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Sonic Hedgehog (SHH) signaling has been most widely known for its role in specifying region and cell-type identity during embryonic
morphogenesis. This mini-review accompanies a 2018 SFN mini-symposium that addresses an emerging body of research focused on
understanding the diverse roles for Shh signaling in a wide range of contexts in neurodevelopment and, more recently, in the mature CNS.
Such research shows that Shh affects the function of brain circuits, including the production and maintenance of diverse cell types and the
establishment of wiring specificity. Here, we review these novel and unexpected functions and the unanswered questions regarding the
role of SHH and its signaling pathway members in these cases.

Introduction
Sonic Hedgehog (SHH) is a secreted factor; the protein is heavily
modified through cleavage and posttranslational modification
and its release from producing cells can also be modulated by
interactions with Dispatched, Scube2, and heparan sulfate pro-
teoglycan (Burke et al., 1999; Rubin et al., 2002; Tukachinsky et
al., 2016). A growing list of genes encoding Shh receptor and
coreceptor proteins, including BOC, CDON, GAS1, and glypi-
cans, are expressed in cell-type- and developmental-stage-specific
patterns in the nervous system and this variety likely contributes
to the diversity of cellular responses to Shh.

The core components of the canonical Shh signaling pathway
include Patched1 (PTCH1), the 12-pass transmembrane receptor
that binds SHH directly; Smoothened (SMO), an obligate core-

ceptor the repression of which by PTCH1 is relieved upon ligand
binding; and the GLI family of transcription factors, which in-
cludes GLI1, GLI2, and GLI3. Binding of PTCH1 by the SHH
ligand releases the repression of SMO, enabling the subsequent
modulation of the cleavage and stability of GLI2 and GLI3. Ulti-
mately, this shift in processing of GLI2/3 results in a shift from
transcriptional repression mediated through GLI3R to transcrip-
tional activation and, at the highest levels of activity, GLI2-
mediated transcription of the constitutive activator GLI1. In
many, but not all cases, the interactions among PTCH1, SMO,
and modulation of GLI proteins appear to be localized to the
primary cilium, a microtubule-based organelle that functions as a
signaling center within the cell. Developmental disorders affect-
ing the primary cilium share many features with disorders in
which Shh pathway components are disrupted.

The novel roles reviewed here require various components
of this multifaceted pathway, with some events requiring “ca-
nonical” induction of transcriptional programs and others
acting through signal transduction that is independent of the
GLI factors. Recent investigations have identified functions
for Shh pathway members in the regulation of early and late
stem and progenitor cells, in the establishment of circuitry,
and in communication between neurons and astrocytes within
mature circuitry.

Shh signaling in neocortical progenitor expansion
Shh signaling has a long-known role in the regulation of neural
progenitors (NPs) of the rostral neural tube, where it is required
to establish distinct brain regions and to balance the number and
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type of neurons and glial cells produced (Fuccillo et al., 2006). In
the developing neocortex, the primary NPs are the ventricular
radial glia (vRG, also called apical RG), which produce neurons
directly or indirectly via the outer RG (oRG, also called basal RG)
and/or intermediate progenitors (IPs). Neocortical expansion and
folding requires two coordinated processes that depend on NPs: the
increased production and the tangential dispersion of new neurons.
Recent findings show that Shh signaling is central to the mechanisms
that promote growth and folding of the neocortex.

In mice, perturbations in Shh signaling cause defective prolif-
eration of IPs and microcephaly (Komada et al., 2008). Further-
more, a recent study showed that Shh signaling is sufficient for
both IP and oRG expansion and neocortical growth (Wang et al.,
2016). Remarkably, elevated Shh signaling increases upper layer
neuron production from mid-corticogenesis at embryonic day
13.5 (E13.5) on, leading to neocortical growth and folding in the
otherwise-smooth mouse neocortex. Ectopic activation of high
Shh signaling, via induction of the SMOM2 allele, which encodes
a tumor-derived constitutively active SMO protein, elicits two
developmental characteristics that are absent in mouse but have
been proposed to be necessary and sufficient for the evolution of
an expanded and folded neocortex: oRG expansion and recurrent
self-amplifying IP divisions (Lewitus et al., 2014). Elevated Shh
signaling in early corticogenesis (E9 –E10) misspecifies cortical
NPs, and decreases IPs (Dave et al., 2011; Shikata et al., 2011;
Wang et al., 2011; Yabut et al., 2015), demonstrating develop-
mental stage-specific functions of Shh signaling.

Shh signaling is also important for neocortical growth in
gyrencephalic species. GLI1, the expression of which provides a
faithful readout of Shh signaling, is highly expressed in human
vRG (Wang et al., 2016) and mutations disrupting Shh signaling
cause microcephaly in humans (Heussler et al., 2002; Derwińska
et al., 2009; Izumi et al., 2011). In ferrets, Gli1 expression is sig-
nificantly higher in the ventricular zone (VZ) area that generates
a thick subventricular zone (SVZ) containing many oRG, than in
the VZ area that gives rise to a thin SVZ containing fewer oRG (de
Juan Romero et al., 2015). Consistent with this, in human cere-
bral organoids (Lancaster et al., 2013), blocking SHH signaling
decreases the number of oRG detected in human cerebral or-
ganoids (Wang et al., 2016). GLI1 transcription is significantly
higher in human fetal neocortex than in mouse embryonic cortex
(Wang et al., 2016), consistent with more abundant oRG and IPs
in human than mouse fetal cortex. Understanding underlying
mechanisms for this differential Shh signaling activity, as well as
molecular mechanisms by which Shh signaling expands oRG and
IPs, will provide fundamental insights into the development and
evolution of mammalian brains and the etiology of neurodevel-
opmental diseases.

Beyond its multifaceted activity in the neocortex, Shh has a
well established role in the patterning of the subpallium, in-
cluding the medial ganglionic eminence and the more caudal
neural tube, where it is a major ventralizing factor (Echelard et
al., 1993; Riddle et al., 1993; Ericson et al., 1995; Kohtz et al.,
1998). More recent studies of Shh signaling in late embryogen-
esis have also revealed a requirement for cortical neuron- and
interneuron-derived SHH ligand in the production of oligo-
dendrocytes (Winkler et al., 2018). In postnatal brain, the
persistent stem cell niches of both the ventricular subventricu-
lar zone (V-SVZ) and dentate gyrus (DG) are sites of contin-
ued Shh signaling, with multiple effects on neural versus glial
fate selection and stem cell activity.

Shh regulates positional identity in the postnatal
neural stem cell (NSC) niche
After birth, Gli1 transcript displays a localized pattern within the
V-SVZ. This niche of glial-like progenitors is organized into dis-
tinct subdomains committed to specific progeny fates, with ven-
tral stem cells primarily generating immature neuroblasts, which
then integrate into the olfactory bulb as deep granule interneu-
rons. Examination of reporter alleles driven by Gli1 (Ahn and
Joyner, 2004, 2005) and lineage tracing at distinct postnatal time
points in the mouse revealed that, whereas SMO is broadly ex-
pressed, high SHH activity and Gli1 expression are predomi-
nantly ventral, where they are necessary and sufficient to generate
deep granule interneurons in the olfactory bulb (Ihrie et al.,
2011). However, dorsal V-SVZ Gli1 is also observed during a
wave of early postnatal oligodendrogenesis (Tong et al., 2015).
Forced ectopic activation of high Shh signaling via induction of
the SMOM2 allele is sufficient to drive Gli1 expression and to
shift cell fate to oligodendroglial and deep granule cell fates, in-
dicating that high SHH signaling can drive the adoption of ven-
tral identities in this postnatal niche. Removal of inhibition of
this pathway (via deletion of the transcriptional repressor GLI3)
in dorsal cells, transplantation of dorsal cells to a ventral location,
or the combination of these two manipulations does not result in
a change of identity, suggesting that the induction of GLI1 is
tightly regulated and might not be overcome in all experimental
conditions (Petrova et al., 2013) (R.A.I., unpublished data).

Intriguingly, modulations of other Shh pathway members in-
dicate that lower levels of pathway activity, which would result in
relief of GLI2/3-mediated repression but not expression of GLI1,
likely have additional, broader functions in regulating the full
dorsoventral stem cell niche. Ablation of the inhibitory corecep-
tor PTCH1 results in an accumulation of quiescent NSCs at the
expense of more proliferative and differentiated progeny, indi-
cating that inhibition of Shh signaling is required to maintain the
balance between NSC quiescence and activation (Daynac et al.,
2016). Ablation of GLI3 throughout the V-SVZ niche is sufficient
to rescue many of the broad neurogenesis phenotypes seen when
Smoothened is lost, suggesting that relief from GLI3-mediated
repression by low Shh signaling is required for normal stem cell
activity (Balordi and Fishell, 2007a,b; Petrova et al., 2013). Simi-
larly, in the DG, detection of transcript and study of reporter
alleles indicates that GLI1-positive cells are present within the
stem cell pool and that SMO ablation (with a consequent increase
in GLI3-mediated repression) significantly disrupts neurogenic
activity (Ahn and Joyner, 2005; Han et al., 2008; Shin et al., 2015).
In contrast to the V-SVZ, which is spread over a large spatial area
and generates migratory progeny that integrate far from the
niche, the DG is contained within a smaller area and generates
neurons that integrate locally. As a consequence, potential heter-
ogeneity in the function or localization of specific NSC subsets is
not yet fully delineated in this niche.

The multiple requirements for Shh pathway members in the
postnatal stem cell niches of the V-SVZ and DG raise several
questions for future research. Intriguingly, studies of GLI1 ex-
pression in models of demyelinating lesions indicate that,
whereas GLI1-expressing cells are mobilized to generate oligo-
dendrocytes after damage, inhibition of GLI1 enhances the mat-
uration of these oligodendrocytes and recovery after injury
(Samanta et al., 2015). It will be of interest to test whether this
production of oligodendrocytes after injury recapitulates the ear-
lier postnatal oligodendrogenesis program. Similarly, it is not yet
clear whether the pattern of Shh activity in the stem cell niche is
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altered after other injuries or after repeated antimitotic challenge.
Finally, whereas both the choroid plexus and local neurons in the
basal forebrain and hilus have been identified as potential sources
of SHH ligand, how this ligand is dynamically conveyed to GLI1-
expressing cells and the broader V-SVZ and DG niches is not yet
clear (Lai et al., 2003; Machold et al., 2003). Recent findings using
live-tissue imaging in embryonic tissue indicate that, in some
cases, SHH ligand may also be transported over longer distances
via specialized signaling filopodia known as cytonemes or other
dynamic projections that are not evident in fixed specimens
(Sanders et al., 2013). However, whether such projections occur
in the more restrictive tissue environment of the mature, myelin-
ated brain remains to be investigated.

Shh signaling during circuit wiring
As secreted molecules that act over long distances, morphogens
such as SHH are ideally situated to guide axonal projections as
they innervate target regions and establish connectivity. Indeed,
multiple morphogens, including WNTs, BMPs, and SHH, are
repurposed to mediate axon guidance in multiple regions of the
developing nervous system (Yam and Charron, 2013; Zuñiga and
Stoeckli, 2017). The ability of SHH to function as an axon guid-
ance molecule was first demonstrated in RGCs (Trousse et al.,
2001). Recent work has elucidated the molecular underpinnings
of Shh-mediated guidance in two critical processes: proper cross-
ing of commissural axons at the spinal cord midline commissure
and sorting of contralaterally and ipsilaterally projecting retinal
ganglion cells (contra- and ipsi-RGCs) at the optic chiasm. In the
mouse visual system, ipsi-RGCs originating from the ventrotem-
poral retina do not cross the optic chiasm, facilitating coherent
processing of the contralateral visual hemifield. Disruption of
Shh signaling through function-blocking antibodies or Boc dele-
tion disrupts axon organization at the chiasm, ipsi-RGC guid-
ance, and eye-specific segregation in the retinorecipient dorsal
lateral geniculate nucleus (Sánchez-Camacho and Bovolenta,
2008; Fabre et al., 2010; Sánchez-Arrones et al., 2013). Shh is
expressed exclusively by contra-RGCs, whereas Boc and Ptc2 are
expressed by ipsi-RGCs (Sánchez-Camacho and Bovolenta,
2008). Furthermore, Boc expression in contra-RGCs is sufficient
to misroute them ipsilaterally (Fabre et al., 2010). Shh is not
expressed by cells at the optic chiasm, suggesting a mechanism for
guidance distinct from that used by spinal commissural axons. A
recent, elegant study demonstrated that Shh expressed by contra-
RGCs is trafficked to the chiasm, where it is enriched and repels
ipsi-RGCs (Peng et al., 2018). This type of trans-axonal signaling
represents a novel mechanism to ensure proper sorting at the
chiasm. Intriguingly, recent data suggest that the Shh signaling
component (Hedgehog interacting protein (HHIP) is also pres-
ent in retinorecipient regions (U. Javed and J.W.T., unpublished
observations), raising the possibility that this multifunctional
molecule may serve yet another purpose in the assembly of visual
system circuitry.

Neurons located in the developing dorsal spinal cord extend
axons toward the ventral floor plate, where they cross to the
contralateral side and turn anteriorly (Evans and Bashaw, 2010).
Similar to other guidance cues, SHH plays a dual role in this
system, acting as both a chemoattractant and a chemorepellant.
In combination with Netrin1, SHH is secreted from the floor
plate, establishing a high-ventral to low-dorsal gradient of at-
tractants for dorsal neurons (Charron et al., 2003; Kennedy et al.,
2006). Shh-mediated attraction requires SMO (Charron et al.,
2003), as well as the coreceptor BOC (Okada et al., 2006). Unlike
its morphogenic effects, Shh-induced attraction is not transcrip-

tionally mediated, but it does require new protein translation.
Through a noncanonical pathway, SHH activates Src family ki-
nases (SFKs) (Yam et al., 2009), well known regulators of the
cytoskeleton during axon guidance (Robles et al., 2005). SFK-
phosphorylated zipcode binding protein 1 (ZBP1) then induces
local translation of �-actin in the growth cone, driving axon at-
traction to the floor plate (Lepelletier et al., 2017). More recently,
it has been shown that the guanine nucleotide exchange factors
DOCK 3 and 4 and their binding partners ELMO1 and 2 are
required for cytoskeletal remodeling during axon attraction. Af-
ter axons have crossed the midline, temporally regulated expres-
sion of 14-3-3 adapter protein isoforms, which reduce protein
kinase A activity, function to switch SHH responsiveness from
attraction to repulsion (Yam et al., 2012). After midline crossing,
axons are repelled toward the anterior by a posterior-high gradi-
ent of SHH along the neural tube.

HHIP is a SHH receptor that has also been implicated in axon
repulsion. In the developing chick spinal cord, Hhip is transiently
expressed at the time when axons of commissural neurons cross
the midline (Bourikas et al., 2005). Hhip upregulation is triggered
by SHH binding to Glypican1 (Gpc1), a membrane-tethered gly-
coprotein (Wilson and Stoeckli, 2013). How Gpc1 signals to ac-
tivate HHIP expression is unclear, as is the mechanism by which
HHIP, which lacks an intracellular domain, mediates repulsion
from the midline. One mechanism by which HHIP could influence
axon guidance, however, is to sequester SHH and thus inactivate
signaling (Chuang and McMahon, 1999). Hhip� /�embryos did
not display guidance defects, raising the possibility that HHIP may
function redundantly, as has been observed with other SHH recep-
tors (Allen et al., 2011; Yam et al., 2012). Alternatively, HHIP may
have essential functions in other aspects of circuit development in-
dependent of axon repulsion.

Shh signaling during synapse formation
After an axon reaches its target region, it is surrounded by a sea of
potential synaptic partners, of which only a subset are appropri-
ate targets. Although tremendous progress has been made in
characterizing many of the long-range cues required to guide
axons into their target region, the cellular mechanism by which
neurons choose synaptic partners is still not fully understood
(Charron et al., 2003; Yam and Charron, 2013; Belgacem et al.,
2016; Zuñiga and Stoeckli, 2017). Several lines of evidence in both
invertebrates and vertebrates suggest that Shh signaling has
prominent functional roles during synapse formation and circuit
assembly. In the Drosophila visual system, SHH derived from the
axons of photoreceptor neurons signals to synaptic target neu-
rons to promote differentiation and synapse formation (Chu et
al., 2006; Belgacem et al., 2016). Recent studies in the mammalian
cortex and hippocampus have likewise found that numerous
components of the Shh signaling pathway are expressed in spe-
cific neural cell types. Both SMO and PTCH1 have been observed
in the somatodendritic compartment of rat hippocampal neu-
rons (Masdeu et al., 2007; Petralia et al., 2011). Moreover, treat-
ment of cultured hippocampal neurons with exogenous SHH or
Shh agonist has been shown to induce presynaptic differentiation
and increase the size and number of presynaptic terminals
(Mitchell et al., 2012). SHH itself is expressed in a variety of
postmitotic neuronal cell types, including Purkinje cells (PCs) in
the cerebellum and CA1 and CA3 pyramidal neurons in the hip-
pocampus (Traiffort et al., 1999; Wechsler-Reya and Scott, 1999;
Garcia et al., 2010; Harwell et al., 2012). In the cortex, SHH is
expressed by layer V subcortical projection neurons, whereas
BOC is expressed by layer II/III intracortical projection neurons

9340 • J. Neurosci., October 31, 2018 • 38(44):9338 –9345 Garcia et al. • Emerging Novel Functions for a Classic Morphogen



that make synaptic connections onto layer V projection neurons
(Harwell et al., 2012). Loss of Boc or Shh in cortical neurons
disrupted functional connections between layer II/III neu-
rons and their layer V synaptic targets, whereas layer II/III
intralaminar connectivity was preserved. These studies demon-
strate a specific requirement for Shh signaling during the final
steps of synaptic partner selection in addition to its established
role in guiding axons to target regions.

The precise molecular mechanism by which SHH directs syn-
apse formation and specificity has yet to be addressed. It is cur-
rently unknown whether SHH functions as a permissive cue,
signaling to incoming axons to begin synapse formation in their
target layer, or as an instructive cue bound to the membrane of
specific subsets of SHH-expressing neurons. It has been shown
that Shh-dependent synapse formation between subsets of neu-
rons in the cortex requires Boc expression, which is necessary for
noncanonical Shh signaling. However, whether the same cyto-
skeletal regulatory pathways involved in Boc-dependent axon
guidance are also involved in synapse formation has yet to be
investigated.

Shh signaling in astroglial cells of the CNS
The conventional model of Shh signaling has focused predomi-
nantly on its roles in a wide range of neurodevelopmental pro-
cesses that largely affect the development of neurons and
oligodendrocytes. Less well understood is the role of Shh signal-
ing in astroglial cells, the principal cells in the postnatal and ma-
ture brain where Shh activity persists (Garcia et al., 2010; Farmer
et al., 2016). Astrocytes play key roles in a broad array of nervous
system processes, including the nervous system response to in-
jury and disease, maintenance of the blood– brain barrier (BBB),
as well as synapse formation and function (Sofroniew and
Vinters, 2010). The molecular mechanisms that mediate and reg-
ulate these processes are not fully understood, but an emerging
body of evidence suggests a role for Shh.

Astrocytes are enriched for Smo, Ptch1, and Gli1 (Cahoy et al.,
2008; Garcia et al., 2010; Ihrie et al., 2011; Farmer et al., 2016).
Gli1 expression is restricted to discrete subpopulations of astro-
cytes throughout the brain (Garcia et al., 2010; Farmer et al.,
2016), suggesting that Shh signaling may drive distinct molecular
and functional programs. Indeed, in the cerebellum, two classes
of astroglial cells possess unique molecular profiles that are de-
pendent on Shh signaling (Farmer and Murai, 2017). Bergmann
glia (BG) and velate astrocytes (VAs) were recognized as distinct
cell types �100 years ago by Santiago Ramón y Cajal (Ramón y
Cajal, 1911). BG are one of the few glial cells that retain a radial
morphology within the adult brain. Their somata reside adjacent
to PCs, where they project multiple radial processes across the
molecular layer to form end feet on the basal lamina of the pial
surface of the cerebellar cortex. This intimate association with
PCs places BG as critical players in cerebellar physiology (Ta-
kayasu et al., 2006; Bellamy, 2007; Saab et al., 2012; Wang et al.,
2012). Although BG have been extensively studied, very little is
known about VAs outside of their morphology and spontaneous
calcium transients (Chan-Palay and Palay, 1972; Hoogland and
Kuhn, 2010). VAs are nonpolarized cells that tile the granule cell
layer, where they project veil-like processes to envelope granule
neuron somata and mossy fiber terminals. Given their vastly dif-
ferent environments, it is not surprising that BG and VAs display
distinct gene expression profiles. BG express a defining array of
transporters, channels, and receptors, including high levels of the
glutamate transporter GLAST, the inward-rectifying potassium
channel Kir4.1, and the ionotropic AMPA receptors GluA1 and

GluA4 (Rothstein et al., 1994; Iino et al., 2001; Saab et al., 2012;
Farmer et al., 2016). Conversely, VAs express low levels of
GLAST, Kir4.1, GluA1, and GluA4 while expressing high levels of
the water channel AQP4 (Farmer et al., 2016).

The different location, morphology, and gene expression pro-
file of BG and VAs hints at different developmental trajectories;
however, it has been difficult to pinpoint where the two cell types
diverge during development (Buffo and Rossi, 2013). Surpris-
ingly, it was recently revealed that the molecular and physiologi-
cal properties of these astrocytes are determined, not by a
developmental program, but rather by persistent signaling from
PCs via the Shh pathway. Mature PCs secrete the SHH ligand,
which signals to adjacent BG. Blocking Shh signaling in mature
BG by Cre-Lox-mediated conditional KO of Smo results in the
loss of GLAST, GluA1, GluA4, and Kir4.1 protein and increased
expression of AQP4, an expression profile resembling that of VAs
(Figure 1). In addition to altering gene expression, loss of Smo
function in BG causes reduced AMPA-mediated currents indi-
cating that the Shh pathway regulates intrinsic physiological
properties of BG as well. Loss of the Shh ligand from discrete
clusters of mature PCs phenocopies Smo loss-of-function in ad-
jacent BG. Therefore, PC-derived Shh is responsible for main-
taining the unique gene expression and physiology of BG.
Interestingly, the profound changes in molecular phenotype
caused by disrupting Shh signaling are not associated with gross
alterations in BG morphology.

Whereas loss of Shh signaling in BG results in a VA-like mo-
lecular phenotype, activating the Shh pathway in mature VAs by
the conditional expression of constitutively active Smoothened
leads to the expression Glast, GluA1, and Kir4.1 and the reduc-
tion of AQP4. Therefore, mature VAs are not only responsive to
Shh signaling, but also adopt a BG-like expression profile when
the pathway is activated. As seen in BG, manipulating Shh signal-
ing in VAs does not grossly affect morphology.

Together, these data show that the Shh pathway is both nec-
essary and sufficient to maintain the BG-specific gene expression
and physiology in cerebellar astrocytes. Therefore, persistent
PC–BG signaling through Shh is a major determinant of cerebel-
lar astrocyte phenotype (Farmer et al., 2016). Interestingly, Shh
signaling does not regulate the expression of GLAST, GluA1, or
GluA4 in the cerebral cortex or hippocampus, but Kir4.1 is in-
duced in the forebrain and cerebellum in an Shh-dependent
manner (Farmer et al., 2016), suggesting that astrocytes from
different brain regions initiate distinct transcriptional programs
in response to Shh pathway activation. Furthermore, the data
suggest that, similar to the Gli1-expressing astrocyte-like adult
stem cells, the specialized properties of astrocytes require persis-
tent reinforcement by extrinsic cues, illustrating that cellular
diversity in the brain is not determined exclusively during devel-
opment, but rather continues to be refined into adulthood
(Farmer et al., 2016).

The observation that Shh regulates expression of several
synaptic-related proteins suggests that it may play a role in me-
diating astrocyte–synapse interactions. Indeed, a growing body of
evidence now shows that astrocytes regulate the formation of
specific synaptic connections in the developing cortex (Allen and
Eroglu, 2017). An intriguing question for the future is whether
neuron-derived SHH coordinates the activities of both Boc-
expressing neurons and Gli1-expressing astrocytes during circuit
assembly and how these activities compare with the effects of Shh
signaling in other functions of astrocytes.

In contrast to the cerebellum, where Gli1 expression identifies
distinct classes of astroglial cells that are regionally and morpho-
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logically defined, Gli1 astrocytes in the forebrain are distributed
both between and within distinct regions. Gli1 astrocytes are ab-
sent from all white matter tracts, but are found with varying ratios
to Gli1-negative astrocytes throughout the hypothalamus, thala-
mus, globus pallidus, septum, and cortex (Garcia et al., 2010).
Whether Shh drives distinct molecular or functional properties
of Gli1 astrocytes throughout these regions, as has been observed
in the cerebellum, is an area of active research.

Shh signaling during brain injury and repair
Although the functional significance of Shh signaling to astro-
cytes remains largely unknown, current efforts aimed at under-
standing its role in astrocyte function have focused largely on its
role in injury and neural repair. Astrocytes are central to the
injury response in the pathological CNS, mitigating secondary
damage through the production of the glial scar (Sofroniew,
2014). It has been widely reported that both SHH and GLI1 in-
crease in response to various injury models, including stroke and
stab wound and spinal cord injury (Bambakidis et al., 2003;
Amankulor et al., 2009; Sims et al., 2009; Bambakidis et al., 2010;
Pitter et al., 2014; Jin et al., 2015). Both pharmacological and
genetic interruption of Shh signaling reduce proliferation of re-
active astrocytes (Amankulor et al., 2009), which are required for

the production of a glial scar (Wanner et al., 2013). This suggests
that SHH may promote neural repair mechanisms through its
actions as a mitogen. Indeed, Shh signaling may promote prolif-
eration of local neural progenitors, as discussed above, and has
even been suggested to promote the adoption of NSC properties
by reactive astrocytes (Bambakidis et al., 2003; Bambakidis et al.,
2010; Sirko et al., 2013).

Beyond their role in glial scar formation, astrocyte interac-
tions with endothelial cells are critical for maintaining the BBB
(Abbott et al., 2006). Shh signaling between astrocytes and endo-
thelial cells restricts the permeability of the BBB, limiting the
extravasation of blood-derived inflammatory molecules into the
CNS (Alvarez et al., 2011). In addition, promoting Shh activity
dramatically reduces the infiltration of blood-borne macro-
phages into the CNS after a stab wound injury (R.V. Allahyari and
A.D.R.G., unpublished observations). This effect is abolished in
conditional mutants in which Smo is selectively deleted in astro-
cytes, suggesting a requirement for Shh signaling. Together, these
observations suggest that Shh signaling in astrocytes mitigates
inflammation and may provide neuroprotective benefit to reor-
ganization and restoration of homeostasis to tissues following
injury.

Figure 1. Simplified schematics of Shh signaling in the contexts discussed herein. Where known, the source of SHH ligand is indicated in blue and Shh-responsive cells are shown in green. A, Shh
signaling, primarily indicated by expression of Gli1 in stem and progenitor cells, is critical for stem cell division and specification in both the embryonic and mature brain. In the embryonic neocortex,
Gli1 transcript is found in the VZ and the SVZ that contain radial glia and intermediate progenitors (all shown in green, inset) and elevation of Shh activity via expression of a constititutively active
Smo (SmoM2) results in an expansion of oRG and IP populations. During development, many potential sources of SHH ligand exist, but the key source driving cortical signaling is not yet known. In
the adult stem cell niche, Gli1 is found in a ventrally located subset of stem/progenitor cells and is sufficient to impose a ventral identity when ectopically expressed. In the mature niche, one likely
source of SHH ligand is local neurons in neighboring areas, as indicated by blue cell placement. B, During circuit assembly in the postnatal cortex, Shh is expressed by deep layer subcortical projection
neurons and functions to guide synapse formation with Boc expressing intracortical projection neurons within layer V. As the cortex matures, a subset of differentiated astrocytes expresses Gli1. C,
Axon guidance in the developing visual system, where Shh is expressed exclusively by contra-RGCs, whereas Boc and Ptch2 are expressed by ipsi-RGCs. Shh from contra-RGCs repels ipsi-RGCs,
facilitating proper axon sorting and eye-specific segregation. D, Maintenance of specialized astrocyte phenotypes in mature circuitry of the cerebellum. BG adopt specific molecular programs in
response to SHH produced by neighboring PCs.
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In contrast to reports describing upregulation of Shh in reac-
tive astrocytes, emerging studies have demonstrated a loss of Shh
signaling after injury. Using genetic labeling strategies, Gli1 ex-
pression in astrocytes is downregulated after injury, suggesting
that Shh signaling does not persist in reactive astrocytes (Mierzwa
et al., 2014) (R.V. Allahyari and A.D.R.G., unpublished observa-
tions). A major distinction between these studies and those re-
porting an increase in SHH and GLI1 is the use of genetic tools to
identify GLI1-expressing cells. Whereas earlier reports have re-
lied primarily on antibody labeling to identify SHH and GLI1,
studies reporting a reduction in Gli1 have relied on genetic mouse
models in which a tamoxifen-inducible Cre is targeted to the Gli1
locus, enabling cell- and temporally specific expression of re-
porter proteins (Ahn and Joyner, 2004). Resolving these appar-
ently conflicting observations will be an important step toward
gaining a better understanding of Shh signaling in astrocyte
function.

Conclusion
As discussed herein, a growing body of research has demon-
strated diverse functional requirements for Shh signaling in the
developing and mature nervous system. Although the core com-
ponents of this pathway recur in many of these cases, the diversity
of coreceptors and downstream pathway components that can
modulate Ptc1, Smo, and Gli1 mean that this pathway can act in
cell-type- and context-dependent patterns to execute a wide va-
riety of cellular programs. Future research focused on the delivery
and contextual interpretation of Shh signals by differing neural
cell types will continue to enhance our understanding of this
adaptable, multifunctional pathway.
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