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Abstract: At present, sensor-based E-Healthcare systems are attracting more and more attention from
academia and industry. E-Healthcare systems are usually a Wireless Body Area Network (WBANs),
which can monitor or diagnose human health by placing miniaturized, low-power sensor nodes
in or on patient’s bodies to measure various physiological parameters. However, in this process,
WBAN nodes usually use batteries, and especially for implantable flexible nodes, it is difficult to
accomplish the battery replacement, so the energy that the node can carry is very limited, making
the efficient use of energy the most important problem to consider when designing WBAN routing
algorithms. By considering factors such as residual energy of node, the importance level of nodes,
path cost and path energy difference ratios, this paper gives a definition of Optimal Path of Energy
Consumption (OPEC) in WBANs, and designs the Optimal Energy Consumption routing based
on Artificial Bee Colony (ABC) for WBANs (OEABC). A performance simulation is carried out to
verify the effectiveness of the OEABC. Simulation results demonstrate that compared with the genetic
algorithm and ant colony algorithm, the proposed OEABC has a better energy efficiency and faster
convergence rate.

Keywords: E-Healthcare system; wireless body area networks; energy consumption; Artificial Bee
Colony Algorithm

1. Introduction

Sensor-based E-Healthcare systems are a new technology developed in the field of health care
in recent years. Wireless Body Area Networks (WBANs) [1] are mainly used in emergency rescue,
telemedicine, home care and other occasions. Medical sensor nodes are worn on the body surface
or implanted in the human body to monitor the patient’s medical data, these physiological data are
transferred to a sink through the WBAN, and the sink processes the data or sends the data to a medical
monitoring center [2]. The nodes are mostly powered by microbatteries, the energy is very limited,
so if some nodes are frequently used for data forwarding, it is likely to lead to the early depletion of
these nodes, affecting the network connectivity, and eventually leading to a reduced global network
lifetime [3–5]. Compared with the traditional data-centric WSN, WBANs’ human-centered features
make their energy requirements more demanding [6] is several aspects: (1) Faster signal transmission
attenuation: the specificity of the human tissue structure and the shadow effects make the signal
in the transmission process have a great path loss [7], resulting in WBANs’ communication energy
consumption being much higher than that of other normal networks of the same size. (2) Varying
network communication link time: the network topology of WBANs is closely related to the changes in
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the posture of the human body (especially the activities of the human limbs). The data retransmissions
caused by the frequent interruptions of the communication links and the reconstruction of the network
topology can cause a waste of energy [8]. (3) Limited node energy: The network lifetime in WBANs
is defined as the time interval between when the network starts working to the time when the first
node dies, which leads to network partitioning in such a way that the destination cannot be reached.
As battery replacement and charging is not feasible in implant medical devices, each node must use
limited energy to maximize its own life. Network lifetime is of more importance in WBANs compared
to WSNs. Since about 80% of the total energy is consumed only for communication purposes [9],
routing algorithms play a vital role to make the communication effective and prolong the lifetime of
the WBANs, and how to use the residual energy of nodes effectively to extend the network lifetime
becomes the key problem of designing WBAN routing algorithms. In the survey of routing protocols in
wireless sensor networks [10,11], the path selection algorithm is based on the principle of minimizing
the total energy consumption of the path, the global optimal solution is solved by using the greedy
algorithm, which does not consider the protection of individual nodes with small energy, nor the
energy consumption ratio of the whole path. It is easy to for some nodes to be utilized with high
frequency, and if the important nodes suffer premature death, this often leads to the paralysis of the
entire network [12]. Moreover, the time and spatial complexity of these algorithms will usually increase
exponentially as the size of the problem grows. In the past decade, the group intelligent optimization
methods have attracted more and more attention [13], as they are effective tools to address the problem
of combinatorial optimization.

In this paper, we fully consider the energy consumption of the path, the residual energy of
the nodes, the importance level of the nodes and the energy ratio of the whole path, and give the
definition of Optimal Path of Energy Consumption (OPEC), and by means of the idea of artificial bee
colony [14–16], design Optimal Energy Consumption Artificial Bee Colony Algorithm-Based WBANs
(OEABC). The simulation results show that the OEABC converges faster, and has a better ability to
find the optimal solution.

2. Related Works

In recent years, several routing protocols have been proposed for WBANs. According to the
different routing mechanisms, the energy efficient strategy of WBANs in the network layer is mainly
divided into single hop routing, multi-hop routing and cooperative routing. Early research on WBANs
mainly focused on the construction of end-to-end network structures, and energy consumption was not
a primary concern, so the data was transmitted by using star topologies and single-hop communication
modes. The multi-hop routing protocol was proposed and divided into cluster-based routing and
cross-layer routing. AnyBody [17], and HIT [18,19] are cluster-based routing protocols that after
dividing the nodes into multiple clusters and selecting a cluster head, forward the data to the sink
through the cluster head. These protocols aim to minimize the number of direct transmissions from
nodes to the sink. However, the large amount of overhead required for cluster selection is the main
drawback of these protocols. WASP [20], CICADA [21,22] are cross-layer routing protocols, that by
controlling the timing of sending data for every node, lower the energy consumption of WBANs,
but require exchanging a lot of control information between nodes. After weighing the advantages
and disadvantages of single hop routing and multi-hop routing, collaborative routing [23–25] became
widely used because it can distribute the transmission load of the whole network. According to the
works presented in [23,24], the distance between the source node and sink node can be divided into
high and low level. When a source node is located at a high level, multiple hops routing will be used.
Otherwise, when it located at a low level, it will choose one hop routing, so the life-cycle of the whole
network will be greatly improved. The authors in [25] proposed a decode-and-forward (DF) protocol
which uses half duplex mode and builds two communication channels (S-D and S-R-D) between the
source node and the sink node. Simulations show this protocol can effectively reduce the energy waste
caused by packet retransmission. The pairs of different routing mechanisms are summarized in Table 1.
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Table 1. Comparative Analysis of Different Routing Mechanisms.

Routing Protocol Routing Mechanism Advantage Disadvantage Energy Consumption

Star topology Single Hop Low delay High energy consumption High

AnyBody [17] Cluster-Based Multi Hop Reliable, low load More complex Medium

HIT [18,19] Cluster-Based Multi Hop Reliable, low load More complex Medium

WASP [20] Cross-Layer Multi Hop Reliable, low load Large network delay Medium

CICADA [21,22] Cross-Layer Multi Hop Reliable, low load Large network delay Medium

[23–25] Collaborative Low packet loss rate and
low network delay

Unable to adapt to frequent
network topology changes Low

Certainly, there are many other routing mechanisms. Opportunistic routing [26], PSR [27],
PRPL [28], OBSFR [29] are cost-effective routing protocols which select the lowest cost path by
monitoring the cost of energy consumption for each path, so the cost-effective relationships between all
nodes need to be periodically updated and stored, and a large amount of transmissions and overhead
is required to find routes, which also adds complexity to the system. LOCALMOR [30], DMQOS [31]
are based on QoS [32] routing protocols, according to the data type collected by the node to select
different path metrics to meet the node’s demand for data transmission reliability, delay and energy
consumption, but QoS routing protocols require too much information that leads to high energy
consumption and huge overhead. TARA [33], LTR [34], LTRT [35] are temperature-based protocols,
which are mainly designed to minimize the local or overall system temperature rise. The idea behind
these protocols is to route data along different paths to avoid a dramatic temperature rise in some
nodes leading to human tissue damage and depletion of the node. In fact, each classification of routing
protocols only tries to satisfy a specific requirement in WBANs. Moreover, when choosing a path, the
global network lifetime [36] is considered to be insufficient, and the greedy algorithm is used when
selecting the path, which easily falls into a local optimum.

3. Network Model

3.1. Mathematical Description of WBANs

Definition 1. The set W = {V, C, α, E, A} represents WBANs, where V = {v0, v1, v2, . . . , vn} is the set
of nodes; C = {c0, c1, c2, . . . , cn} is the set of residual energy of nodes, ci ≥ 1; α = {α0, α1, α2, . . . , αn}
is the set of importance level of nodes, α ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9}; E = {e0, e1, e2, . . . , em} is the edge sets,
E ⊆ {< i, j >|i, j = 0, 1, 2, . . . , n}; A is the adjacency matrix of nodes, when < i, j >∈ E, aij represents the
energy required to transmit a packet from node i to node j, when < i, j >/∈ E, aij = 0.

3.2. The Important Level Factor α

There are many types of medical sensor collection activities. Some are essential, and must
always be guaranteed, such as ECGs or blood pressure; some can be experienced interruption or
delay, such as body temperature; and some nodes even only have forwarding functions, without the
acquisition function. According to these characteristics, the importance level factor α of the node is
defined, so the higher the importance level of the node, the greater the factor α. The maximum α is 9,
and the lowest is 1.

In Figure 1 [29], the WBANs has 15 various types of nodes, the node set V is {v0, v1, v2, v3, v4, v5,
v6, v7, v8, v9, v10, v11, v12, v13, v14}, where v0 is EEG, v1 is hearing aid cochlear implant, v2 is positioning,
v3 is motion sensor, v4 is blood pressure, v5 is Blood pump ECG, v6 is insulin injection, v7 is glucose, v8

is blood oxygen, v9 is lactic acid, v10 is artificial knee1, v11 is artificial knee2, v12 is pressure sensor1, v13

is pressure sensor2, v14 is sink [30]. The initial value of the residual energy of all nodes is 50, the node’s
important level factor α varies with the sensor node, and the corresponding network topology as
shown in Figure 2, where each node includes the node name, the residual energy and the importance
level factor α. The number on the link between nodes is the transmission energy consumption.
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4. The Optimal Path of Energy Consumption (OPEC)

4.1. Mathematical Description of Path Energy Consumption

Definition 2. Path Set, denoted as P. The source node is v0, the destination node is vn, the alternate sequence v0
. . . vivj . . . vn is a path from v0 to vn, let P= {r1, r2, r3, . . . , rk}, so P is the collection of all paths from v0 to vn.

Definition 3. Path Transmission Energy Consumption, denoted as E. The power consumption required to
transfer a packet through ri is formulated as:

E(ri) =
n

∑
0

aij (1)
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The larger the E(ri), the greater the energy required to transfer the data using the path, and
vice versa.

Definition 4. Path Cost, denoted as C. The cost of the node vi is formulated as:

f (vi) =
1
ci

(2)

The cost of the path ri is the sum of the cost of all nodes in the path and is formulated as:

C(ri) =
n

∑
i=0

f (vi) (3)

With the decrease of the residual energy of the node, the cost of transmitting the data of the node
will be increased, the C(ri) when the path ri containing the node vi also increases, and vice versa.

Definition 5. Path Energy Difference Ratio, denoted as η. In the nodes of path ri, the node with the largest
remaining energy is max and the node with the smallest energy is min, the path ri energy difference ratio η is
formulated as:

η(ri) =
cmin

αmin × cmax
(4)

η(ri) indicates the degree of energy difference between the maximum energy node vmax and the
minimum node vmin in the path ri, and the larger the η, the smaller the difference is, the better the
energy consumption of the path ri, otherwise the worse. αmin is the importance level factor of vmin,
used to adjust η, when vmin is very important or the energy will be exhausted, you can increase αmin,
making η smaller. At the same time, in order to protect the node which residual energy has reached its
may easily cause some nodes to run out of energy, the path will not be utilized.

4.2. Definition of the OPEC

The OPEC is denoted by ropt, choosing ropt can use the energy of nodes reasonably and efficiently,
so that the energy of the whole network can be steadily reduced and the survival time of the whole
network can be prolonged. Therefore, when calculating ropt we need to consider the energy difference
ratio η, path cost C and transmission energy E, but the weight of each parameter is different. First
we consider η, select the maximum path of η from all paths that conform to ηr > ηTh, and try not to
use less energy or very important nodes to transmit data. If there are multiple paths with the same η,
the path with the lowest C is selected, to reduce the usage of nodes with less residual energy. If there
are still multiple paths with the same η and C, select the path with the lowest E.

Definition 6. Calculation equation of the OPEC:

ropt =


max(η(ri)

∣∣ηr1 6= ηr2 6= . . . 6= ηrk )

min(C(ri)
∣∣ηr1 = ηr2 = . . . = ηrk )

min(E(ri)
∣∣(ηr1 = ηr2 = . . . = ηrk )

∣∣∣∣(Cr1 = Cr2 = . . . = Crk ))

(5)

5. Introduction to the Artificial Bee Colony (ABC) Algorithm

The ABC algorithm is inspired by the behavior of bee colonies, which is an optimization method
mimicking the behavior of bees, proposed by the Karaboga team in 2005 to optimize the algebra
problem [14]. It is an application of cluster intelligence concepts. Through the local optimization
of artificial bees, the global optimal value emerges. In the ABC algorithm, the colony of artificial
bees contains three groups of bees: worker bees, onlookers and scouts. A bee waiting on the dance
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area for making decision to choose a food source, is called an onlooker and a bee going to the food
source visited by itself previously is named a worker bee, a bee carrying out random search is called
a scout. The position of a food source represents a possible solution of the optimization problem and
the amount of nectar of a food source corresponds to the quality (fitness) of the associated solution.
In the first step, the ABC generates a randomly distributed initial population of SN solutions, where
SN denotes the size of the population. Each solution Xi (i = 1, 2, . . . , SN) is a D-dimensional vector.
Here, D is the number of optimization parameters. In order to produce an initial food position, the
ABC uses the following expression:

xi,j = xmin,j + rand(0, 1)(xmax,j − xmin,j) (6)

where xmax and xmin are the upper and lower bounds of search space.
After initialization, the worker bee will start the neighborhood search. It generates a new candidate

position based on the local information in its memory and checks the amount of nectar in the new
location. If the new location is better than the original position, the bee remembers the new location
and forgets the original location. The new candidate position equation is:

vi,j = xi,j + φi,j(xi,j − xk,j) (7)

The above is called the ABC algorithm search equation, where k ∈ {1, 2, . . . , BN}, j ∈ {1, 2, . . . , D}
are randomly chosen indexes. Although k is determined randomly, it has to be different from i. φi,j is
a random number between [−1, 1].

After the worker bees complete the search process, they will share the memory of the nectar with
onlookers through the dance. An onlooker bee chooses a food source depending on the probability pi
associated with that food source, pi is calculated by the following expression:

pi =
f iti

SN
∑

j=1
f itj

(8)

where f iti is the fitness value of the solution i evaluated by its employed bee. When a nectar source is
selected, the onlooker bee will use Equation (8) to produce a new position. By checking the amount of
nectar in the new position, if the position is better than the one in memory, it will be replaced, otherwise
the original position is left. In order to prevent the algorithm from falling into a local optimum, if the
amount of nectar does not improve after the limit cycle, the colony will abandon the position, whereby
the worker bee becomes a scout and randomly generates a new nectar according to Equation (7).

6. The Optimal Energy Consumption Artificial Bee Colony-Based WBAN (OEABC)

6.1. The Fitness Function of the Path

The general algebra problem can construct the fitness function directly according to the
requirement of the problem. It can be found that the optimal path of energy needs to consider
the Path Energy Difference Ratio η, Path Cost C, Path Transmission Energy Consumption E, so the
higher the fitness of the path, the better the energy consumption. We define the fitness of the path rk
according to Equation (9):

f (rk) = α× η(rk) +
β

C(rk)
+ γ× E(rk) (9)

where α, β, γ are the adjustment parameters to ensure that the η is the maximum weight, followed by
C. E is minimum, and its value depends on the specific network environment.
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6.2. Initial Path Generation Formula

In the initial stage, the ABC algorithm generates SN initial solutions for the worker bees randomly
by using Equation (6). In the algebraic optimization problem, the solution space is continuous, so the
randomly generated solutions are feasible solutions, but each solution of the path planning problem is
a path in a particular network topology, its path is discrete, so not any combination of nodes is a path,
therefore, we cannot directly apply Equation (6) to generate the initial path.

In order to find a random path, our method is to randomly select a node from neighbors of node
v0 as the next node of the path, and then continue to generate the next node of the path in the same
way. If one cannot find the neighbor node, then one goes back to the previous step to select another
neighbor node as the next node until the next node is the path end point vn, to obtain a random path.

Let the function Adj(i) return the set of all adjacencies of node i. Then Equation (10) for generating
the node t in path ri is:

ri,t = Rand(Adj(t− 1)) (10)

where t∈{0, 1, . . . , m − 1}, m is the number of nodes of path i, t is a randomly selected node in path i,
and t − 1 is the predecessor node of node t.

6.3. The Generation Formula of the New Path

Definition 7. In two paths, if there are sections which have the same starting and ending points, it is said that
same segments are Same Area (SA) for the two paths.

Conclusion. ri =< v0 . . . vr . . . vs . . . vn > rj =< v0 . . . vp . . . vq . . . vn >, ri and rj have multiple SA,
randomly select an SA, denoted as SAα. SAα in ri is <r . . . s>, denoted as SAαi; in rj is <p . . . q>, denoted
as SAαj. If SAαi in path ri is replaced by SAαj, so the new path is < v0 . . . vr−1, vp . . . vq, vs+1 . . . vn > and is
still connected.

Proof. ri is a connected path, and its sub-paths < v0 . . . vr−1 > and < vs+1 . . . vn > are also connected
in accordance with the characteristics of the connected path.

Using the SAαj of the rj path to replace the SAαi of the ri path, the ri becomes
< v0 . . . vr−1, vp . . . vq, vs+1 . . . vn >, denoted as ri

∗.
p = r, then < v0 . . . vr−1, vp > is connected.
q = s, then < vq, vs+1 . . . vn > is connected.
Since rj is connected, so the SA < vp . . . vq > of its must be connected.
In summary, the sub-paths < v0 . . . vr−1, vp >, < vp . . . vq >, < vq, vs+1 . . . vn > are connected,

so their order combination ri
∗ =< v0 . . . vr−1, vp . . . vq, vs+1 . . . vn > must be connected. �

When path i and j exist k SA, then SAt in the path i and j are denoted as SAti and SAtj respectively,
so path i =< v0 . . . vr−1 > SAti < vs+1 . . . vn >. The function GetSA(i, j, t) returns SAtj, then the
equation for generating the new path ri

∗ is:

ri
∗ =

{
< v0 . . . vr−1 > GetSA(i, j, t) < vs+1 . . . vn >

ri(when ri and rj have no SA)
(11)

Equation (11) is the search equation for the OEABC algorithm, i, j ∈ {1, 2, . . . , SN},
t ∈ {0, 1, . . . , m− 1}, m is the number of SA of path i and path j.

For example, the WBANs with 31 nodes, v0 is the starting node, v30 is the sink, there are already
two paths r0 and r1, r0 = <v0, v1, v6, v12, v14, v17, v24, v27, v30>, r1 = <v0, v4, v6, v11, v13, v16, v17, v23,
v29, v30>, as shown in Figure 3. According to Definition 7, there are 5 SAs for r0 and r1, in r0 is <v0,
v1, v6>, <v0, v1, v6, v12, v14, v17>, <v6, v12, v14, v17>, <v6, v12, v14, v17, v24, v27, v30>, <v17, v24, v27, v30>,
in r1 is <v0, v4, v6>, <v0, v4, v6, v11, v13, v16, v17>, <v6, v11, v13, v16, v17>, <v6, v11, v13, v16, v17, v23, v29,
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v30>, <v17, v23, v29, v30>. If t = 2, then GetSA(i, j, t) = <v6, v11, v13, v16, v17>, according to Equation (11),
the new paths r2 = <v0, v1, v6, v11, v13, v16, v17, v24, v27, v30> generated by r0, as shown in Figure 4.
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Algorithm 1. OEABC Algorithm

Input: Network topology, starting point, end point
Output: Optimal energy consumption path

1. Generate the data structure of the WBANs’ topology;
2. Initialize the population of bees according to Equation (10), generate the initial path of SN;
3. For (num = 0→maxCycle){
4. The employed bee search better path[i] in the neighborhood according to Equation (11);
5. Calculate the fitness[i] of path[i] according to Equation (9);
6. Using prob[i] = (0.9*(fitness[i]/maxfit)) + 0.1, calculate the selection probability of path[i];
7. For (t = 0→SN){
8. randvalue = ((double)rand()/((double)(RAND_MAX) + (double)(1)));
9. If randvalue < prob[i] Then
10. t++;
11. r = ((double)rand()/((double)(RAND_MAX) + (double)(1)));
12. neighbor = (int)(r*FoodNumber);
13. While (neighbour==i){
14. r = ((double)rand()/((double)(RAND_MAX)+(double)(1)));
15. neighbor = (int)(r*FoodNumber);}
16. The onlooker produce new path between path[i] and path[neighbour] according to Equation (11);
17. Calculate the fitness of the path[new] according to Equation (9);
18. If fitness[new] > fitness[i] Then
19. path[i] = path[new];}
20. End If
21. End If
22. }
23. If path[i] is still not optimized by the maxtrial round search Then
24. send ScoutBees, using Equation (10) to reinitialize path[i];
25. End If
26. }

7. Experiments and Results Analysis

We set the body area network node set V = {v0, v2, v3, . . . , v150} for the simulation environment,
the data sending node is v0, and the sink node is v150; the node remaining energy ci ∈ {1, 2, . . . , 50};
the node service factor αi ∈ {1, 2, 3}; E = {e1, e2, e3, . . . , e1525} is an edge set. When <i, j> ∈ E, node i
transmits a packet to node j, energy consumption aij ∈ {1, 2, 3}. In order to facilitate the verification
result, it is assumed that the node topology is a hierarchical network, and each layer node is only
connected to the upper layer and the next layer. The adjustment parameters for setting the fitness
function are: α = 50, β = 5, γ = 0.1.

We implemented the OEABC algorithm in C++ programming and tested it in the above simulation
environment. In our simulation configuration, we adopt the following simulation settings: the data
collection node is v0 and the sink node is v150. The communication link is established between neighbor
nodes, and each node has 10–15 predecessors and successors. The data packet is sent out from v0,
the data packet is exchanged by the successor node, the transmission path from the data collection
node to the network sink node is established, and the data packet is sent to the sink node v150. The
main simulation parameter values are listed in Table 2 below.
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Table 2. Simulation Parameter Settings.

Parameter Value

Simulation area: 100 m × 100 m
Energy model: Generic radio energy model
Attenuation model: Two ray
Signal transmission range: 10 m
Signal interference range: 20 m
Packet size: 512 Byte
Output queue type: First-In First-Out (FIFO)
Channel capacity: 1 Mbit/s
Cache capacity: 50 packets

7.1. Fitness Analysis of the Path

The OEABC parameters are set as: SN = 5, Limit = 10, Cycle = 50, and the running process of the
algorithm is as follows:

The first step is to initialize the population. Randomly generate five paths and calculate the fitness
of each path. The results are shown in Table 3. Path 4 has the best fitness and is the optimal path.

Table 3. The stage of initialization with five paths.

No. Path η C E Fitness

1 v0, v6, v19, v35, v53, v67, v88, v100, v112, v133, v140, v150 0.57 0.63 26 46.97
2 v0, v5, v28, v37, v60, v75, v84, v100, v118, v132, v138, v150 0.49 0.56 29 45.26
3 v0, v13, v28, v35, v49, v71, v81, v97, v107, v123, v136, v150 0.67 0.48 31 57.43
4 v0, v10, v23, v43, v48, v74, v85, v93, v114, v134, v139, v150 0.68 0.45 22 58.42
5 v0, v7, v27, v41, v56, v73, v90, v93, v109, v131, v149, v150 0.49 0.44 19 49.13

The second stage is the worker bee stage. The results are shown in Table 4. It can be seen that
paths 1 and 4 are optimized, the path fitness is improved, and the optimal path is path 4.

Table 4. The stage of worker bees.

No. Path η C E Fitness

1 v0, v6, v19, v35, v53, v67, v88, v100, v112, v133, v140, v150 0.63 0.61 23 50.19
2 v0, v5, v28, v37, v60, v75, v84, v100, v118, v132, v138, v150 0.49 0.56 29 45.26
3 v0, v13, v28, v35, v49, v71, v81, v97, v107, v123, v136, v150 0.67 0.48 31 57.43
4 v0, v10, v23, v43, v48, v74, v85, v93, v114, v134, v139, v150 0.69 0.43 20 59.76
5 v0, v7, v27, v41, v56, v73, v90, v93, v109, v131, v149, v150 0.49 0.44 19 49.13

The third stage is the onlooker stage. As shown in Table 5, path 3 is optimized and the optimal
path is still path 4. Since it is the first operation of the algorithm, it does not meet the requirements of
Limit, so the scout phase is not performed.

Table 5. The stage of onlookers.

No. Path η C E Fitness

1 v0, v6, v19, v35, v53, v67, v88, v100, v112, v133, v140, v150 0.63 0.61 23 50.19
2 v0, v5, v28, v37, v60, v75, v84, v100, v118, v132, v138, v150 0.51 0.56 29 46.26
3 v0, v13, v28, v35, v49, v71, v81, v97, v107, v123, v136, v150 0.66 0.45 23 57.52
4 v0, v10, v23, v43, v48, v74, v85, v93, v114, v134, v139, v150 0.69 0.43 20 59.76
5 v0, v7, v27, v41, v56, v73, v90, v93, v109, v131, v149, v150 0.49 0.44 19 49.13
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The results of the operations after 50 iterations, are shown in Table 6. It can be seen that the five
paths have been optimized, the optimal path has changed from path 4 to path 3, and the fitness has
also increased from the initial 58.42 to 71.46.

Table 6. Results after 50 iterations.

No. Path η C E Fitness

1 v0, v6, v19, v35, v53, v67, v88, v100, v112, v133, v140, v150 0.69 0.51 21 56.21
2 v0, v5, v28, v37, v60, v75, v84, v100, v118, v132, v138, v150 0.51 0.42 27 52.01
3 v0, v13, v28, v35, v49, v71, v81, v97, v107, v123, v136, v150 0.75 0.31 17 71.46
4 v0, v10, v23, v43, v48, v74, v85, v93, v114, v134, v139, v150 0.73 0.33 18 68.60
5 v0, v7, v27, v41, v56, v73, v90, v93, v109, v131, v149, v150 0.54 0.39 17 54.34

7.2. Parameter Analysis

Before running the OEABC, one needs to set the SN, Limit, and Cycle parameters. SN is the
population size. Limit is when to give up with the current solution required for the maximum number
of searches. Cycle refers to the number of iterations of the algorithm. By setting different SN, Limit and
Cycle parameters, run the OEABC 30 times, record and analyze the fitness of the generated path.

7.2.1. The Analysis of SN

Set Limit = 30, Cycle = 50. When the SN is 20, 30, 40, respectively, the fitness of the path generated
by the OEABC is shown in Figure 5. As can be seen from Figure 5, When SN = 20, in the 30 paths
generated by the algorithm, a total of four paths have a fitness change greater than 10% of the average
fitness, compared with the generated paths, the ratio of paths greater than 10% of the average fitness is
13%. This is because the initial paths generated by OEABC are stochastic, and when the number of
iteration Cycle is greater than the limit, the new path generated by the scout bee is also stochastic.
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Figure 5. The fitness of the path when the SN is different.

When SN = 30, there are three points with an amplitude of change greater than 10% of the average
fitness, and compared with the generated paths, only 6% of the paths are more than 10% of the average
fitness, and the variation amplitude of the generated solution tends to converge with the increase
of SN.

When SN = 40, there is only one point with a variation amplitude greater than 10% of the average
fitness, and compared with the generated paths, only 3% of the paths are more than 10% of the average
fitness, the fluctuation range of the fitness curve becomes smaller and tends to be stable.

Therefore, the bigger the SN is, the higher the fitness of the path generated by the algorithm,
the closer we are to the optimal solution. At the same time, it can also be seen that the path ratio of the
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fitness change amplitude greater than 10% of the average fitness decreases from 13% to 3%. Therefore,
with the increase of SN, the variation amplitude of the generated solution tends to converge, and the
stability of the algorithm is gradually improved. This is because SN becomes larger, which means
that the larger the solution space is, the higher the probability of obtaining the optimal solution is.
However, the increase of SN will lead to the synchronous increase of the overhead of the algorithm,
which cannot increase the SN indefinitely. It is necessary to select the SN which is suitable for the scale
of the problem.

7.2.2. The Analysis of Limit

Set SN = 30, Cycle = 50. When the Limit is 5, 30, 50, respectively, the fitness of the path generated
by the OEABC is shown in Figure 6.Sensors 2018, 18, x FOR PEER REVIEW  12 of 17 
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Figure 6. The fitness of the path when the Limit is different.

As can be seen from Figure 6, when Limit = 5, the overall level of the generated solution is low, and
the average fitness of the path is only 46. This is because the Limit value is small, meaning that it will be
possible to release the scout bee multiple times to generate random paths. Randomness enhancement
of the algorithm generation solution and the probability of finding the optimal solution decreases
obviously because the experience obtained before cannot be fully utilized to search for a new solution.

When Limit = 30, although the Limit is not the largest, the overall level of the fitness curve is
the highest, and because of the reasonable value of the Limit, the algorithm does not fall into a local
optimum, nor is it completely dependent on stochastic generation, giving full play to the advantages
of both local and global optimization of the ABC algorithm.

When Limit = 50, the Limit becomes larger, but the fitness of the generation path decreases.
When the value of Limit is larger, the generated path can easily to fall into a local optimum, and one
cannot achieve global optimization, which leads to a low level of fitness of the path, so a bigger Limit
is not the best one, and there is a suitable Limit size to get a better path fitness. The size of the Limit
needs to be proportional to the SN, the Cycle and other parameters of OEABC to avoid both complete
stochasticity and local optimization.

7.2.3. The Analysis of Cycle

Set SN = 30, Limit = 30, when the Cycle number is 30, 60, 90, respectively, the fitness of the path
generated by the OEABC is shown in Figure 7.
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Figure 7. The fitness of the path when the number of Cycle is different.

As can be seen from Figure 7, When Cycle = 30, in the 30 paths generated by the algorithm,
the change amplitude of fitness is greater than 10% of the average (that is, the fitness is more than 57
or less than 47), which is only the 16th path with a value of 60, merely 3% of the paths are more than
10% of the average fitness. The reason is that Cycle is too small and there are not enough iterations of
the solution, so it is difficult to generate the path with higher fitness.

When Cycle = 60, compared with the previous round, the average fitness of the current round
increased by nearly 10% from 52 to 58, because the Cycle value is large enough to enable the solution to
be fully iterated.

When Cycle = 90, compared with Cycle = 60, the average fitness rose from 58 to 61, an increase of
about 5%. Although the further increase of the Cycle enables the solution to be further optimized and
the best solution 70 appears, the improvement decreases gradually. This is because the initial solution
of the ABC algorithm and the solution generated by the scout bee are both stochastic, if the random
solution is not good, it is difficult to generate the solution with high fitness by simply increasing the
number of iterations.

Therefore, the bigger the Cycle is, the higher the fitness of the algorithm generating path is.
It can also be seen that when the Cycle rises from 30 to 60, the average fitness increase is significantly
greater than when the Cycle rises from 60 to 90. That is to say, when the Cycle reaches a certain
value, the effect of improving path fitness will be worse and worse simply by adding to the Cycle
number. The Cycle number not only maintains a proportional relationship with the SN, Limit and other
parameters, but also considers the computational ability of nodes to ensure that the solutilon can be
quickly iterated.

In summary, through the analysis of the SN, Limit and Cycle parameters, it can be seen that the
fitness of the path generated by OEABC with different parameters changes greatly, which has a great
impact on the performance of the OEABC. The SN represents the size of the bee colony, and a larger
colony will be able to cover a wider range of solution space, effectively improving the probability of
finding an optimal solution. Through the roulette mechanism, OEABC implements positive feedback
on the path of higher fitness, by conducting the Cycle number of rounds of search in the neighborhood,
iterate to find the path with higher fitness, but the problem is that it is easy to fall into a local optimum.
The scout bee mechanism is used to solve this problem, and when a path cannot be optimized after the
Limit iterations, it will be discarded and a random path will be generated, ensuring an opportunity
to continue searching for the optimal solution globally. In the specific application scenario, selecting
parameters not only considers the performance of the OEABC algorithm itself, but also should take into
account the size of the body area network, the computational ability of nodes and specific requirements
that need to be addressed.
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7.3. Comparative Analysis

In order to further verify the performance of the algorithm, OEABC, the genetic algorithm [37]
and ant colony [38] algorithms are used to generate the optimal energy consumption path in the above
network environment. Two experiments are designed to compare and analyze the three heuristic
algorithms. In Experiment 1, we compared the percentage for the appearance of optimal solution,
while in Experiment 2 is the convergence rate of the algorithm.

Experiment 1. The population size and the number of iterations of the three algorithms are the same, 20 and
100, respectively, other parameter settings also choose the most commonly used settings, details as follows:
OEABC: The Limit parameter is 30. Genetic Algorithm: crossover probability Pc is 0.8, mutation probability Pm
is 0.2. Ant Colony Algorithm: the proving factor ALPHA is 1.0, the expected factor BETA is 2.0, the pheromone
volatility coefficient ROU is 0.5.

We run the above three algorithms 50, 100 and 150 times, respectively, then calculate the percentage
for the appearance of the optimal solution. The calculation method is the number of optimal solutions
divided by the total number of runs, and the results are shown in Table 7.

Table 7. The percentage for the appearance of optimal solution.

Run Times OEABC Genetic Algorithm Ant Colony Algorithm

50 16.00% 14.00% 18.00%
100 15.00% 16.00% 11.00%
150 16.67% 13.33% 17.33%

Average 15.89% 14.44% 15.44%

Experiment 2. In order to verify the convergence speed of the algorithm, in the above network environment, set
the parameters SN = 30, Limit = 20, Cycle = 50, by recording the fitness of five paths generated by OEABC that
form a convergence curve. The algorithm runs five times, and the corresponding convergence curve shown in
Figure 8.
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The convergence rate Cv is calculated as:

Cv =
f (ropt)− f (rinit)

Cycle
(12)

where rinit is the initial path, ropt is the optimal energy consumption path.
As can be seen from Figure 8, after 50 iterations, the 1st convergence is from 50 to 75, Cv is 0.5;

the 2th from 47 converge to 79, Cv is 0.64; the 3th from 53 converge to 77, Cv is 0.48; the 4th from
49 converge to 79, Cv is 0.6; the 5th from 55 converges to 75, Cv is 0.4, so the arithmetic average of
50 times Cv is 0.52.

Comparing the convergence rates of the above three algorithms in the case of population size
20, 30, 40, the convergence rate Cv is calculated using Equation (12). The number of iterations are 50,
the other parameters are the same as in Experiment 1. The experimental results are shown in Table 8.

Table 8. The convergence rate.

Population Size OEABC Genetic Algorithm Ant Colony Algorithm

20 0.81 0.76 0.83
30 0.89 0.92 0.89
40 1.17 1.08 1.01

Average 0.96 0.92 0.91

Through the comparison results, we can see the OEABC has an obvious advantage in solving the
problem of optimal energy consumption path of WBANs, whether the percentage for the appearance
of optimal solution or the convergence rate of the algorithm are considered.

8. Conclusions

By considering the factors that affect the energy consumption of the WBANs, the definition of
the optimal energy consumption path is given. Combined with the idea of ABC, using the method of
exchanging path SA, the OEABC algorithm is designed and implemented, and the ABC is successfully
applied to solve the problem of discrete solution space. The experimental results show that the OEABC
can effectively solve the NP problem of the optimal energy consumption path in WBANs. Compared
with the ant colony algorithm and genetic algorithm, it is further shown that the OEABC has a good
performance in obtaining the optimal path of energy consumption and convergence rate.
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