Skip to main content
. 2018 Oct 25;9:495. doi: 10.3389/fgene.2018.00495

Table 4.

Comparison with other feature representation algorithms.

Dataset-S51 Acc Sn Sp MCC Dataset-H41 Acc Sn Sp MCC
RFH 0.7295 0.7582 0.7008 0.4598 RFH 0.9097 0.8195 1 0.8332
PseDNC 0.64 0.6993 0.5807 0.282 PseDNC 0.6956 0.5973 0.7938 0.3989
PCP 0.627 0.6389 0.6151 0.2541 PCP 0.6447 0.6177 0.6717 0.2898
KNN 0.7131 0.6917 0.7345 0.4266 KNN 0.8235 0.7363 0.9106 0.657
AthMethPre 0.7536 0.7605 0.7467 0.5073 AthMethPre 0.9071 0.8142 1 0.8286
Our features 0.7425 0.7521 0.733 0.4852 Our features 0.9102 0.8204 1 0.8339
Dataset-M41 Acc Sn Sp MCC Dataset-A101 Acc Sn Sp MCC
RFH 0.8903 0.7848 0.9959 0.7987 RFH 0.7993 0.7705 0.8281 0.5996
PseDNC 0.6228 0.6386 0.6069 0.2456 PseDNC 0.8138 0.8057 0.8219 0.6277
PCP 0.6166 0.5669 0.6662 0.2343 PCP 0.8257 0.8281 0.8233 0.6514
KNN 0.8283 0.7448 0.9117 0.6659 KNN 0.8238 0.8462 0.8014 0.6483
AthMethPre 0.8897 0.7793 1 0.799 AthMethPre 0.85 0.85 0.85 0.7
Our features 0.8924 0.789 0.9959 0.8022 Our features 0.8105 0.8067 0.8143 0.6210