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Risk for stress-sensitive psychopathologies differs in men and women, yet little is known about sex-dependent effects of stress on cellular
structure and function in corticolimbic regions implicated in these disorders. Determining how stress influences these regions in males
and females will deepen our understanding of the mechanisms underlying sex-biased psychopathology. Here, we discuss sex differences
in CRF regulation of arousal and cognition, glucocorticoid modulation of amygdalar physiology and alcohol consumption, the age-
dependent impact of social stress on prefrontal pyramidal cell excitability, stress effects on the prefrontal parvalbumin system in relation
to emotional behaviors, contributions of stress and gonadal hormones to stress effects on prefrontal glia, and alterations in corticolimbic
structure and function after cessation of chronic stress. These studies demonstrate that, while sex differences in stress effects may be
nuanced, nonuniform, and nonlinear, investigations of these differences are nonetheless critical for developing effective, sex-specific

treatments for psychological disorders.
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Introduction

Risk for psychopathology differs markedly in men and women.
For instance, men are at increased risk for disorders, such as
attention deficit hyperactivity disorder and schizophrenia
(Ramtekkar et al., 2010; Mendrek and Mancini-Marie, 2016).
Women are at increased risk for disorders such as depression and
post-traumatic stress disorder (PTSD) (Breslau, 2009; Kessler et
al., 2012), and often display more severe symptoms (de Graaf et
al., 2002; Schoevers etal., 2003). One environmental factor linked
to all of these disorders is stress. PTSD is precipitated by a trau-
matic event, and symptoms of depression, attention deficit hy-
peractivity disorder, and schizophrenia are exacerbated by
stressor exposure (Newman and Bland, 1994; Hirvikoski et al.,
2009). However, little is known about the sex-dependent effects
of stress on corticolimbic regions implicated in these disorders
(e.g., Bennett, 2011). Determining how stress influences cortico-
limbic functioning in males and females will deepen our knowl-
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edge of brain-behavior relationships and the mechanisms
underlying sex-biased disorders. This understanding is critical to
developing effective, sex-specific treatments for these disorders.
Here, we provide examples of new data demonstrating sex
differences in the neurobiological effects of stress across several
corticolimbic structures and cognitive and emotional processes.
We conclude with a discussion of the important themes that
emerge from these studies, emphasizing that sex differences in
the effects of stress are nuanced, nonuniform, and nonlinear.

CRF regulation of arousal and cognition

CREF, a key orchestrator of the stress response, can directly regu-
late corticolimbic regions, including the PEC, to alter anxiety and
working memory (Jaferi and Bhatnagar, 2007; Hupalo and Ber-
ridge, 2016). In addition, CRF can alter midbrain and hindbrain
monoaminergic and cholinergic nuclei. One consequence of
this regulation is that these neurotransmitter systems, in turn,
affect corticolimbic regions, influencing a range of behaviors
from stress coping strategies to decision making (Wood et al.,
2013; Bryce and Floresco, 2016). Recent comparisons indicate
that female rodents are more sensitive to CRF’s effects on
noradrenergic-mediated arousal, whereas male rodents are more
sensitive to the effects of CRF on cholinergic-mediated cognition
(Bangasser et al., 2018).

Stress activates the locus ceruleus (LC)-norepinephrine
arousal system via CRF. Specifically, CRF increases the firing rate
of LC neurons to cause norepinephrine release into corticolimbic
regions to heighten arousal (Valentino and Van Bockstaele,
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Figure 1.
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Sex differences in CRF, receptors in LC. A, In females, CRF, receptors bind to Gs and signal more through the cAMP-PKA pathway, but they do not internalize following stress and CRF

overexpression, leading to a large LC response to CRF. B, In males, CRF, receptors in LC internalize following stress and CRF overexpression, resulting in a smaller response to CRF. Adapted with

permission from Bangasser et al. (2018).

2005). There are sex differences in LC neuronal sensitivity to
CRF, such that, compared with males, LC neurons in females
respond to lower doses of CRF (Curtis et al., 2006; Bangasser et
al., 2010). The LC contains CRF, receptors, which are G-protein
(guanine-nucleotide binding protein) coupled receptors that
preferentially bind Gs (a type of G-protein) to activate the cAMP-
protein kinase A (PKA) signaling pathway (Grammatopoulos et
al., 2001). CRF, receptor activation of the cAMP-PKA signaling
pathway increases the firing rate of LC neurons (Jedema and
Grace, 2004). In females, increased LC neuronal sensitivity to
CRF results from greater CRF, receptor coupling to Gs and, con-
sequently, more activation of the cAMP-PKA pathway in females
than males (Fig. 1) (Bangasser et al., 2010; Bangasser and Wicks,
2017). There are also sex differences in CRF, receptor internal-
ization, a process by which saturating concentrations of CRF
cause receptors to be trafficked intracellularly, where they can no
longer be activated. Stressor exposure and CRF hypersecretion
induce CRF, receptor internalization in male, but not female, LC
neurons (Bangasser et al., 2010, 2013). This lack of internaliza-
tion in females may render their LC neurons less adaptable to
conditions of CRF hypersecretion, which have been reported in
patients with PTSD and depression (Bremner et al., 1997; Heuser
et al., 1998). Collectively, these studies reveal sex differences in
CRF, receptors in the LC that can bias females toward high
arousal during stressful events. Hyperarousal symptoms, such as
lack of concentration and sleep disturbance, are reported in
PTSD and depression, disorders that are more common in
women than men (Breslau, 2009; Kessler et al., 2012). Thus, if
similar CRF, receptor sex differences in the LC occur in humans,
they may contribute to this female vulnerability.

The basal forebrain cholinergic system is also regulated by
CRF, and new findings are revealing sex differences in this regu-
lation. One cognitive process mediated by this system is sustained
attention, the ability to monitor situations for intermittent and
unpredictable events (Sarter et al., 2001). Central administration
of CRF disrupts sustained attention in both male and female rats
(Cole et al., 2016). However, ovarian hormones modulate this
effect, such that CRF impairs attention in females only when they
are in estrous cycle stages with low levels of ovarian hormones.

Thus, ovarian hormones appear to be protective against the im-
pairing effect of CRF on attention. Unlike females, males, who
lack surges in ovarian hormones, would never benefit from their
protective effects. Bangasser et al. (2016) are beginning to inves-
tigate the effects of CRF on the medial septum (MS) cholinergic
system, which is critical for regulating hippocampal-dependent
learning. A low dose of CRF in the MS disrupts spatial learning
only in males, whereas a high dose impairs learning in both sexes
(Bangasser et al., 2016). Thus, the male MS is more sensitive to
CREF than is the female MS. The mechanisms that establish sex
differences in CRF regulation of the basal forebrain cholinergic
system are not yet well understood. However, this male vulnera-
bility to CRF-induced cognitive deficits could contribute, per-
haps in part, to the higher rates of attention deficit hyperactivity
disorder and schizophrenia in men than in women (Ramtekkar et
al., 2010; Mendrek and Mancini-Marie, 2016). These basic re-
search studies highlight sex differences in CRF sensitivity that
bias males and females toward different physiological responses
to stress, and perhaps to different risks for psychiatric disorders in
which symptoms are exacerbated by stress.

Glucocorticoid modulation of amygdala activity and
alcohol responsiveness
Alcohol use disorder (AUD) is characterized by recidivism to
alcohol use. While AUDs have historically been up to twice as
prevalent in males relative to females (World Health Organiza-
tion, 2014), this gender gap is narrowing (White et al., 2015).
Stress is a prominent trigger for relapse (Sinha, 2013), and may,
in part via the actions of glucocorticoids such as cortisol (corti-
costerone in rats), also accelerate the development of AUD
(Blaine and Sinha, 2017). Importantly, women with AUD expe-
rience greater craving to drink following exposure to stressful
images (Hartwell and Ray, 2013) and stronger relationships be-
tween past trauma severity and craving (Heffner et al., 2011),
relative to men. Elucidating sex differences in neuronal responses
to stressors and their impact on alcohol use is therefore crucial to
developing novel treatments for both sexes.

Studies using females or both sexes to investigate stress-
alcohol interactions in rodent models have been limited. Female
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rodents may show increased (Cozzoli et al., 2014) or decreased
(Chester et al., 2006, 2014) alcohol intake after stress, relative to
males, which may vary based on stressor (Cozzoli et al., 2014) or
age at stress exposure (Wille-Bille et al., 2017). Long-lasting ef-
fects of past stress on alcohol intake and relapse-like drinking
have only been studied in males (Casey, 1960; Lynch et al., 1999;
Logrip and Zorrilla, 2012; Logrip et al., 2014), although females
display greater sensitivity to acute stress-induced reinstatement
than do males (Bertholomey and Torregrossa, 2017). Females
also show heightened sensitivity to corticosterone treatment
throughout adolescence, which increased alcohol seeking in
adulthood in both sexes but tended to affect females more
(Bertholomey et al., 2016). Corticosterone may specifically regu-
late alcohol intake exacerbated by stress or anxiety, as glucocor-
ticoid receptor antagonism blunted alcohol seeking or drinking
in rats subsequent to stress or alcohol withdrawal (Simms et al.,
2012; Vendruscolo et al., 2012). Importantly, blockade of corti-
costerone’s actions only in the CeA replicated these effects
(Simms et al., 2012; Vendruscolo et al., 2015).

Escalating alcohol intake over time shifts the motivation to
drink toward alleviation of negative symptoms (Koob, 2015), and
the CeA is integral to this transition. The CeA synthesizes inputs
from amygdala subdivisions to regulate stress- and reward-
related behavioral responses (Janak and Tye, 2015); thus, changes
in the CeA and associated circuitry have a unique capacity to alter
behavior. How the CeA differentially adapts to stressors, alcohol,
and their co-occurrence in females versus males has been mini-
mally explored. In males, alcohol acutely activates GABAergic
and inhibits glutamatergic postsynaptic responses in the CeA,
effects exacerbated during alcohol withdrawal (Roberto et al.,
2003, 2004a,b). Stress similarly increases GABAergic responses
in CeA of males (Ciccocioppo et al., 2014), suggesting overlap in
the effects of alcohol and stress on CeA neurotransmission. In-
creased GABAergic and decreased glutamatergic responses
should similarly alter the output of the CeA, implicating CeA
neurons as a point of convergence for circuit adaptations to alco-
hol and stressors to produce maladaptive anxiety-like and
alcohol-drinking behaviors. Yet these conclusions based on data
collected in males fail to address possible sex differences in this
circuitry.

Given the CeA’s role in modulating anxiety-like and alcohol-
drinking behavior and the stronger association between stress
and alcohol intake in women, the CeA could be hypothesized as a
site for greater synergistic adaptations to stress and alcohol in
females. However, current data suggest that this is not the case.
Instead, corticosterone and alcohol differentially altered gluta-
matergic EPSPs in response to activation of BLA inputs to the
medial (CeM) and lateral (CeL) CeA in males versus females
(Logrip et al., 2017). Alcohol acutely reduced BLA-evoked EPSP
(BLA-EPSP) amplitudes in CeM and CeL neurons in males,
whereas alcohol’s effects on BLA-EPSPs were blunted in both
subregions in females (Logrip et al., 2017; Kirson et al., 2018).
BLA-EPSPs differed across estrous cycle phases in CeM neurons,
indicating an interaction between hormonal status and alcohol
responsiveness in females. Conversely, corticosterone treatment
reduced BLA-EPSP amplitudes in CeL, but not CeM, in females,
occluding the effects of alcohol coapplication in both subdivi-
sions (Logrip et al., 2017). On the other hand, in males, cortico-
sterone neither altered BLA-EPSPs nor changed alcohol’s effects,
as application of alcohol after corticosterone resulted in reduc-
tions in BLA-EPSP amplitudes similar to those produced by al-
cohol alone. These results demonstrate sex differences in
sensitivity to corticosterone versus alcohol (as shown in Fig. 2)
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and highlight the necessity for understanding how stress and al-
cohol, as well as their interaction, differentially influence neuro-
nal activity by sex in key nuclei regulating stress and drug
responses.

Stress and PFC

Social stress and physiology of pyramidal neurons

The PFC regulates executive functions, including decision-
making, judgment, behavioral inhibition, and cognitive flexibil-
ity (Goldman-Rakic, 1996; Arnsten and Li, 2005; Girotti et al.,
2018). Impairments in executive function are symptoms of many
stress-related psychological disorders (e.g., schizophrenia, de-
pression, PTSD), implicating pathophysiology in the PFC in
these disorders (e.g., Negron-Oyarzo et al., 2016). Indeed, in
males, chronic stress impairs performance on many tasks involv-
ing PFC, including fear extinction, behavioral flexibility, and
working memory (Holmes and Wellman, 2009; Maren and Hol-
mes, 2016).

Dendritic retraction and spine atrophy, neurochemical and
physiological changes, and impairment of PFC-mediated behav-
iors are well-documented sequelae of chronic restraint or chronic
variable stress in adult males (Farrell et al., 2013; Moench and
Wellman, 2015). However, for humans, stressors are often of a
social nature (i.e., bullying); thus, rodent social stressors (i.e.,
resident-intruder defeat) may provide better translational valid-
ity than restraint or shock stress. Social stress is particularly dam-
aging during adolescence, as this is a period of dynamic growth
and restructuring in the PFC (Lewis, 1997; Lenroot and Giedd,
2006; Koss et al., 2010, 2014). Social stress impaired strategy-
shifting of adolescent males only when they were tested as adults
(Snyder and Valentino, 2015). Female adolescents were better at
the task than adults, but stress impaired their reversal learning,
indicating age- and sex-specific effects of social stress (Snyder et
al., 2015).

Urban and Valentino (2017) used the resident-intruder stress
paradigm to examine the effects of chronic social stress in male
and female rats in early adolescence (PD 30-36), mid-adoles-
cence/puberty (PD 42-46), or adulthood (PD 69-76). Stress im-
pacts in mPFC were most striking at mid-adolescence, regardless
of sex. Social stress reduced intrinsic excitability, measured as
response to injected current, and also increased interspike inter-
val, in mid-adolescents of both sexes, indicating slowed kinetics
and reduced potassium channel function. In addition, social
stress reduced the amplitude, but not frequency, of EPSPs, indi-
cating reduced synaptic transmission via reduction of postsynap-
tic glutamate receptors (AMPAR and NMDAR). In addition,
there were sex-dependent stress effects. For instance, social stress
reduced intrinsic excitability and increased interspike interval in
adult females, but not adult males. Sex-specific effects of stress
were also noted in mid-adolescents. Stress increased input resis-
tance, but lowered threshold to fire, in male mid-adolescents, but
it increased the amplitude of afterhyperpolarization in female
mid-adolescents. Stress also selectively reduced the amplitude of
action potentials only in male mid-adolescents. These sex-
specific effects implicate potassium channel alterations and sug-
gest that social stress impacts potassium channel function
differently in males and females, but these effects lead to the same
outcome of reduced neuronal excitability. These results suggest
reduced mPFC activity following social stress in mid-adolescents
of both sexes and female adults but show that adult male mPFC is
largely impervious to social stress. Given previous studies show-
ing stronger impairments in PFC-mediated tasks following social
stress in adolescence, the neuronal changes noted in this study
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provide a likely cellular correlate of
impaired executive function that would
allow for greater amygdalar drive and en-
hance the likelihood of psychiatric disor-
ders in stressed adolescents.

These data suggest that mid-adole-
scence is a time of particular vulnerability
to the effects of social stress on mPFC
function. This vulnerability persists in fe-
males into adulthood but disappears in
males. Given the likely role of layer V py-
ramidal neurons in behavioral flexibility
and working memory (Wang et al., 2008),
decreased excitability and synaptic trans-
mission in these neurons could contribute
to impairment of executive functions. In-
deed, previous studies have shown that
stress in adolescence impairs working
memory and strategy-shifting in males,
but only when tested in adulthood
(Novick et al.,, 2013, 2016; Snyder and
Valentino, 2015). Given that immediate
stress-induced changes are seen on a cel-
lular level in adolescent males but cogni-
tive impacts appear later, adolescent rats
may engage different brain circuits to
complete these tasks while mPFC is
still developing. Alternatively, immediate
stress-induced changes in neuronal phys-
iology may alter developmental trajec-
tory, resulting in later emergence of
deficits.

Sensitivity of the parvalbumin (PV)
system to stress
Research in mouse models of stress-

related disorders supports sex-specific
vulnerability: exposure to subchronic
variable stress increases anxiety- and
depressive-like behaviors in female but
not male mice (Hodes et al., 2015). Simi-
lar sex-specific findings were observed af-
ter exposure to 4 weeks of unpredictable
chronic mild stress, whereby female, but not male, mice devel-
oped anxiety-like behaviors (Shepard et al., 2016; Shepard and
Coutellier, 2018). Identifying the molecular mechanisms un-
derlying this sex-specific vulnerability to stress is critical, as
this information can improve the diagnosis and prevention of
stress-related mood disorders.

Evidence suggest that resilience or vulnerability to stress-
induced emotional dysregulation may be modulated by prefron-
tal neuronal activity (Vialou etal., 2014; Labonté etal., 2017). The
mPFC contains a heterogeneous population of excitatory pyra-
midal and inhibitory GABAergic neurons. Prefrontal GABAergic
interneurons are the primary regulators of pyramidal neurons’
spiking activity and are highly sensitive to modulation by stress
(Maguire, 2014; Fuchikami et al., 2015). Their dysregulation dur-
ing and following chronic stress likely affects mPFC activity and
thereby emotional behaviors. GABAergic interneurons in the
cortex form distinct subpopulations of inhibitory neurons based
on their firing properties and molecular characteristics. Studies
in rodents provide evidence for a strong effect of stress on all
types of inhibitory neurons in the PFC. For instance, chronic

Figure2.
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Model of alterations in basolateral-central amygdala circuit activity by alcohol and stress. Neurons of the CeL and CeM
in males and females display similar basal glutamatergic postsynaptic responses to stimulation of BLA inputs (top). Given similar
baseline single-neuron responses, male and female CeM projection neurons may similarly release GABA in downstream targets.
However, after acute exposure to alcohol or the stress hormone corticosterone (CORT), the magnitude of the CeA response to BLA
stimulation is dampened in a sexually divergent fashion (bottom). Specifically, alcohol, but not CORT, reduces postsynaptic re-
sponse magnitude in both CeL and CeM neurons in males, whereas CORT, but not alcohol, reduces response magnitude in only CeL
neurons in females. At the circuit level, these reductions in BLA excitation of CeA, measured ex vivo at the single-neuron level, are
predicted to combine to produce similar alterations in GABA release by CeM projection neurons, resulting in altered alcohol intake
and anxiety-like behavior in both sexes.

stress reduces expression of somatostatin (Banasr et al., 2017),
and somatostatin-expressing GABAergic neurons have long been
thought to be involved in depression (Fee et al., 2017). Others
have shown that mPFC activity during chronic social stress, reg-
ulated by cholecystokinin-GABA neurons, mediates the effects of
chronic social defeat stress on social avoidance and sucrose pref-
erence in male mice (e.g., Vialou, 2014). Finally, findings from
the L.C. laboratory and others showed that chronic stress impacts
prefrontal PV-GABA interneurons (McKlveen et al., 2016;
Shepard et al., 2016; Shepard and Coutellier, 2018). Specifically, 4
weeks of exposure to unpredictable chronic mild stress increases
levels of PV mRNA in the ventral mPFC of female but not male
mice. Increases in PV mRNA were positively correlated with in-
creased emotionality in females only (Shepard et al., 2016), and
was also associated with reduced cFos expression in non-PV cells,
indicative of reduced prefrontal activity. Moreover, chronic
stress increased the number of PV neurons expressing cFos, re-
flecting hyperactivity of this specific interneuronal population
even after cessation of chronic stress. Recently, using a chemoge-
netic approach, we further supported the idea of a causal relation-
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ity to stress could identify sex-specific tar-

gets for treatment for stress-sensitive
disorders.

Stress effects on glia

Recent findings suggest glial contribu-
tions to stress-linked mood disorders, in-
cluding depression (Miguel-Hidalgo et
al., 2000; Holmes et al., 2018). For in-
stance, microglial morphological activa-
tion and astroglial atrophy are observed in
the mPFC in postmortem tissue from de-

pressed patients (Miguel-Hidalgo et al.,

.

2000; Torres-Platas et al.,, 2014), and
markers of heightened neuroimmune
activity in anterior cingulate cortex corre-
late with depressive symptom severity
(Setiawan et al., 2015). Consistent with
these data, preclinical models of depres-
sion demonstrate stress-induced altera-
tions in microglia (Tynan et al.,, 2013),
astrocytes (Banasr and Duman, 2008),
and inflammatory priming (Frank et al.,
‘ 2007) in numerous corticolimbic brain

Figure 3.

dendritic remodeling reported by Garrett and Wellman (2009).

ship between dysregulation of prefrontal PV-expressing neurons
and anxiety-like phenotype in female mice. Importantly, such a
link between PV-expressing neurons and anxiety was not ob-
served in males, suggesting a sex-specific pathway in the regula-
tion of anxiety-like behaviors (L.C. et al., unpublished data).
These novel findings showing changes in PV-expressing cells in
the PFC after chronic stress are very important for our under-
standing of prefrontal activity changes in stress-related disorders.
PV-expressing interneurons form synapses onto the cell body
and the axon initial segment of pyramidal cells. They are thus well
positioned to provide strong inhibition of excitatory cells, much
more so than, for instance, somatostatin-expressing neurons that
regulate integration of dendritic input on pyramidal cells. Even
small changes in the functioning of PV-expressing neurons might
have important consequences for overall circuit activity.
Although cholecystokinin- and somatostatin-expressing neu-
rons likely also regulate emotional behaviors (Freund, 2003; Si-
bille, 2017), our findings (Shepard et al., 2016; Shepard and
Coutellier, 2018) suggest an important contribution of pre-
frontal PV-expressing neurons to sex-specific vulnerabilities
to stress-induced emotional dysregulation. While many stud-
ies support the idea that different subpopulations of GABAergic
neurons are sensitive to stress, electrophysiological studies indi-
cating that hippocampal PV-expressing neurons are more vul-
nerable to the effects of stress than cholecystokinin-expressing
cells (Hu et al., 2010). Such findings support the idea that in-
creased plasticity of the prefrontal PV-expressing neurons in re-
sponse to chronic stress might heighten vulnerability to
emotional dysregulation, which could contribute to the increased
risk for anxiety and depressive disorders in females. Elucidating
the molecular mechanisms for this sex-specific neuronal sensitiv-

Hormonal contributions to sex-dependent stress effects on neuronal and glial morphology, and glia-neuron interac-
tion in mPFC. Males (blue) exhibit increased apical dendritic complexity in pyramidal cells (red), increased astroglial ramification
(purple), and reduced microglial activation (tan) compared with females. In males, chronic stress increases microglial activation,
microglia-neuron interaction, and microglia-mediated synaptic pruning, decreases astroglial coverage, and reduces dendritic
arborization. In females, chronic stress reduces microglial density and activation and increases astroglial coverage and
dendritic complexity in mPFC. Estradiol (E) is necessary for stress-induced microglial deactivation in females and the stress-linked

regions. Upon sensing a perturbation in
the microenvironment, microglial pro-
cesses thicken and reorient toward neuro-
nal and astroglial signals (Ransohoff and
Perry, 2009). Activated microglia can
modulate neurotransmission, prune syn-
apses and dendritic elements (Paolicelli et
al., 2011), stimulate dendritic spine out-
growth (Weinhard et al., 2018), and po-
tentially reshape dendritic architecture (Rappert et al., 2004;
Salter and Beggs, 2014). Likewise, astrocytes are crucial in main-
taining synaptic plasticity and function, including glutamatergic
neurotransmission, regulate the neuroimmune milieu (Rossi,
2015), and likely contribute to depressive-like behaviors (Banasr
and Duman, 2008).

In males, stress induces microglial morphological remodeling
and inflammatory factor expression in mPFC (Hinwood et al.,
2013), which contribute to stress-induced deficits in mPFC func-
tion (Hinwood et al., 2012; Kreisel et al., 2014; Wohleb et al.,
2018). Chronic stress also reduces astroglial complexity and com-
munication in mPFC, and astroglial atrophy in mPFC, produced
by an astrocyte-specific toxin, is sufficient to induce a depressive-
like phenotype (Banasr and Duman, 2008). Thus, glia may con-
tribute to stress-induced alterations in synaptic function and
behavior.

There are sex differences in microglial morphology in numer-
ous stress-sensitive brain regions (e.g., Schwarz et al., 2012), in-
cluding mPFC (Bollinger et al., 2016). However, few researchers
have addressed sex-dependent stress effects on glia. In an initial
report, acute restraint stress increased microglial morphological
activation state in mPFC in males but decreased activation state
in females. Microglial morphology returned to baseline following
10 d of daily restraint in males, whereas microglial deactivation
persisted in females (Bollinger et al., 2016). These findings
demonstrate sex-specific temporal patterns of stress-induced mi-
croglial remodeling in mPFC. Additional studies report sex-
dependent stress effects on microglial morphology (Bollinger et
al., 2017) and inflammatory priming (Fonken et al., 2018) in
other corticolimbic structures that interact extensively with
mPFC (e.g., orbitofrontal cortex, hippocampus).
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Recent unpublished data (J.L.B. and
C.L.W.) also suggest sex differences in,

Wellman et al. ® Sex Differences in Risk and Resilience

POST-CHRONIC STRESS

and sex-dependent stress effects on, mor-
phology of astrocytes in mPFC. Males
exhibit heightened astroglial coverage
compared with females. Moreover, chronic
stress induces atrophy of astrocytes in

mPFC in males (Tynan et al., 2013) but
may produce astroglial hypertrophy in fe-
males (J.L.B. and C.L.W., unpublished
data).

Astrocytes and microglia can express

UNSTRESSED 0 d Rest 7 d Rest 10 d Rest
Male& M &
|
|
|
Female A , B

estrogen and androgen receptors (Azcoi-
tia et al., 1999; Sierra et al., 2008; Johnson
et al, 2012). Therefore, gonadal hor-
mones could contribute to sex differences
in glial biology. Indeed, preliminary data
suggest that ovariectomy prevents chronic stress-induced micro-
glial deactivation in mPFC, and estradiol replacement may
restore

These sex-, stress-, and hormone-dependent alterations in
neuroimmune and glial activation could influence corticolimbic
structure and functioning (Fig. 3). For instance, divergent micro-
glial and astroglial patterns align with sex differences in dendritic
morphology (Garrett and Wellman, 2009b; Shansky et al., 2010):
unstressed females have reduced apical dendritic arbors on
mPFC pyramidal neurons relative to males, which could be due
to increased pruning of spines and branches by the more-
activated microglia in females. Similarly, the stress-induced de-
creases in microglial activity could either permit the dendritic
growth in mPFC of stressed females that has been reported (Gar-
rett and Wellman, 2009) or underlie the maintenance of normal
dendritic lengths in stressed females reported previously (Mo-
ench and Wellman, 2017). Conversely, the stress-induced den-
dritic retraction seen in males could be driven by their increased
microglial activity (Fig. 3). Supporting this hypothesis, stress in-
duces microglia-neuron interaction and synaptic pruning in
mPFC in males, but not females, and pharmacological inactiva-
tion of microglia during stress prevents stress-induced reduc-
tions in spine density in males (Wohleb et al., 2018). Moreover,
reports demonstrate opposite molecular signatures in men
and women with depression, which parallel patterns of stress-
induced glial and neuronal remodeling in preclinical work.
This includes heightened microglia-associated and reduced
synapse-associated gene expression in PFC in postmortem tis-
sue from depressed males, and reduced microglia-associated
and heightened synapse-associated gene expression in de-
pressed females (Seney et al., 2018). Together, these findings
suggest a role for sex-dependent glial mechanisms in stress-
linked psychopathology.

Figure 4.

Lasting effects of chronic stress on corticolimbic structure
and function

Immediately following chronic restraint stress (CRS), male rats
have dendritic retraction in the prelimbic (PL) subregion of
mPFC and deficits in behaviors mediated by mPFC (Holmes and
Wellman, 2009). Chronically stressed female rats typically do not
show deficits in many of these same behaviors (Wei et al., 2014;
Snyder et al., 2015), and have either no dendritic remodeling
(Moench and Wellman, 2017) or dendritic outgrowth (Garrett
and Wellman, 2009) in mPFC. The discrepancy in chronic stress-
induced dendritic remodeling in mPFC in females in these two
studies is likely due to stressor duration (10 d vs 7 d) and/or the

Sex differences in dendritic remodeling following CRS. Following CRS, males show initial retraction, overgrowth, and
then retraction; immediately after cessation of CRS, females show either minimal remodeling (4) or growth (B), which may be
dependent on mPFC subregion or duration of chronic stress, and no dynamic post-stress remodeling.

specific subregions analyzed (PL only vs PL and anterior cingu-
late cortex, respectively). Regardless, what is consistent across
these studies is that chronic stress results in sex-specific dendritic
remodeling and behavioral changes in rats. A similar pattern of
results is found in dorsal hippocampus, such that CRS induces
dendritic retraction and behavioral deficits in males but not fe-
males (Bowman et al., 2003; Conrad et al., 2003, 2004; McLaugh-
linetal., 2009). Together, these studies suggest that male rats may
be more susceptible to the detrimental effects of prolonged stress
exposure, whereas female rats appear to have some level of resil-
iency. This is paradoxical given women’s increased susceptibility
to several stress-linked psychopathologies. Investigation of the
long-term effects of CRS may resolve this apparent paradox.

CRS-induced dendritic atrophy in CA3 of males is amelio-
rated following a 10 day rest period (Conrad et al., 1999), and
behavioral deficits are reversed following a poststress rest period
(Sousa et al., 2000). Dendritic retraction in PL of CRS male rats is
also ameliorated following a 21 day rest period (Radley et al.,
2005). However, this process occurs more rapidly and is quite
dynamic. CRS-induced dendritic retraction is absent following a
10 day rest period; and, surprisingly, dendritic outgrowth beyond
unstressed lengths is present after a 7 day rest period, indicating
that “recovery” from stress may not involve a simple return to
baseline. Instead, changes during the poststress period likely in-
volve the recruitment of important neuroadaptive mechanisms,
resulting in a new functional state distinct from both stress-naive
and chronically stressed rats, as was highlighted in a recent review
by Ortiz and Conrad (2018). In contrast to the dynamic pattern
of dendritic reorganization in male rats during the post-stress rest
period, females show minimal dendritic remodeling in mPFC
during this poststress period (Fig. 4) (Moench and Wellman,
2017), suggesting that in the days following chronic stress PL of
females may be less plastic than that of males.

If so, then subsequent stress during the post-CRS rest period,
a second hit, may have novel effects on the function of stress-
sensitive brain regions, and these effects may be sex-dependent.
Indeed, in male rats exposed to chronic variable stress, exposure
to a novel acute stressor produces reductions in cFos mRNA
expression in several brain regions (Ostrander et al., 2006, 2009).
Similarly, in the paraventricular nucleus of the hypothalamus,
mPFC, and hippocampal CA1 and dentate gyrus, cFos expression
assessed via immunohistochemistry is reduced in male rats ex-
posed to a novel acute stressor the day following CRS, and par-
tially ameliorated when acute stress occurs after a 7 day rest
period (K.M.M. et al., manuscript under review). In contrast, in
females, prior CRS does not blunt novel acute stress-induced
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neuronal activation, regardless of whether acute stress occurs be-
fore or after a recovery period. Notably, CRS followed by a rest
period increased neuronal activation in the paraventricular nu-
cleus of the hypothalamus and BLA following acute stress
(K.M.M. et al., manuscript under review). These findings suggest
that males may show initial buffering after CRS, followed by re-
emergence of a more typical acute stress response, whereas CRS
females may have an exaggerated neuroendocrine response to
subsequent stressors.

This raises the possibility that CRS-induced changes in male
rats may protect against subsequent stressors, whereas female rats
may be more susceptible to two-hit stress. Preliminary data sup-
port this hypothesis, demonstrating that, despite immediate
chronic stress-induced deficits in behavioral flexibility (Nikifo-
ruk and Popik, 2014), reflected in performance on the attentional
set-shifting task (Birrell and Brown, 2000), male rats do not ap-
pear to have deficits after two-hit stress (K.M.M. and C.L.W.,
unpublished data). Conversely, females do not appear to have
deficits in behavioral flexibility immediately after chronic stress,
but exposure to a novel acute stressor after a recovery period may
induce deficits in behavioral flexibility (K.M.M. and C.L.W., un-
published data). Understanding this potential female-biased
vulnerability to multiple stressors may begin to elucidate mech-
anisms underlying increased risk for stress-linked psychological
disorders in women.

Discussion

Together, these studies illustrate several important emerging
themes in sex-dependent stress effects on the neural circuitry
underlying emotion, motivation, and cognition. First, sex differ-
ences in the effects of stress are nuanced. Just as sex differences in
risk for psychopathology include both male-biased and female-
biased disorders, sex differences in stress effects include examples
of male vulnerability (e.g., CRF’s effects on cholinergic process-
ing) as well as female vulnerability (e.g., CRF’s effects on norad-
renergic processing). Second, sex-dependent effects of stress may
be nonlinear, as in the dynamic dendritic remodeling seen in
mPFC of males subsequent to CRS, and the late emergence of
deleterious effects of CRS in mPFC of females. Third, sex differ-
ences in stress effects can be quite variable, depending on the
animal model used (e.g., unpredictable chronic mild stress in
mice vs CRS in rats), the timing of stress and testing (e.g., differ-
ent patterns of persistence of the effects of adolescent social stress
on physiology of mPFC in males vs females), and brain regions
examined (e.g., sex differences in glucocorticoid modulation of
activity in CeL but not CeM). Finally, given the extensive inter-
actions among the brain regions highlighted in this brief review,
studies of mechanisms underlying sex differences will need to
take into account not just neuronal mechanisms, but also circuit-
level interactions, as well as potential contributions of non-
neuronal pathways involving neuron-glia interactions. While
such mechanistic studies are still in their infancy, elucidating the
mechanisms contributing to sex-dependent effects of stress on
corticolimbic physiology can reveal the basis of sex differences in
psychopathology, and inform the development of better treat-
ments for these disorders in men and women.
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