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Abstract

The 22q11.2 deletion syndrome is caused by non-allelic homologous recombination events during 

meiosis between low copy repeats (LCR22) termed A, B, C and D. Most patients have a typical 

LCR22A-D (AD) deletion of 3 million base pairs (Mb). In this report, we evaluated IQ scores in 

1,478 subjects with 22q11.2DS. The mean of full scale IQ, verbal IQ and performance IQ scores 

in our cohort were 72.41 (standard deviation-SD of 13.72), 75.91(SD of 14.46) and 73.01(SD of 

13.71), respectively. To investigate whether IQ scores are associated with deletion size, we 

examined individuals with the 3 Mb, AD (n = 1,353) and nested 1.5 Mb, AB (n = 74) deletions, 

since they comprised the largest subgroups. We found that full scale IQ was decreased by 6.25 

points (P = 0.002), verbal IQ was decreased by 8.17 points (P = 0.0002) and performance IQ was 

decreased by 4.03 points (P = 0.028) in subjects with the AD versus AB deletion. Thus, 

individuals with the smaller, 1.5 Mb AB deletion have modestly higher IQ scores than those with 

the larger, 3 Mb AD deletion. Overall, the deletion of genes in the AB region largely explain the 

observed low IQ in the 22q11.2DS population. However, our results also indicate that 

haploinsufficiency of genes in the LCR22B-D region (BD) exert an additional negative impact on 

IQ. Furthermore, we did not find evidence of a confounding effect of severe congenital heart 

disease on IQ scores in our cohort.

Keywords

22q11.2 deletion syndrome; intellectual disability; IQ; deletion size; low copy repeat; segmental 
duplication

INTRODUCTION

The 22q11.2 deletion syndrome (22q11.2DS; MIM188400; 192430) is the most common 

microdeletion syndrome in humans. Recent data has shown a frequency of 1:992 for 

deletions of 22q11.2 in low risk pregnancies (Grati et al., 2015). The syndrome has a 

frequency of 1:2,000 live births (Cancrini et al., 2014; McDonald-McGinn et al., 2015). 

Clinical manifestations of 22q11.2DS are highly heterogeneous and can range from mild to 
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severe. Besides anomalies including congenital heart disease (CHD), palatal abnormalities, 

renal defects, immunodeficiency and hypocalcemia, almost all patients with 22q11.2DS 

have some degree of cognitive impairment. This is in part identified by the presence of 

reduced IQ scores (Oskarsdottir, Belfrage, Sandstedt, Viggedal, & Uvebrant, 2005; Swillen 

et al., 1997). A significant percentage of school age children have learning disabilities 

requiring placement in special education classes (Bassett et al., 2011; Bearden et al., 2001; 

De Smedt, Swillen, Ghesquiere, Devriendt, & Fryns, 2003; Duijff et al., 2012; Swillen et al., 

1997; Swillen et al., 1999; Woodin et al., 2001). Approximately 50% of individuals with 

22q112DS have intellectual disability (ID), as defined in part by an IQ score of less than 70 

± 5 (Swillen & McDonald-McGinn, 2015), while the rate of ID in the general population is 

1-3%. Approximately one third of 22q11.2DS patients have relatively normal IQ levels 

within the range of 85 or higher. Overall genetic background can explain some of the ID 

variability in 22q11DS which was indicated by the cognitive functioning of first-degree 

relatives (Olszewski, Radoeva, Fremont, Kates, & Antshel, 2014). While the genetic 

influence on the variable expression of the cognitive phenotype in 22q11.2DS is still largely 

unknown, we hypothesized the size or position of the deletion on 22q11.2 may influence IQ 

scores.

The 22q11.2 deletion occurs due to meiotic non-allelic homologous recombination events 

between segmental duplications or low copy repeats (LCR22), termed LCR22A, B, C and D 

(Edelmann et al., 1999; Shaikh et al., 2000). The LCR22s do not contain functional genes 

and are comprised of blocks or modules of high sequence identity (Bailey et al., 2002). Over 

90% of patients have a 3 million base pair (Mb) deletion between LCR22A-D (referred 

herein as AD). Approximately 5-8% have a nested, 1.5 Mb, LCR22A-B (AB) deletion, and 

the rest have deletions of other types (Shaikh et al., 2000). Consequently, haploinsufficiency 

of fewer genes in smaller or nested deletions may potentially result in a milder phenotype.

In a recent published study (Evers, Engelen, Houben, Curfs, & van Amelsvoort, 2016), they 

did not find a relationship between deletion size and IQ, however, the sample may have been 

underpowered (63 subjects). In the largest study to date, of 103 subjects with 22q11.2DS, 

there was also no evidence of a correlation between deletion size and IQ scores, however 

only four subjects in the study had an AB deletion (Michaelovsky et al., 2012). As part of 

the International 22q11.2 Brain and Behavior Consortium [IBBC; (Gur et al., 2017; 

Vorstman et al., 2015)], and prior to its establishment, we collected DNA samples from 

subjects with 22q11.2DS of age 6 years and older. We focused on the two most common 

types of 22q11.2 deletions, the AB (74 subjects) versus AD (1353 subjects) group. We test 

whether IQ levels in individuals with AB deletions (No. = 74) would differ from those with 

AD deletions (No. =1353), taking into account possible confounding effects of sex, age and 

severe CHD status.

MATERIALS AND METHODS

Study population

Recruitment of most of the subjects with 22q11.2DS in this study has been previously 

described (Gur et al., 2017). Briefly, a total of >2,000 de-identified DNA samples were 

collected with their informed consent (Internal Review Board, Committee of Clinical 
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Investigation #1999-201). All individuals had a clinical diagnosis of 22q11.2DS. 

Fluorescence in situ hybridization (FISH) was done to make a molecular diagnosis in the 

majority of subjects, priori to inclusion. In addition, the presence of the deletion was 

confirmed by array comparative genome hybridization (aCGH) or multiplex ligation-

dependent probe amplification (MLPA). It is possible that the presence of severe CHD can 

influence neuro-cognition and could therefore act as a confounder in the analysis (see 

below). The majority of subjects had available cardiac phenotype information (Guo et al., 

2018). After removing data with gender mismatch, duplicate or related samples, 1,807 

remained for further analysis (Supplementary Fig. 1). The 22q11.2DS samples were 

recruited from 21 study sites, mostly in North America and Europe. We combined the 21 

study sites into four groups including US and Canada, Northern Europe, Southern Europe 

and UK with Australia (Supplementary Table 2) according both to genetic proximity (not 

geographical proximity) (Nelis et al., 2009) and phenotypic proximity (IQ measure within a 

group should be more homogeneous than across groups).

Deletion type detection

Deletion types among 1,807 22q11.2DS patients were identified by copy number variation 

(CNV) analysis on raw intensity data obtained from Affymetrix 6.0 SNP array CEL files. 

Briefly, Univariate CNAM optimal segmenting algorithm implemented in Golden Helix 

SNP&VARIATION SUITE version 8.7.2 (http://www.goldenhelix.com/index.html) was 

employed to detect CNV segment boundaries as determined by log2 ratio [log2(observed 

intensity/reference intensity). In this study, controls included those processed at the same 

time period and at the same facility as those of the 22q11.2DS samples, and, in addition, we 

used pre-computed intensity data from 270 Hapmap samples. For 1,227 samples, the 

deletion type was also determined using MLPA (SALSA MLPA kit P250 DiGeorge; MRC 

Holland, The Netherlands (Vorstman et al., 2006)). Exclusion criteria were deletions that 

extended further centromeric (proximal) to LCR22A (unbalanced translocations) or 

deletions that extended further telomeric (distal) to LCR22D, such as LCR22E, F, G or H. 

This included the following subjects: LCR22A-G (1 subject, with a frequency of 0.05% 

among the population), DE (1, 0.01%), DF (1, 0.01%), EF (1, 0.01%) and unbalanced 

translocation (1, 0.05%). Atypical deletion types that occurred in ≤ 7 subjects were also 

excluded in our population, namely/specifically CD (2, 0.1%), nested AB (7, 0.39%), nested 

AD (4, 0.22%), proximal PRODH deletions (2, 0.1%). After removing these 20 samples, 

1,787 subjects with a recurrent deletion within the AD region were included in this study. 

Detailed selection steps of patients with 22q11.2DS are shown in Supplementary Fig. 1. We 

identified 17 subjects with an atypical, nested 2.8 Mb deletion that occurred just telomeric to 

the PRODH gene, herein referred to as the A+-D deletion (Guo et al., 2018). This slightly 

smaller nested deletion type was validated by quantitative PCR analysis using primers in the 

22q11.2 breakpoint region (Guo et al., 2018).

IQ assessment

There were 1,478 subjects with IQ scores available among the 1,787 subjects in this study. 

Wechsler Intelligence Scales (e.g., Wechsler preschool and Primary Scale of Intelligence, 

Wechsler Intelligence Scale for Children, Wechsler Adult Intelligence Scale and Wechsler 

Abbreviated Scale of Intelligence; WPPSI, WISC, WAIS, WASI) were employed to test IQ 
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levels among 1,411 individuals with 22q11.2DS of age 6 years or older. The IQ test type for 

the remaining 67 subjects includes, CNB [Penn Computerized Neurocognitive Battery; (Yi 

et al., 2016); 6 subjects], GIT (General Intelligence Test-Canada; 1 subject), IQ National 

Adult Reading Test [(Willshire, Kinsella, & Prior, 1991); 25 subjects], McCarthy Scales 

[(Kaufman & Kaufman, 1974); 1 subject], RAVEN Matrices test [(Ballester-Plane et al., 

2016); 2 subjects], RAIS [(Reynolds Intellectual Assessment Scales; 1 subject], SON 

[Nonverbal Intelligence Test; UK; (Geerlings, Laros, Tellegen, & Glas, 2014); 11 subjects] 

Stanford-Binet//Terman-Merrill [(Martinez-Cruz, Poblano, & Conde-Reyes, 2009); 6 

subjects], UNIT (Universal Nonverbal Intelligence Test; 1 subject) and missing test type (13 

subjects).

Statistical Analysis

All continuous variables including age, full scale IQ, verbal IQ and performance IQ were 

expressed as mean ± SD if not specified. Independent-samples t-test was employed to 

evaluate IQ differences between binary variables including gender and presence of severe 

CHD that could act as a confounder and must be considered. Severe CHD was defined as 

having a clinically recognized complex cardiac malformation, which usually requires 

surgery. In this study, it included, tetralogy of Fallot (TOF), persistent truncus arteriosus 

(PTA) or interrupted aortic arch type B (IAAB). Controls for severe CHD had 22q11.2DS 

but no detectable heart or aortic arch defect. Association between IQ and deletion size (AD 

versus AB) was assessed by multiple linear regression analyses with adjustment of sex and 

age of administration of the IQ test and research site group. Pearson chi-square test was used 

to assess the association between CHD status and deletion size. The one-sample 

Kolmogorov-Smirnov test was used to test whether age was normally distributed among 

patients with the AB and AD deletion, respectively. Independent-samples Mann-Whitney U 

test was employed to compare the age distribution between the AB and AD groups. Median 

Test, which is also a non-parametric statistical approach, was employed to compare age 

medians between the two groups. Significance was considered as P < 0.05.

RESULTS

Characterization of the 22q11.2DS study population

Basic demographic characteristics of the population is presented in Table I. Among the 

1,478 subjects, gender is almost evenly distributed with 709 (48%) males and 769 (52%) 

females. The subjects were largely Caucasian, and retrospectively enrolled at 21 different 

research sites (Supplementary Table 2). The ethnicity of our cohort has been previously 

reported (Guo et al., 2017). We recently identified an atypical nested A+-D deletion in which 

the proximal deletion breakpoint was distal to the PRODH gene (Guo et al., 2018). Similar 

IQ score distributions were observed between A+-D and AD groups (Supplementary Fig. 2), 

nevertheless, we did not include the 17 A+-D samples in this study of IQ. A total of 307 

(20.8%) had severe CHD, while 637 (43.1%) had a normal heart and/or aortic arch. We 

found that 1,353 (91.5%) had an AD deletion, 74 (5%) had an AB deletion, 27 (1.8%) had 

an AC deletion and 7 (0.5%) had a BD deletion.
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IQ score distribution among subjects with 22q11.2DS

Histogram plots depicting the frequency distribution of full scale IQ (72.41 ±13.72; Fig. 

1A), verbal IQ (75.91±14.46; Fig. 1B) and performance IQ (73.01±13.71; Fig. 1C) of the 

entire cohort including all deletion sizes, are shown in Fig. 1. We found that verbal IQ was 

slightly higher (3 points) than performance IQ in this cohort. Histogram plots also included 

fitted normal curves, as well as the IQ distribution curve in the general population, 

respectively (Fig. 1A-C). Overall, in the general population, full scale IQ is normally 

distributed with a mean score of 100 and a SD of 15. Distribution of full scale IQ, verbal IQ 

and performance IQ was shifted to the left in subjects with 22q11.2DS as compared with 

those of the general population by almost two SDs (Fig. 1A-C) (all P values < 0.01 as 

determined by independent samples t-test; Fig. 1D), which is consistent with previous 

reports of smaller sized cohorts (Hooper et al., 2013; Niarchou et al., 2014).

IQ score distribution among demographic variables in the cohort of subjects with 
22q11.2DS

The AD and AB deletion type groups had the largest sample sizes. Statistical power 

calculations of the AD and AB groups is presented in Supplementary Table 4. We therefore 

limited the analysis of IQ and deletion type to the AD and AB groups. Compared with 

males, the full scale and performance IQ scores in females with 22q11.2DS with the AD and 

AB deletions were 1-2 points higher (Fig. 2, full scale IQ was 71.7±14.2 and performance 

IQ was 72.0±14.1; full scale IQ was 73.1±13.2 and performance IQ was 73.9±13.3 for males 

and females, respectively). These differences in both full scale and performance IQ scores, 

but not in verbal IQ, between males and females were significant P <0.05, despite their small 

effect sizes (Fig. 2).

The age distribution in both the AD and AB groups were shifted towards having more than 

50% of patients with an age between 6-20 years old and less than 50% with an age between 

21-66 years (Supplementary Fig. 3, both P <0.05 for the one-sample Kolmogorov-Smirnov 

test for normality). However, the age distribution was not significantly different between the 

AD and AB groups (asymptotic P > 0.05 for independent-samples -Whitney U test). 

Moreover, no significant differences were observed for median ages between the two groups 

(age = 12.67±9.67 and 13.08±11.54 for AD and AB groups, respectively) according to the 

independent-samples non-parametric Median Test, as shown in Supplementary Fig. 3. We 

also evaluated the distributions of categorical variables between AD and AB groups 

(Supplementary Table 5). As is shown, the distribution of sex, CHD status, IQ test types and 

study sites are not significant (all P >0.05).

IQ score distribution in subjects with severe CHD as compared to those with a normal 
heart or aortic arch

Individuals in the general population with severe CHD that require surgery for survival, may 

have increased risk for neurodevelopmental deficits as measured, in part, by the presence of 

lower IQ scores (Latal, 2016; Marino et al., 2012). The prevalence of severe CHD in our 

cohort is shown in Table I. There was no significant difference between the prevalence of 

severe CHD in the AD (32.5%, 593 controls versus 286 severe CHD cases) or AB (36.2% 

30 controls versus 17 severe CHD cases, asymptotic P>0.05) using the Pearson chi-square 
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test. We found a decrease of <1 point in full scale IQ, verbal IQ and performance IQ in 

22q11.2 subjects with severe CHD compared with 22q11.2 subjects with no detectable 

cardiac or aortic arch defects (Fig. 3). These differences were not significant (all three P 
>0.05).

IQ distribution among 22q11.2DS patients with AB and AD deletion types

We found that full scale IQ, verbal IQ and performance IQ scores increased by 0.3-0.5 SD in 

the AB group compared to the AD group as shown in Fig. 4. We then conducted multiple 

linear regression analyses between IQ and deletion type with an adjustment of age, gender 

and collection site (Table II). We found an increase of 5.64, 7.06 and 4.42 points for full 

scale IQ, verbal IQ and performance IQ, respectively, all P <0.05. Adjusted R square/

variance for full scale IQ, verbal IQ and performance IQ was 0.047, 0.037 and 0.05, 

respectively. Thus, while the presence of a deletion confers the highest influence on IQ, 

subjects with the smaller AB deletion were relatively less affected than those with the 

typical, larger AD deletion. Taking US and Canada as a reference, significantly lower IQ 

scores was observed for Northern Europe. Variances detected may reflect differences in 

health care structure/availability and/or education system. To check this further, we ran a 

stratified multivariable linear regression analysis of IQ and deletion size with adjustment of 

sex and age for each research site, respectively (Supplementary Table 3). Although the 

differences of IQ between AD and AB are not always significant for each of the 21 research 

sites, the direction of beta were consistent across the different groups.

DISCUSSION

In this report, we examined IQ scores in a large cohort of 1,478 subjects with 22q11.2DS, 

obtained predominantly as part of the International 22q11.2 Brain and Behavior Consortium 

(Gur et al., 2017). Previously, it has been shown that verbal IQ scores are 6-8 points higher 

than performance IQ scores in individuals with 22q11.2DS (Antshel, Kates, Roizen, 

Fremont, & Shprintzen, 2005; De Smedt et al., 2007; Moss et al., 1999; Swillen et al., 1997). 

In this large cohort, we found that verbal IQ scores were only 3 points higher than 

performance IQ scores. Some previous reported data showed there was a small increase of 

IQ in females versus males, although in other studies, there was no increase found (Antshel 

et al., 2005; De Smedt et al., 2007; Klaassen et al., 2016; Moss et al., 1999; Niklasson & 

Gillberg, 2010; Van Aken et al., 2007). In this cohort, we found that full scale and 

performance IQ were only 1-2 points higher in females but this small difference was 

statistically significant. While a significant difference (P = 0.017) in age distribution 

between males (15.03±9.20) and females (16.78±10.43) was observed, the effect of gender 

on IQ may be slightly biased by this difference in age distribution. We found that among the 

different research sites for this study, our data was consistent with the finding that those with 

the AD deletion had a lower IQ than those with the AB deletion.

There is a consideration that individuals that inherit a 22q11.2 deletion tend to have a lower 

IQ than those with a de novo deletion (De Smedt et al., 2007; Swillen et al., 1997). When 

correcting for education, this difference disappeared (De Smedt et al., 2007). From the 

literature, >90% of individuals affected with 22q11.2DS have a de novo deletion, 
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irrespective of deletion size (Driscoll, Budarf, & Emanuel, 1992; Lindsay et al., 1995; 

Morrow et al., 1995). One limitation of our study is that we have not yet obtained 

information on the parental deletion status or education level. We are currently in the process 

of getting such information for the cohort presented here, but as of yet it is quite incomplete.

It is well established using longitudinal studies (Duijff et al., 2012; Gothelf, Penniman, Gu, 

Eliez, & Reiss, 2007) and supported by cross-sectional studies (Antshel et al., 2010; Duijff 

et al., 2012; Golding-Kushner, Weller, & Shprintzen, 1985; Gothelf, Aviram-Goldring, et al., 

2007; Gothelf et al., 2005; Niklasson & Gillberg, 2010; Shprintzen, 2000) that individuals 

with 22q11.2DS show decline in IQ scores, referred to as cognitive decline. In the largest 

study to date of 829 subjects with 22q11.2DS, ages 8-24 years, cognitive decline was quite 

notable. There was a reported decline of full scale IQ of 7.04 points, verbal IQ of 9.02 points 

and performance IQ of 5.09 points (Vorstman et al., 2015). We checked whether there was a 

bias of age between subjects in the AB group versus those with the AD group, and we didn’t 

find a significant difference. However, we are aware that our analysis has limitations in that 

the IQ scores represent summaries of cognitive abilities and may not reflect with the 

complete picture of possible cognitive differences between the deletion size cohorts.

CHD that requires surgery to repair were reported to be associated with neurodevelopmental 

deficits (Latal, 2016; Marino et al., 2012). In this report, we tested whether 22q11.2DS 

individuals with severe CHD that usually required surgical repair (tetralogy of Fallot, 

persistent truncus arteriosus and interrupted aortic arch type B; all complex cardiac outflow 

tract anomalies) had lower IQ scores. However, we did not find a correlation between severe 

CHD and altered IQ values for our cohort of 22q11.2DS subjects, suggesting that different 

mechanisms contribute to severe CHD and to cognition as measured by IQ tests in this 

22q11.2DS group. Further, it suggests that surgical intervention to correct cardiac 

malformations do not further impair the IQ.

The phenotypic spectrum of 22q11.2DS is quite wide and variable. One possible mechanism 

contributing to the observed variable penetrance and expressivity could be the size of the 

deletion. It is only possible to evaluate deletion size with a large enough cohort because 

those with less common, nested deletions might be underpowered for statistical analyses. In 

this study, the only nested deletion type with sufficient statistical power to analyze in 

comparison to the typical 3 Mb, AD deletion was the nested 1.5 Mb, AB deletion. Our 

results indicate that the presence of the deletion, regardless of the AB or AD type, exerts 

most of the influence on IQ, resulting in ID in half the population. However, individuals with 

the AD deletion have a lower full scale IQ (6.25 points), lower verbal IQ (8.17 points) and 

lower performance IQ (4.03 points) than those with the AB deletion. This data suggests that 

genes in the AB deletion most likely account for the observed lowered IQ in 22q11DS 

relative to typical developing individuals, but that the BD deletion exerts an additional 

negative influence on IQ.

There are 30 known protein-coding genes that span the AB region on 22q11.2 

(Supplementary Fig. 4). Many are implicated in brain development or function (Maynard et 

al., 2003; Meechan et al., 2015). Coding genes implicated in cognitive and/or 

neuropsychiatric findings include TBX1 (Cioffi et al., 2014; Hiroi, Hiramoto, Harper, 
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Suzuki, & Boku, 2012), COMT, encoding catechol-O-methyltansferase (Dickinson & 

Elvevag, 2009; Guo et al., 2017; Radoeva et al., 2014; Vorstman et al., 2015), PRODH, 

encoding proline oxidase (Guo et al., 2017; Radoeva et al., 2014) and DGCR8, encoding an 

enzyme for miRNA processing (Forstner, Degenhardt, Schratt, & Nothen, 2013) among 

many others (Karayiorgou, Simon, & Gogos, 2010; Meechan et al., 2015). Thus, it is likely 

that haploinsufficiency of one or more of these genes is important for IQ and cognition in 

the AB region.

Upon examination of the literature, individuals with a BD or nested CD deletion have been 

identified with developmental delay and/or cognitive impairment (Rump et al., 2014). 

Amongst a set of 46 subjects combined with the literature, 9 of 17 individuals with a BD 

deletion (53%) and 16 of 29 with a CD deletion (55%) were affected with developmental 

delay and cognitive impairment (Rump et al., 2014). These data suggest that important genes 

may lie within the nested CD region. Among the nine coding genes in the CD region, 

SNAP29 (synaptosome associated protein 29, and CRKL (CRK like proto-oncogene, 

adaptor protein) are of particular interest. SNAP29 encodes a protein required for 

intracellular trafficking and homozygous inactivating mutations cause a rare disorder termed 

CEDNIK syndrome, associated with cerebral dysgenesis, neuropathy, ichthyosis, and 

keratoderma (Sprecher et al., 2005). Patients with 22q11.2DS and related brain 

malformations result from an inactivating point mutation in SNAP29 on the remaining allele 

(McDonald-McGinn et al., 2013). The CRKL gene encodes a cytoplasmic adaptor for RELN 

(Reelin) signaling important for neuronal migration and positioning (Ballif et al., 2004; Park 

& Curran, 2008). The function of the other genes in the brain, if any, are not well-established 

as of yet.

While this effect of deletion size is small, it is also significant. We must point out a few 

important limitations of the analysis and caveats that require additional investigation. The 

first and most obvious question relates to whether or not there is a qualitative difference in 

the type of cognitive impairment that results in the IQ difference. This is an important 

question that the study does not address. Another limitation is that IQ tests are constructed 

for the general population rather than a population with cognitive impairment like 

22q11.2DS and therefore do not adequately capture their cognitive performance. This might 

have also confounded the analyses as individuals with IQ scores lower than 60, for example, 

might have missing values on this analysis. Other confounders like environmental 

interactions, socioeconomic status, education, genetic background and additional genomic 

changes, including CNV (Jensen et al., 2017) might have also played a role. Further, our 

study does not suggest that there could be a difference in the rehabilitation or treatment of 

patients with the AD versus AB deletion. We do not yet know if these findings can translate 

to the clinical realm. This current study’s size and scope cannot answer these questions 

based solely on IQ scores, but appropriate future translational research may yield important 

clues on how to focus specific treatment techniques to genomic data that will continue to 

emerge for this common genetic condition.
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Conclusions

In this report, we compared the AD versus AB deletion type in a large cohort of subjects 

with 22q11.2DS to determine if there is a difference in IQ levels. Here we found that over 

and beyond the overall effect of having a 22q11.2 deletion, those with the larger, 3 Mb AD 

deletion have slightly lower IQ scores than those with the nested, 1.5 Mb AB deletion. Our 

results indicate that while genes in the AB region are critically important, genes within the 

distal BD region may exert an additional contribution to the overall cognitive phenotype in 

these patients. This is consistent with findings in the literature that patients with the non-

overlapping BD or CD deletion also have cognitive impairment.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Distribution of full scale IQ, verbal IQ and performance IQ among subjects with 
22q11.2DS
(A-C) Frequency distribution of Full scale IQ (FSIQ, 72.41 ±13.7), verbal IQ (VIQ, 

75.91±14.5) and performance IQ (PIQ, 73.01±13.7) among the 22q11.2DS population and 

fitted normal curves to the right, respectively. The normal curves to the left denote the IQ 

distribution in general population (100 ±15). Distribution of IQ are shifted to the left as 

compared to those in general population by almost 2 SDs. (D) Differences of mean IQ 

scores were determined by independent samples t-test. ** P <0.01. Numbers in the bars 
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denote the samples with FSIQ, VIQ and PIQ, available, respectively. FSIQ, VIQ and PIQ 

were all significantly lower than those of general population.
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Fig. 2. IQ distribution between males and females within the 22q11.2DS population
IQ values are expressed as mean±SD. An independent-samples t-test was conducted to 

compare the mean IQ scores in male versus female subjects. Significant differences are 

denoted by an asterisk in bar plots with P < 0.05. Numbers in the bars denote samples size of 

each category.
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Fig. 3. Full scale, verbal and performance IQ distribution between cases with severe CHD and 
control subjects with no CHD within the 22q11.2DS population
Severe CHD is defined as subjects with either tetralogy of Fallot, persistent truncus 

arteriosus or interrupted aortic arch type B. Control subjects for CHD cases had 22q11.2DS 

but no detectable heart or aortic arch defect. IQ values were expressed as mean±SD. An 

independent-samples t-test was conducted to compare IQ scores in subjects with the 

presence of severe CHD and controls within the 22q11.2DS cohort. All P values were > 

0.05. Numbers in the bars denote the sample size of each category.
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Fig. 4. IQ score differences between AD and AB deletion types in subjects with 22q11.2DS
IQ values were expressed as mean±SD. An independent-samples t-test was conducted to 

compare mean IQ scores in subjects carrying the AB deletion with those carrying the AD 

deletion. ***P < 0.001, **P < 0.01, *P< 0.05. Numbers in the shaded bars denote the samples 

size in each category. Full scale IQ, verbal IQ and performance IQ decreased by 0.3-0.5 SD 

among those in the AD group as compared with those in the AB group.
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Table I

Demographic characteristics of 22q11.2DS population

Total no. subjects = 1,478
No. (%) for categorical variables

mean±SD for continuous variables

Gender

Male 709(48.0)

Female 769(52.0)

Study sites

US & Canada 618(41.8)

Northern_Europe 430(29.1)

Southern_Europe 265(17.9)

UK & Australia 165(11.2)

CHDa

No 637(43.1)

Yes 307(20.8)

Missing 534(36.2)

Deletion type

AD 1353(91.5)

A+-D 17(1.2)

AC 27(1.8)

AB 74(5)

BD 7(0.5)

Age 15.9±9.9

FSIQb 72.41±13.7

VIQc 75.91±14.5

PIQd 73.01±13.7

a
CHD, congenital heart disease, is defined as subjects with Tetralogy of Fallot (TOF), Persistent Truncus Arteriosus (PTA) or Interrupted Aortic 

Arch Type B (IAAB);

b
Full scale IQ;

c
Verbal IQ,

d
Performance IQ.
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