)

1117 (812–2129)

Table 2.  Metastases’ metabolic responses during follow up after stereotactic body radiotherapy

Response 
evaluated by 
PERCIST criteria

3 months (No. 
of metastases 

analyzed)

6 months (No. 
of metastases 

analyzed)

9 months (No. 
of metastases 

analyzed)

12 months (No. 
of metastases 

analyzed)

18 months (No. 
of metastases 

analyzed)
Complete response 25 19 16 13 9

Partial response 12 / 2 / /

Stable disease 3 13 12 4 /

Progression of disease 1 8 2 1 /

Total metastases 
analyzed

41 40 30 18 9

PERCIST, positron emission tomography response criteria in solid tumors.
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was found for SUV-mean >5 (p 0.04; OR 4.7; sensitivity = 50%, 
specificity = 82.6%). The pre-planned accuracy of the test (i.e. 
AUC ≥ 0.7) was not reached for SUV-mean >5 (AUC = 0.66). 
In Figure 1, receiver operating characteristic curves considering 
SUV-max >12 and SUV-mean >5 are showed. Local disease free 
survival curves separated by SUV-max >12 and SUV-mean >5 
are depicted in Figures 2 and 3.

The estimated probabilities of local recurrence were 80% for 
SUV-max >12 and 66% for SUV-mean >5 (Figure 4). No statis-
tical correlation was found between pre-SBRT, TLG and MTV 
values and LC.

Analyzing the rates of local failures during follow up, the higher 
local progression was registered at 6 months after SBRT (Table 2). 
Statistical analysis regarding metabolic parameters was furtherly 
made examining lesions response at this last time point (6 
months post-SBRT). Findings regarding the impact of SUV-max 

and SUV-mean with local recurrence was similar to the previous 
analysis conducted considering all the population of study 
during the entire period of observation post-SBRT. In partic-
ular, a statistical significance and test’s accuracy was obtained for 
SUV-max >11 (p 0.03; OR 7.5; sensitivity = 71.4%, specificity = 
75%, AUC = 0.73) and SUV-mean >5 (p 0.04; OR 4.7; sensitivity 
= 50%, specificity = 82.6%, AUC >0.73). Of contrast, evaluating 
liver metastases affected by local failure at 6 months post-SBRT, a 
more accurate test was recorded comparing to all the population 
of study during the entire period of follow up (AUC = 0.66 vs 
AUC = 0.73, respectively).

DISCUSSION
In the present study, we explored the role of semi-quantitative 
metabolic parameters to evaluate the SBRT-efficacy in liver 
oligometastases. Four semi-quantitative parameters by means 
of FDG-PET/CT were here detected; these variables were, there-
fore, analyzed with the intent to found a possible correlation 

Figure 1.  ROC curves considering SUV-max >12 (a) and SUV-mean >5 (b). ROC, receiver operating characteristic; SUV, standard-
ized uptake value.

Figure 2.  Local disease-free survival curve separated by SUV-
max >12 and ≤12. SUV, standardized uptake value.

Figure 3.  Local disease free survival curve separated by SUV-
mean >5 and ≤5. SUV, standardized uptake value.
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