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InBrief
gpGrouper is a gene-centric
peptide inference and quantita-
tion algorithm that prevents gene
origin mixing and isoform omis-
sion in parsimonious protein-
centric approaches. A simple
classification schema indicates
distinguishable gene products,
with shared peptide quantities
distributed by ratios of corre-
sponding unique peptides. This
approach accurately determines
tumor content and deconvolu-
tion of proteomes from mixed
species patient derived xeno-
grafts without elimination of spe-
cies-shared peptides. iBAQ
quantities are calculated from
label-free, isotopic, or isobaric
data, allowing comparisons
within and across samples and
methodologies.

Graphical Abstract

Highlights

• Gene-centric inference algorithm with classification for distinguishable groups.

• Shared peptides are split proportionally to corresponding unique peptide ratios.

• iBAQ values are calculated for label-free, isotopic or isobaric labeling methods.

• Universally handles single or mixed species PDX data with accurate deconvolution.
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In quantitative mass spectrometry, the method by which
peptides are grouped into proteins can have dramatic
effects on downstream analyses. Here we describe
gpGrouper, an inference and quantitation algorithm that
offers an alternative method for assignment of protein
groups by gene locus and improves pseudo-absolute
iBAQ quantitation by weighted distribution of shared pep-
tide areas. We experimentally show that distributing
shared peptide quantities based on unique peptide peak
ratios improves quantitation accuracy compared with
conventional winner-take-all scenarios. Furthermore,
gpGrouper seamlessly handles two-species samples
such as patient-derived xenografts (PDXs) without ignor-
ing the host species or species-shared peptides. This is a
critical capability for proper evaluation of proteomics data
from PDX samples, where stromal infiltration varies
across individual tumors. Finally, gpGrouper calculates
peptide peak area (MS1) based expression estimates from
multiplexed isobaric data, producing iBAQ results that are
directly comparable across label-free, isotopic, and iso-
baric proteomics approaches. Molecular & Cellular Pro-
teomics 17: 10.1074/mcp.TIR118.000850, 2270–2283, 2018.

Mass spectrometry-based proteomics allows for the rapid
identification and quantification of proteins in complex biolog-
ical samples. The bottom-up techniques involve the enzy-
matic digestion of proteins into peptides, which are detected
by a high-resolution mass spectrometer after high perform-
ance liquid chromatography (HPLC) separation (1). The result-
ing peptides are then mapped back to proteins for down-
stream analyses. However, peptides shared across multiple
proteins complicate the process of protein inference and
quantitation (2–4). These problems are exacerbated in mixed
taxa samples of patient derived xenografts (PDXs)1, where
transplantation of human tumors into immune-compromised

murine hosts is a common approach employed for biomarker
discovery and analysis of drug sensitivities (5, 6). Because of
high homology across human and mouse proteomes, a higher
proportion of peptides have ambiguous protein assignments,
presenting even more significant challenges in the assembly
and analysis of these proteomic data as compared with single
species samples.

Existing peptide inference tools typically operate on a prin-
ciple of parsimony that intends to explain peptide data with a
minimal protein list (7–9). For cases where multiple proteins
cannot be distinguished with available peptide evidence,
those proteins are reported as a single protein group, or
master proteins are chosen - via logical but arbitrary rules - to
represent the group. This approach can also complicate com-
parison between multiple experiments when incompatible
protein isoform groups are reported from similar peptide ev-
idence in different experiments. The current solution to these
issues is to regroup all study experiments based on their
combined peptide pool, but this approach is computationally
consuming and restricts flexibility in exploratory analyses of
samples within different cohorts.

Another question is how—or whether—to incorporate shared
peptides in protein quantitation. For example, if a shared
peptide is parsimoniously assigned to one protein over others
in a “winner-take-all” scenario such as a Razor peptide defi-
nition by MaxQuant (10), that protein retains the whole quan-
tified value of such peptide peak. Alternatively, the exclusion
of shared peptides simplifies the process, but at the expense
of a loss of information and quantity.

To address these issues, we have developed a gene-centric
peptide grouping program, gpGrouper, which implements a
classification method for inference control and a mechanism
to distribute shared peak areas. gpGrouper also effectively
deconvolutes PDX proteomes where two homologous taxa
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are present in the sample. In these cases, the host stroma
replaces that from the original microenvironment and inte-
grates with the tumor. Because different tumors exhibit dif-
ferent levels of stromal integration (11, 12), it is important to
differentiate and accurately quantify proteins from each spe-
cies. The significance of the host contribution is increasingly
recognized in the proteomics community (13), because ignor-
ing the presence of mouse stroma in PDX samples can lead to
erroneous conclusions about tumor biology. Although some
software now have capabilities to consider multispecies sam-
ples (14), to date no other software addresses this challenge
while preserving and distributing all peptides shared across
species. In addition, we show that unique-to-taxon peptides
can be used to estimate fraction of tumor in a PDX sample,
which is a useful metric for assessment of sample suitability
for further analyses.

Last, gpGrouper has a universal peptide grouping logic that
processes label-free, isotopic (e.g. SILAC (15)), and isobaric
(e.g. iTRAQ (16) and TMT (17)) proteomic samples and returns
peptide peak area MS1-based estimates of iBAQ protein
quantities for all of these methodologies. The program can
use search results from any peptide identification and quan-
tification pipeline, only requiring spectral match information
and peptide abundances. We compare our method with the
widely used protein-centric MaxQuant approach (10) to high-
light consequences of parsimonious assignments in identifi-
cation and quantitation. We show that gpGrouper accurately
redistributes shared peptides and estimates species ratios
in mixed-taxa samples. We also demonstrate the ability of
gpGrouper to process data from PDX tissue samples after
label-free and iTRAQ-based profiling with comparable results.
gpGrouper is implemented in the Python programming
language and is freely available at https://github.com/
malovannaya-lab/gpgrouper.

MATERIALS AND METHODS

Cell Culture

HeLa cells were grown in DMEM (Catalogue # SH30022.01, Hy-
Clone, GE Healthcare Life Sciences) with 5% fetal bovine serum
(Catalogue # F0926, Sigma). NIH-3T3 cells were grown in DMEM with
10% bovine calf serum (Catalogue #100–506, Gemini Bio Products).
All cell lines were cultured at 37 °C in 5% CO2. For harvesting, cells
were incubated with 0.25% trypsin � EDTA (Catalogue # 25053,
Corning) and the digestion was quenched with serum-containing
media, washed 3 times with phosphate buffered saline, and subjected
for cell lysis as described below.

PDX Models

PDX tumors were grown in mice as described previously (18, 19).
Briefly, xenografts were transplanted into fat pads of SCID/Beige or
NOD/SCID immuno-compromised mice and allowed to reach an ap-
proximate volume of 1.5 cm in diameter before harvesting. Only
untreated and baseline (vehicle-treated) tumors were used for this
study.

Sample Preparation

Label-Free Profiling for Testing Mixed Species Samples—For HeLa
and NIH-3T3 cell lines, cells were resuspended in 50 �l of ammonium
bicarbonate � 1 mM CaCl2, snap frozen in liquid nitrogen and thawed
at 42 °C. This freeze/thaw step was repeated 3 times, and then the
samples were boiled at 95 °C for 2 min with vortexing at 20 s intervals
and kept for proteolytic digestion. The human/mouse mixture sam-
ples at ratios of HeLa:3T3 of 1:0; 1:3; 1:1; 3:1, 0:1 were prepared in
new tubes. Finally, mixed peptide samples were dried under vacuum.
The preparations of the human/mouse mixtures were repeated 3
times to assess the reproducibility in estimating taxon ratios.

Frozen PDX tumor sections were pulverized (cryoPREP™ CP02,
Covaris) or crushed on a liquid nitrogen cooled steel block with
mechanical action. The homogenized tissues were then transferred to
Eppendorf tubes and proteins were extracted with the same freeze/
thaw protocol as described for cell lines.

After isolation, protein concentrations were measured with the
Bradford assay. 50 �g of total protein was processed via a 2-step
trypsin digestion. First, proteins were digested with a 1:20 solution of
1 �g/�l trypsin/protein in ABC solution (50 mM ammonium bicarbon-
ate, 1 mM CaCl2) overnight at 37 °C with shaking. Next, an additional
digestion was carried out with a 1:100 solution of 1 �g/�l trypsin/
protein for 4 h in the same conditions. After addition of 10% formic
acid at 1:10 volume to neutralize the reaction, an equal volume of
80% acetonitrile � 0.1% formic acid was added to extract the pep-
tides. Peptides were centrifuged at 10,000 � g, and peptide concen-
tration of the supernatant was measured using the Pierce Quantitative
Colorimetric Peptide Assay (Cat# 23275, Thermo Fisher Scientific). 50
�g of peptide was vacuum dried and stored at 4 °C before resuspen-
sion for fractionation (if applicable) and sequencing.

TMT Labeled Human/Mouse Mixture for Testing Peak Area Distri-
bution—HeLa or NIH-3T3 peptides were labeled with isobaric tandem
mass tags (TMTsixplex, Catalogue #90061, Thermo Fisher Scientific)
according to the manufacturer’s instructions. Briefly, HeLa and NIH-
3T3 cell pellets were lysed in Lysis Buffer (100 mM TEAB with 1%
SDS). The lysate was sonicated for 10 s at 20% power for 3 times with
interval 30 s on ice (Ultrasonic Processor VC 505, Sonics & Materials
BE). The lysate was then cleared by centrifugation at 21,000 rcf for 20
min at 4 °C. The protein concentration of the supernatant was meas-
ured using Bradford Assay (Catalogue #23238, Thermo Fisher Scien-
tific). Fifty micrograms of protein per sample was transferred to a new
tube and adjusted to a final volume of 100 �l with 100 mM TEAB. Five
microliters of 200 mM TCEP was added to each sample for 1 h at
55 °C, then 5 �l of 375 mM iodoacetamide was added to sample for
30 min at room temperature in the dark. Total protein was precipitated
with 6-volumes of cold acetone overnight at �20 °C. The protein was
pelleted by centrifugation and air dried for 3 min. Dried protein was
dissolved in 100 �l 50 mM TEAB and digested with 25 ng trypsin per
1 �g protein overnight at 37 °C. After digestion, peptide concentration
was measured using Pierce Quantitative Colorimetric Peptide Assay
(Catalogue #23275, Thermo Fisher Scientific). 0.8 mg vial of TMT
Label Reagent TMT-126 or 129N was dissolved in 41 �l anhydrous
acetonitrile, added to 50 �g peptides in 100 �l 50 mM TEAB of HeLa
or NIH-3T3, respectively. After labeling peptides for 1 h at room

1 The abbreviations used are: PDX, patient derived xenograft; ABC,
ammonium bicarbonate; e2g, experiment to gene (result table);
GPGroup, gene product group; iBAQ, intensity based absolute quan-
tification; iBAQFOT, iBAQ-based fraction of total; IDGroup, identifica-
tion group; IDSet, identification set; iTRAQ, isobaric tag for relative
and absolute quantification; PAM50, prediction analysis of microar-
rays 50 (breast cancer subtype gene signature); PSM, peptide spec-
tral match; SILAC, stable isotope labeling with aminoacids in culture;
SPS, synchronous precursor selection; SRA, strict, relaxed, all; TMT,
tandem mass tags; WHIM, Washington University Human-In-Mouse.
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temperature, reactions were quenched by adding 8 �l of 5% hydrox-
ylamine solution and incubating for another 15 min.

Off-Line Basic pH Reverse Phase Peptide Fractionation—Vacuum-
dried peptides were dissolved in pH10 ABC buffer (10 mM ammonium
bicarbonate, pH 10, adjusted by NH4OH) and subjected to off-line
microscaled reverse phase separation (or “sRP”, for small scale RP).
A micropipette tip with a C18 resin was made from a 200 �l pipette tip
by layering 6 mg of C18 matrix (Reprosil-Pur Basic C18, 3 �m, Dr.
Maisch GmbH, Germany) on top of a C18 disk plug (EmporeTM C18,
3M). Vacuum-dried peptides were dissolved with 150 �l of pH10 ABC
buffer and loaded on the C18 tip pre-equilibrated with same pH10
ABC solution. Bound peptides were fractionated by elution with a
step gradient of 150 �l of increasing concentrations of ACN, com-
bined into pooled fractions non-contiguously, and vacuum dried. For
TMT-tagged human and mouse peptide mixtures, a total of 18 frac-
tions (2–36% ACN, 2% steps) were collected and combined into 6
pools (18F6R protocol with 02 � 14 � 26, 04 � 16 � 28, 06 � 18 �
30, 08 � 20 � 32, 10 � 22 � 34, and 12 � 24 � 36% combinations).
This is the most extensive sRP protocol used here to achieve better
separation of peptide complexity and minimize ratio compression in
isobaric methods. For label-free human and mouse mixture profiling
samples, a total of 15 (2–30% ACN, 2% steps) fractions were ob-
tained and combined into 5 pools for mass spectrometry sequencing
(15F5R protocol with 02 � 12 � 22, 04 � 14 � 24, 06 � 16 � 26,
08 � 18 � 28, and 10 � 20 � 30% combinations). This is our current
standard sRP configuration that allows identification and quantifica-
tion of �6000–7000 proteins per 5 �g of peptide in �12 h. For the
WHIM PDX profiling samples, an older original sRP protocol (20) was
used with 9 fractions combined into 6 pools (9F6R protocol with 06 �
25, 09 � 30, 12 � 35, 15, 18, and 21%).

Mass Spectrometry

Fractionated peptides were analyzed on an Orbitrap Fusion or
LumosETD mass spectrometer coupled with the Nanospray Flex ion
sources and, respectively, an UltiMate 3000 UPHLC or an EASY-nLC
1200 UHPLC (all instrumentation from Thermo Fisher Scientific). For
each run on the Fusion instrument, �1 �g of peptide was loaded onto
a 2 cm 100 �m ID pre-column and resolved on a 12 cm 100 �m ID
column, both packed with sub-2 �m C18 beads (Reprosil-Pur Basic
C18, Catalogue #r119.b9.0003, Dr. Maisch GmbH). For each run on
the LumosETD instrument, �500 ng of peptides were loaded onto a
2 cm 100 �m ID pre-column and resolved on a 6 cm 150 �m ID
column, both packed with sub-2 �m C18 beads. The gradient mobile
phase was mixed from water (solution A) and 90% acetonitrile (solu-
tion B), both with 0.1% formic acid. A constant flow rate was main-
tained with linear gradient elutions. Specific gradients and mass
spectrometry method parameters are listed in supplemental Table S1.

Reference Sequence Databases

The raw spectral data were searched against human and mouse
NCBI reference sequence databases downloaded on 2015-06-10
and processed to produce RefSeq FASTA files annotated with NCBI
GeneID, TaxonID, and HomologeneID. FASTA duplicates were re-
duced per GeneID as follows. In each case, FASTAs with the NP_
accession and highest Protein GI number were preferentially chosen
over the XP_ accessions and lower GI numbers to represent a given
group of identical sequence associated with the same GeneID. A total
of 73,637 human and 58,549 mouse sequences were compiled. For
mixed HeLa:3T3 and PDX experiments, a combined human/mouse
RefSeq was made by concatenating the human and mouse data-
bases. A Python script to make these reference databases is provided
in RefProtDB (https://github.com/malovannaya-lab/RefProtDB).

Search (Mapping/Quantification) Parameters

Proteome Discoverer (Mascot-based) Search—The Proteome Dis-
coverer software suite (PD version 2.0.0.802; Thermo Fisher Scien-
tific) was used to search the raw files with the Mascot search engine
(v2.5.1, Matrix Science, London, UK (21)), validate peptides with
Percolator (v2.05 (22)), and provide MS1 quantification through Area
Detector Module. MS1 precursors in a 350–10,000 mass range were
matched against the tryptic RefProtDB database digest with Mascot
permitting up to of 2 missed cleavage sites (without cleavage before
P), a precursor mass tolerance of 20 ppm, and a fragment mass
tolerance of 0.5 Da. The following dynamic modifications were al-
lowed: Acetyl (Protein N-term), Oxidation (M), Carbamidomethyl (C),
DeStreak (C), and Deamidated (NQ). For the Percolator module, the
target strict and relaxed FDRs for PSMs were set at 0.01 and 0.05 (1
and 5%), respectively.

MaxQuant Search—MaxQuant version 1.6.0.1 was used for ana-
lyzing data via MaxQuant software suite. Default values were used
with the following specifications. The dynamic modifications were
set: Acetyl (Protein N-term), Oxidation (M), Carbamidomethyl (C),
DeStreak (C), and Deamidated (NQ). Trypsin/P proteolytic enzyme
was used with a maximum of 2 missed cleavages, a precursor mass
tolerance of 20 ppm, and a fragment mass tolerance of 0.5 Da. A PSM
FDR cutoff of 1% was used.

Spectrum Mill Search—The original PSMs table from Huang et al.
(23) was retrieved from https://cptac-data-portal.georgetown.edu/
cptacPublic/.

Inference/Quantitation

gpGrouper—gpGrouper uses peptide spectral matches (PSMs)
data produced by a search engine of user’s choice (e.g. Mascot,
Andromeda, Spectrum Mill, MSGF�) and a RefProtDB FASTA file
with Entrez GeneID information for inference (supplemental Fig. S1,
https://github.com/malovannaya-lab/gpgrouper, and supplemental
README documentation). The tab-delimited PSMs input should at
minimum provide sequence, charge, modifications, search engine
score, FDR-type statistic, MS1 peak quantification, and, if applicable,
isobaric tag MSn reporter quantification. Default gpGrouper parame-
ters are specified for the Mascot search engine output coupled with
the Proteome Discoverer Area Detector, but data can originate from
any MS peak quantification pipeline that provides the input values
gpGrouper requires (see supplemental Note 1 for parameter adjust-
ments made for MaxQuant and SpectrumMill PSMs data). For a full
list of fields calculated for PSMs and gene products, see supplemen-
tal Figs. S2 and S3, respectively.

MaxQuant—MaxQuant protein results were filtered to 1% FDR.
Sum of unique�razor peptides were used for quantitation, with a
minimum of 1 razor�unique peptide required.

SpectrumMill—The original protein expression data (log2 ratio) of
the Huang et al. study (23) was retrieved from the online publication,
supplemental Table S4. Protein accession numbers were mapped to
Entrez GeneIDs via accession-2-gene relationship.

Data Normalization for PDX Profiling Comparison

After regrouping the PSMs data from the Huang et al. study, the
gene product output table was normalized and converted into log2
ratios for each WHIM for comparison to the previously published
data. First, the iBAQ-based fraction of total values (iBAQFOT) were
calculated per species by dividing the iBAQ for each gene product by
the total species iBAQ. Then, each iBAQFOT was divided by the
corresponding gene product iBAQFOT for the internal reference and
log2 transformed. These calculations were performed separately for
each iTRAQ label using the internal reference within each iTRAQ set.

gpGrouper: A Gene-Centric Peptide Grouping and Quantitation Algorithm

Molecular & Cellular Proteomics 17.11 2273

http://www.mcponline.org/cgi/content/full/TIR118.000850/DC1
https://github.com/malovannaya-lab/RefProtDB
https://cptac-data-portal.georgetown.edu/cptacPublic/
https://cptac-data-portal.georgetown.edu/cptacPublic/
http://www.mcponline.org/cgi/content/full/TIR118.000850/DC1
https://github.com/malovannaya-lab/gpgrouper
http://www.mcponline.org/cgi/content/full/TIR118.000850/DC1
http://www.mcponline.org/cgi/content/full/TIR118.000850/DC1
http://www.mcponline.org/cgi/content/full/TIR118.000850/DC1


The protein quantities of the label-free (LFree-gpG) dataset were
similarly iBAQFOT normalized, and further median-centered per gene.
Z-score transformation was applied to each data set separately
before comparison.

RESULTS

Advantages of Gene-Centric Peptide Grouping—Here we
implement a gene-centric inference and quantitation ap-
proach for bottom-up proteomics data that fundamentally
differs from mapping protein level results to gene identifiers
after inference. This approach solves three major issues of
protein inference strategies. gpGrouper is not forced to mis-
leadingly choose isoforms in data lacking and inherently bi-
ased against isoform-defining peptides. It eliminates mixing of
gene and species origins within protein groups without omis-
sion of shared peptides. Last, single species and PDX sam-
ples can be analyzed without parameter adjustments to esti-
mate pseudo-absolute protein amounts.

Peptides that differentiate protein isoforms are greatly un-
derrepresented in proteomic profiling data due to their low
frequency and an inherent tryptic bias against exon junctions
(24). To explore the degree of impact this phenomenon has on
the analysis of experimental data, we compared results from
the parsimonious protein-centric assembly employed by
MaxQuant (10, 25) with the gene-centric inference performed
by gpGrouper. Human (HeLa) and human/mouse 1:1 mixture
(HeLa/3T3) lysates were profiled to simulate complex single
species and mixed-species PDX samples. In this analysis, we
did not use the MaxQuant option of omitting species-shared
peptides (14) to illustrate the extent of the issue in human/
mouse samples. For the protein groups reported through this
protein-centric approach, we find evidence for distinct protein
isoforms in only a subset of these groups (Fig. 1A). From this
protein perspective, 6.86% and 9.83% represent the only one
gene product isoform annotated in RefSeq - these are infor-
matically trivial cases that do not require an algorithm to
choose a correct isoform product of a gene locus. Only 5.04%
and 4.83% of the nontrivial protein assignments have unique-
to-isoform peptides in the human and human/mouse sam-
ples, respectively. When mapping protein-centric results to
the gene locus, we find that 97.59% human and 76.13%
human/mouse protein groups map to a single GeneID (Fig.
1B). In the human/mouse mixture sample, 29.42% of single-
gene protein groups have isoforms that are completely indis-
tinguishable by peptide evidence, 8.47% of genes have two
or more protein groups each with multiple indistinguishable
isoforms, and only 14.86% of genes have at least one protein
group with a single specific isoform inferred by the software.
An additional �24% of gene products in both human and
human/mouse samples are trivial single isoform cases. Fur-
thermore, a subset of protein-centric groups—2% for the
human and 30% for the human/mouse sample—contains
multiple GeneIDs and, in the latter case, multiple species
within a single group (supplemental Fig. S4A–S4D).

These observations highlight where protein-centric group-
ing approaches are not straightforward in interpretability and
should have consequences in quantification. This is further
explored by examining the identification and quantitation of
calumenin protein levels in a mixed mouse/human proteome.
We first estimated how much protein is produced from human
calumenin (GeneID 813) and mouse calumenin (GeneID
12321) loci by measuring separate HeLa and 3T3 proteome
profiles. All calumenin peptides are unique-to-gene in each
species separately, and the total amount of human and
mouse calumenin proteins are approximately the same. From
these data, we calculated expected amounts and ratio of
calumenin proteins in the 1:1 HeLa/3T3 mixture, where more
than half of calumenin peptides are shared between species
(Fig. 1C). We then profiled this mixture to test how protein-
centric and gene-centric algorithms identify and quantify the
mixed species proteome (all profiling results are available in
supplemental Table S2). If a standard protein-centric infer-
ence and winner-take-all (Razor peptides) quantification pipe-
line is applied, the human/mouse calumenin ratio is estimated
to be �1:9 instead of expected 1:1. Ignoring all species
shared peptides—a mechanism that is often employed in
dealing with PDX samples—corrects this ratio, but vastly
underestimates protein levels (in this case, by 5-fold). In ad-
dition, one expressed mouse isoform is eliminated by parsi-
mony, and a biologically meaningless protein group that con-
tains mixture of human and mouse proteins is assigned.
Parsimonious elimination and the mixing of genomic origins in
protein groups are unavoidable artifacts of protein-centric
grouping algorithms that preserve shared peptide information.
In contrast, gpGrouper assigns separate mouse and human
gene products and provides information on distinguishable
protein isoforms of the same gene, if available, without omit-
ting shared peptides. Because of this, gpGrouper more ac-
curately quantifies the expected amounts of human and
mouse proteins on both pseudo-absolute and relative levels.

Qualitative Binning as an Alternative to Subset Elimination—
Another issue of inference and quantification is that proteom-
ics alone can never prove that a subset protein is not present.
For example, one mouse and one human calumenin isoform
do not have any unique peptides in the profiling data from Fig.
1. Although it is important to recognize this, parsimonious
elimination of such subsets is unsubstantiated. To this end,
rather than excluding gene products or isoforms with a subset
of peptide evidence, all potential gene locus identifiers are
reported with the level of evidence clearly indicated through a
tiered system. Here, each gene product entry is assigned an
IDSet value that indicates uniqueness and an IDGroup value
that indicates spectral confidence in identification (Fig. 2A–
2C). IDSet1 indicates that the peptide group assigned to a
gene locus has at least 1 unique-to-gene (u2g) peptide,
IDSet2 indicates the group has no u2g peptides but is not a
subset of any other group through the available peptide evi-
dence, and IDSet3 indicates that the peptide set assignable to
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FIG. 1. Gene-centric grouping is a robust method for inference and quantitation of gene product expression in single and mixed
species samples. A, Proportions of distinguishable proteins in HeLa (human, left) and HeLa/3T3 mixture (human/mouse, right) proteome
profiling data. A protein can be inferred from the identified peptide pool in �5% of cases. An additional 6–10% of unique protein assignments
are from trivial cases where only one possible protein isoform is annotated for a given gene product. B, Proportions of protein isoforms that
are distinguishable at the gene product level in human and human/mouse proteome profiling data. The majority of protein groups map to a
single gene locus; and peptide coverage is insufficient to definitively identify an isoform in the majority of these cases. C, Comparison of human
and mouse calumenin protein inference, peptide assignments, and quantitation in the human/mouse mixture sample. The expected quantities
are calculated from corresponding profiling of separate HeLa or 3T3 lysates. The results from the mixed sample were assembled via
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the locus is a subset of at least one other group (Fig. 2B).
Although others have proposed and implemented more nu-
anced levels of evidence groups (2, 9, 26, 27), this simple

three-tiered approach covers all possibilities and is easily
interpretable. IDGroup is a PSM quality rank that combines
the spectral match score with PSM q-values as described in

gene-centric approach by gpGrouper and protein-centric approach by MaxQuant (without cross-species peptide elimination). Razor peptides
are assigned by winner-take-all method, and the whole quantity of the razor peptide is used in quantitation of its corresponding protein-centric
group. Note that ProteinGI 41282022, which is definitively identified in separate 3T3 cell profiling, is parsimoniously eliminated by protein-
centric grouping in mixed species data.
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NAT1 131 3S 1 1 0.01 1511 1S 15 64 52.4 1411 1S 14 20.752
FOXA1 511 1S 3 15 3.6 411 1S 2 1.36

ESR1 152R 1 0.02 411 1S 1 17
PGR 611 1S 6 9 0.82 711 1S 6 0.2510

MLPH 1111 1S 10 19 2.3 711 1S 7 0.358
SGSM3 142R 1 0.03 251 6A 1 3 0.006 811 1S 2 9 0.18 511 1S 2 0.166

ZC3H7A 151 5R 1 1 0.02 151 5R 1 1 0.02 431 3S 3 4 0.15 411 1S 3 0.144
USP11 411 6A 1 5 0.12 331 5R 1 3 0.06 911 1S 5 10 0.16 631 3S 4 0.156

ECE1 311 6A 1 6 0.14 351 5R 2 3 0.23 511 1S 2 5 0.39 112S 0.091
TMEM259 231 5R 1 2 0.05 251 5R 2 2 0.09 231 3S 2 2 0.06 411 1S 2 0.195

CSAD 231 3S 2 2 0.08 161 6A 1 0.011
ND2 131 3S 1 2 0.77 261 6A 2 0.892

ANKRD13D 252R 2 0.01 112S 0.021
AFF3 211 4R 1 2 0.04 152R 0.031

RPAP2 231 7A 1 2 0.03 152R 0.071

IDSet = 2 : has 0 unique-to-gene peptides  AND 
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FIG. 2. Qualitative binning as an alternative to subset elimination. A, Definition parameters for Strict, Relaxed, and All (SRA) qualities of
gene product identifications. B, Definition rules for IDSet classes of gene products. This three-tiered annotation system indicates whether gene
product identifications are based on peptides with unambiguous gene locus mapping and demarcates identifications with subset peptide
evidence. C, Definition parameters for PSM IDGroup bins. The lowest PSM IDGroup from peptides mapped to a given gene product is assigned
as the gene-level IDGroup. D, Exploratory analysis of gpGrouper identification results from profiling of two basal and two luminal PDX tumors.
Examples of gpGrouper metrics for (1) a subset of well-characterized PAM50 luminal markers, (2) a selection of gene products with borderline
identifications in basal cancers, and (3) a selection of low abundance gene products with consistent expression quantities across in luminal
tumors, but variable spectral match qualities.
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Fig. 2C. The best PSM IDGroup is assigned to each gene
product as the gene-level IDGroup. IDSet and IDGroup
metrics are combined to form the “SRA” binning system
composed of “Strict,” “Relaxed,” and “All” confidence levels
(Fig. 2A). Critically, while the approaches are not equivalent,
the “Strict” list of assigned gene products gives comparable
results to applying a 1% protein FDR cutoff (supplemental
Note S2 and supplemental Fig. S4E). The lower “Relaxed” and
“All” confidence assignments that would generally be elimi-
nated by parsimony and FDR thresholds are retained, but
clearly demarcated. While for an individual sample the evi-
dence in these lower quality bins are less reliable, there is
substantial utility to preserving these identifications when
comparing across multiple experiments, as shown below.

With SRA bins and several semiquantitative and quantita-
tive parameters from peptide, PSM, and peak-based amounts,
gpGrouper provides a wealth of information for exploring
proteomics results. In Fig. 2D we show examples of explora-
tory analyses through comparing proteome profiling of 2 basal
and 2 luminal breast cancer PDXs (WHIMs; data in supple-
mental Table S3). Several known luminal PAM50 markers are
identified and quantified nearly exclusively in luminal tumors
with strong qualitative evidence (Fig. 2Di). In the next two
panels (Figs. 2Dii-iii), we show how SRA binning allows nu-
anced interpretation of data where the differences between
identifications are less robust. Proteins in Fig. 2Dii are identi-
fied in both basal and luminal tumors, but both quantities and
SRA bins are lower for the basal subset. The agreement
between SRA quality and protein quantity, an expectation in
MS-based proteomics measurements, reinforces the conclu-
sion that the differences are indeed true. Notably, if we were
to eliminate identifications in R and A bins - effectively pro-
ducing a minimal protein list for each experiment—many iden-
tifications of slightly worse quality would become missing
values. For protein SGSM3, this will change the observed
�9.5 fold luminal/basal difference to infinity—a less accurate
conclusion of a large difference. In contrast, for TMEM259,
where gpGrouper suggest only a minor �1.8-fold difference
between luminal and basal tumors, a change to “all-or-none”
leads to a significantly different conclusion of protein expres-
sion only in luminal samples. For proteins of lower abundance
that are usually identified with few peptides, cutting data to a
minimal list per experiment would sporadically produce miss-
ing values where subpar evidence is present. In Fig. 2Diii we
see examples of this, where luminal subtype specific proteins
of low abundance have different identification qualities but
similar quantities.

Traditionally, this type of data analysis is performed by
searching and grouping all experiments together as a cohort,
which requires reprocessing every time a sample is added or
removed from an analysis group. The gpGrouper output for-
mat and metrics allow for single-sample results to be inter-
preted on their own and flexibly combined without the neces-

sity for data reprocessing, effectively mimicking a cohort
analysis through assessment of the SRA quality metric.

Testing Area Distribution Accuracy for Shared Pep-
tides—To improve the accuracy of pseudo-absolute quanti-
fication, gpGrouper retains and distributes shared peptide
peak areas based on unique-to-gene peptide peak area ra-
tios. This allows retention of shared peptides, which comprise
18 and 70% of all peptides by area in human and human/
mouse samples (supplemental Fig. 5E and supplemental Note
S3 for further discussion). This logic has been implemented
previously on PSMs level and has shown to be a more accu-
rate estimate of protein abundance than either full inclusion of
shared peptides for each protein or ignoring shared peptides
altogether (28). With this issue exacerbated on the MS1 peak
area level, we sought to implement and validate a similar
mechanism for the peptide peak based quantification. After
peak area distribution, gene products are quantified by the
iBAQ-based method of summing distributed peptide peak
intensities and dividing by the total number of potential pep-
tides, an approach that has been shown to be proportional to
the absolute protein quantity (29–32).

To validate the accuracy of splitting shared peptide quan-
tities based on unique-to-gene peptide ratios, we made a
specialized human/mouse sample from HeLa and 3T3 cells
labeled with separate TMT reporters (126 and 129N, respec-
tively). We mixed them in a 1:1 ratio and analyzed the pro-
teome profile of the combined samples. In this test dataset,
cross-species shared peptides have same MS1 peptide
peaks, and all signal from one TMT reporter channel (126)
should originate from human proteins and all signal from the
other (129N) from mouse proteins. This is a unique scenario,
where the measured ratio of peptide origins can be obtained
from the reporter ion ratios to the extent of the accuracy of the
TMT technique (Fig. 3B). We are then able to compare these
expected values with the distributed MS1 values as estimated
by the ratio of unique-to-gene peptide sums (where the TMT
reporter ions were ignored). We examined 5590 values for
peptides that map to one gene identifier from each species
after filtering for gene products that also contained quantified
unique-to-gene peaks. This subpopulation serves to easily
examine the validity of peptide peak area splitting based on
unique-to-gene peptides by comparing the estimated peak
distribution to the observed TMT reporter ion ratio (supple-
mental Table S4). The measured and estimated ratios have a
strong Pearson correlation of 0.89, with a log2 ratio of the
label-free estimate over the TMT observed values normally
distributed around 0 with a mean ratio of �0.059 and stand-
ard deviation 1.024 (Fig. 3C). We also compared peak distri-
bution to no peak splitting, random splitting, or razor alloca-
tion. Here, we found the root-mean squared error (RMSE) of
0.31 from the gpGrouper distribution mechanism to be lower
than RMSE for no split (0.42), razor (6.37), or random splitting
(0.50) (supplemental Fig. S6). These results show that the
shared peptide peak splitting procedure performed by
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gpGrouper is the most accurate method for taking shared
peptides into account for the purposes of quantification.

Extension of Shared Peptide Distribution Algorithm for Pro-
teome Quantification in PDX Samples—Because of the high
degree of overlapping peptides and total peptide areas in
mixed human/mouse samples (see supplemental Note S3 and
supplemental Fig. S5), the ability to retain information from
shared peptides for the estimation of pseudo-absolute protein
amounts with iBAQ method is more important. Because we
showed that even limited numbers of unique-to-gene pep-
tides can be used effectively and fairly to distribute gene
product quantities, we surmised that a ratio of all human only
and all mouse only peptide peaks should serve as a good
proxy for species percentages in a given PDX. To test this

hypothesis, we mixed unlabeled human HeLa and mouse 3T3
lysates in predefined ratios, profiled these samples, and eval-
uated how closely summation of their unique-to-species peak
areas matched the expected percentages. A total of 5 mix-
tures of the same two original lysates were made in triplicate
at 90% (9:1), 75% (3:1), 50% (1:1; same as data used in Fig.
1), 25% (1:3), and 10% (1:9) human (Fig. 4A). For the taxon
ratios, the measured values were 11.13, 30.57, 55.84, 79.16,
and 91.52% human with standard deviations of 0.36, 0.32,
0.73, 0.50, and 0.24%, respectively (Fig. 4B).

Approximately 8000 gene products (7700 gene product
groups) were identified for 5 �g of each separate species
lysates, and 10,000–13,000 gene products (9000–12,000
gene product groups) were identified in mixed samples. Both
the number of unique-to-species gene products and gene
product groups positively correlate with the percentage of
that taxon within the mixture. The species-specific gene prod-
ucts increase from �3000 in the 10% fractions to �6000 in
the 90% fractions. The standard deviation in the number of
gene products and groups is 1–3% of the mean (supplemen-
tal Fig. S7 and supplemental Table S5). Nearly 3000 gene
products (1500 gene product groups) appear in all mixtures
and represent highly homologous abundant proteins are fully
shared cross-species. Notably, there is a �3% bias toward
human content, which may be caused by a more complete
human RefSeq annotation.

We then asked how accurately gpGrouper predicts label-
free quantities for human proteins in a mixed species sample.
It is worth noting that distributing cross-species shared pep-
tide peak areas in gene products that also have unique-to-
gene peptides follows the same logic as peak distribution for
gene products of a single species. In this case, the gpGrouper
algorithm works without modification, dividing MS1 intensities
based on ratios of quantified unique-to-gene peptides. How-
ever, a new scenario arises in PDX data for proteins that are
fully indistinguishable across species. For cross-species in-
distinguishable gene products, gene quantities in PDX exper-
iments are first split by taxon percentage and then by the
number of gene products per group, if applicable (supplemen-
tal Fig. S8). Although this admittedly represents the best
guess in the absence of definitive data, this weighted distri-
bution preserves the total human-to-mouse ratios for inter-
species and inter-experimental normalization.

To gauge the accuracy of redistributing peak areas of pep-
tides shared across two taxa, we further analyzed the 50%
human mixture. We established an expected iBAQ level value
for each human gene product by multiplying the quantities
from the 100% human profiling sample by 0.50. Then, we
calculated gene product iBAQs for each of the three 50%
human replicates with gpGrouper peak distribution or using
two common alternative approaches (14, 23). The first ignores
all peptides shared between human and mouse, and the
second alternative groups peptides against only a human
database, assuming that peptide shared across these species
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FIG. 3. Validation of distribution algorithm for peak areas of
peptides shared across multiple gene products. A, Experimental
approach for benchmarking the accuracy of splitting shared peptides
by unique peptide ratios. A specialized 1:1 mixture of human
TMT126-tagged peptides and mouse TMT129-tagged peptides was
made. A given peptide mapping to both species will elute as a single
MS1 peak. The AUC value of said peak can be split by relative
reporter ion ratios from its SPS-MS3 spectrum to determine expected
AUC distribution. B, Theoretical scenario by which a shared peptide
is split across two gene products (one mouse and one human gene in
this dataset), that also have unique-to-gene peptides. The calculation
of the distributed peptide area sum for each gene product comprises
of the sum of unique peptides and shared peptides after weighting by
the unique peptide ratio. C–D, Analyses of peptides that are shared
across species and map to genes that also contain one or more
unique peptides. C, Correlation plot for 5,590 shared peptide quan-
tities distributed according to unique peptide ratios (gpGrouper AUC)
versus expected quantities measured by TMT reporter ion ratios. D,
The histogram of differences between expected and gpGrouper es-
timated quantities for distributed areas of shared peptides.
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belong to human proteins (data in supplemental Table S6).
Fig. 4C shows that distribution of quantities to separate spe-
cies via gpGrouper algorithm is more accurate than the other
two approaches. Ignoring all species-shared peptides per-
forms the worst with a Pearson correlation of 0.85 and under-
estimates protein levels, while searching against the human
only database over-estimates human quantities. By consider-
ing all peptides and a concatenated human/mouse database
we achieve a high Pearson correlation of 0.92 and a narrow,
unity centered ratio distribution. To evaluate technological
bias from potential under-sampling of lower fraction species,
we repeated the same comparison of expected versus ob-
served iBAQs for both species across all mixtures in Fig.
4A–4B. The RMSE between the expected and observed gene
products quantified across all samples increases from roughly
0.40 in the 90% fraction up to 0.76 in the 10% fraction (as
seen in supplemental Fig. S7F). Unsurprisingly, the accuracy
of quantification is affected by the percentage of the species
in the sample.

Next, we show several examples that highlight the impor-
tance of species deconvolution and show utility of gpGrouper
percent estimates in genuine PDX samples. In Fig. 4D, per-
cent human estimates are plotted for single 60-min gradient
profiling results of individual PDXs replicates (xenograft tu-
mors derived from different mice) of four different breast
cancer tumors. The stromal infiltration, as represented by
percent mouse, is largely inherent to the tumor, with some
consistently displaying high human content (BCM-5998 tu-
mors at �88% and BCM-3469 at �71%), and others with
lower content (BCM-3611 tumors at �51%) and highly het-

erogeneous stromal patterns (BCM-4913 tumors in 3–64%
human range). Therefore, when analyzing PDX samples, it is
important to consider the percentage of each species and
ensure that the percentages are acceptably consistent across
multiple samples. Both amount and consistency of PDX tumor
content is critical for downstream informatics analysis (e.g.
amount of missing values and the ability to normalize data)
and design of multiplexed sets and references for isobaric
experiments. An example demonstrating the implications of
having widely different human content in PDX samples is
shown in supplemental Fig. S10 (data in supplemental Table
S7), where alternative methods for handling species-shared
peptides lead to drastically lower or higher identities and
quantities. Our 1-hour proteome profiling allows for fast, ac-
curate, and cost-efficient estimation of human content in
PDXs which can drive a decision to include or reject a tumor
sample from a study.

Splitting Isobaric Multiplexes into Separate Experiments
with MS1-Based Protein Quantitation—Last, we implemented
a multiplex splitting feature to gpGrouper, allowing for sepa-
ration of isotopic and isobaric experiments into pseudo-ab-
solute protein levels for each biological sample. For splitting
of isobaric experiments, we partition each total MS1 peptide
peak area into sample-specific AUCs according to reporter
signal ratios from the corresponding MS2 or MS3 spectra (Fig.
5A). This differs from simply summing reporter ion ratios
(supplemental Fig. S11), which are inherently compositional in
nature and do not reliably represent total peptide amounts
(33). The peak area splitting is done prior to protein inference
to achieve separation of biological samples by the reporter
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FIG. 4. Validation of gpGrouper algorithm for estimation
of tumor percentage and protein quantification in PDX
samples. A, Schematic depicting the 5 cell mixtures used to
test human/mouse proteome deconvolution by gpGrouper.
Cells were lysed and digested with trypsin separately before
mixing in the given ratios by peptide amount. B, Measured
percentages of human and mouse proteins in each mixture
reproducibly match the expected values (n � 3), with a slight
�3% bias toward human assignments. C, Correlation and
distribution plots of human gene products in the 1:1 mixture
versus their expected levels after (1) only using unique-to-
human peptides (2) only grouping with the human RefSeq, and
(3) grouping against a human/mouse concatenated RefSeq
and distributing peptides peak areas across species when
necessary. D, Examples of varying levels of stromal infiltration
across PDX replicates of breast cancer tumors from 4 patients.
BCM-5998 PDXs consistently shows a human composition
above 80%. BCM-3469 PDXs, while lower, are consistent at
nearly 75% human. BCM-3611 PDXs are more variable, with
percentages ranging from 40 to 60% human. Finally, the BCM-
4913 model is extremely inconsistent with the human compo-
sition ranging from 3 to 65%.
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channel. Once the individual PSMs tables with split MS1
AUCs are calculated, gpGrouper operates as previously,
building separate experiment-2-gene results with consider-
ation of species and shared peptide distributions.

With this implementation, we first tested whether relative
protein expression calculated from isobaric tag reporter ratios
and the corresponding expression vectors from gene product
iBAQ from gpGrouper are comparable. To do this, we utilized
proteome profiling data from a previously published study by
Huang et al., where 24 breast cancer PDX samples from
Washington University Human In Mouse collection (WHIMs)
were analyzed in iTRAQ4-multiplexed experiments (23). The
Spectrum Mill based PSMs output from this study was
grouped using gpGrouper to obtain “iTRAQ-gpG” results and
compared with the protein results provided by the publication
(“iTRAQ” results). We also compared these two quantification
procedures of iTRAQ4 data with our label-free profiling of the
same tumors, referred to as “LFree-gpG” results. Because

iTRAQ and label-free WHIM experiments were done on dif-
ferent PDX passage cohorts, we narrowed our evaluation to
15 WHIMs that were present in both datasets (WHIMs 02, 04,
06, 08, 11, 12, 14, 16, 17, 18, 20, 21, 30, 35, and 43). Each
dataset was normalized separately before comparison (see
Methods). In Fig. 5B, we show that for the human gene
products in the intersection of all three results, the two iTRAQ-
derived results cluster strongly by their WHIM tumor identity.
Furthermore, with exception of LFree-gpG profile from a late
passage WHIM04 PDX, WHIM tumor identity is the primary
driver of clustering between iTRAQ and LFree-gpG datasets.
Secondly, WHIM subtypes cluster as reported previously
across all methodologies, with two major clusters of basal
and luminal B with HER2-E tumors and separation of clau-
din-low and EBV lymphoproliferative cancers. We conclude
that transformation of isobaric data into MS1-based iBAQ esti-
mates by gpGrouper algorithm works well and produces com-
parable conclusions to conventional reporter ratio analysis.
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FIG. 5. Comparison of gpGrouper iBAQ-based expression estimates from label-free and isobaric proteome profiling of WHIM PDXs.
A, Schematic describing the MS1 splitting procedure used by gpGrouper on isobaric profiling data. For a given PSM, the relative ratios of the
reporter ions (in this case from an iTRAQ 4-PLEX) are used to split the corresponding MS1 peak area. The quantified value for each PSM and
gene product is then reported separately for each channel (representing distinct samples) based on this split. B, Unsupervised clustering of
the WHIM PDX breast tumor proteomic data previously published by CPTAC (“iTRAQ” dataset), by gpGrouper using the same input PSMs data
(“iTRAQ-gpG” dataset), and on the same tumor models analyzed via label-free profiling (“LFree-gpG” dataset). C, Pearson correlation value
matrix for each tumor as analyzed by gpGrouper on the iTRAQ and label-free data.
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The distinguishing feature of iBAQFOT-transformed isobaric
data is the estimation of pseudo-absolute protein amounts
within each sample. To see whether these estimates agree
with the LFree-gpG results, we calculated correlations be-
tween iTRAQ-gpG iBAQFOT without internal reference sub-
traction and corresponding LFree-gpG iBAQFOT across all 15
WHIMs. Fig. 5C shows that, again except for WHIM04, these
correlations are strongest between the same WHIM tumor.
Therefore, gpGrouper can provide MS1-based within-sample
protein abundances from individual isobaric channels that are
comparable to label-free data.

DISCUSSION

gpGrouper applies a parsimonious binning approach at the
gene product level that is comparable, though not equivalent,
to peptide grouping controlled by protein FDR. All gene prod-
ucts, including potential hits with shared-only peptide subsets
or subpar spectral evidence, are reported in separate records
and are clearly demarcated with Strict, Relaxed, and All - SRA -
confidence flags. We show the advantages of such a proce-
dure with a practical example, wherein different conclusions
would be made had proteins been parsimoniously eliminated
before comparing across samples. Furthermore, for situations
where multiple loci with shared peptides are expressed, there
is only convenience, but no validity, in winner-take-all assign-
ments. We see how the application of MaxQuant using
unique�razor peptides for quantification (10) can lead to con-
voluted groups with skewed quantitation, which can be rem-
edied only by throwing out shared peptide quantities. For full
transparency, gpGrouper reports ranges (minimum unique-
to-gene and maximum) of counts for discrete parameters
such as peptide sequences, spectral matches, and MS1 area-
based quantities, and in addition distributes shared peptide
peaks by unique peptide peak ratios when possible. We show
that the weighting of shared peptides by unique peptide ratios
is an accurate approach for allocating quantities across mul-
tiple gene products. With this weighted incorporation, shared
peptide peaks are neither double-counted nor ignored. This
provides a clear understanding of the experimental evidence
behind each gene product without parsimonious elimination.

It is worth noting that gpGrouper can be applied at protein-
centric level in its current implementation, but the results
would be impractical at the commonly observed depth of
proteomic techniques. The main argument against this ap-
proach is that most of the resulting indistinguishable proteins
converge into single gene loci. Likewise, in most cases, pro-
tein isoforms coming from a single gene locus cannot be
entirely resolved in current proteomics data. Therefore, we
argue that grouping into gene loci is a better reflection of
proteomics data. gpGrouper still annotates all evidence-based
protein isoform groups (per gene and per taxa) but does not
choose isoform subsets as primary identifiers. Future break-
throughs in instrumental sensitivity may improve profiling cov-

erage depths such that a protein-centric gpGrouper inference
could become sensible.

We also demonstrate that gpGrouper can accurately report
the amount of each species in a mixed-taxa sample, and that
this information is an important consideration when analyzing
grafted tumors. There are several reasons why knowing the
stromal contribution and being able to differentiate nonhuman
and human proteins is useful. Host species share substantial
number of tryptic peptide sequences with the tumor. Errone-
ous conclusions may be drawn about changes in human pro-
teins that are caused by differential stromal content or changes
in stromal proteins. We implemented a procedure to distribute
human and host quantities based only on the acquired pro-
teomics data and showed that this mechanism avoids errone-
ous conclusions to which alternative methods are susceptible.

From a practical standpoint, it is also useful to be able to
quickly and accurately gauge the percentage of tumor to
evaluate whether the experiment should proceed to what
could be a lengthy and expensive protocol, and for quality
control as to whether different samples are comparable.
When the percentages of tumor across PDXs are too different,
it is inherently difficult, if not impossible, to obtain meaningful
results even after normalization procedures. A well-balanced
experimental design is particularly crucial for isobarically mul-
tiplexed experiments where total composition of the multi-
plexed samples can induce batch effects, with substitutions
of study samples much more complicated than label-free
design in terms of required time and implementation.

Last, we show that it is possible to deconvolve isobaric
multiplexed experiments into individual sample results with
MS1-based quantification, which provides estimation of
pseudo-absolute protein expression from isobaric data. It is
important to point out that gpGrouper does not assure the
accuracy of these estimates; the accuracy of MS1-based
estimates from isobaric data is entirely dependent on the
accuracy of reporter ratios as implemented in the upstream
analysis. It is well recognized that isobaric multiplexing inher-
ently suffers from isolation interference and ratio compression
(34). Both instrumental (e.g. narrow isolation windows and
synchronous precursor selection) and informatic (e.g. rejec-
tion of precursors with high degree of interference, statistical
modeling of compositional effects of reporter ions) techniques
have been used to overcome some of these problems, most
at cost of identifications (33, 35–39). Such approaches may
also disproportionally reduce the number of quantified
unique-to-gene peptides that are stoichiometrically lower
than corresponding shared peptides, which could affect the
accuracy of the shared peak distribution. Therefore, although
gpGrouper provides an opportunity to have both pseudo-
absolute and relative quantification from the isobaric design, it
is important to have strict quality assessment procedures for
peptidome coverage and reporter intensities to minimize ac-
curacy errors. Because gpGrouper itself is agnostic to data
quality beyond peptide identification, this is true for all types

gpGrouper: A Gene-Centric Peptide Grouping and Quantitation Algorithm

Molecular & Cellular Proteomics 17.11 2281



of quantification with equally serious consequences from
methodological challenges. At the same time, when based
on reliable primary data, iBAQ-based quantification is of
great benefit for prediction and modeling of precision and
confidence intervals, determining of enrichment in affinity
experiments, and proteogenomic integration with RNA ex-
pression from sample-matched transcriptomic data.

In conclusion, gpGrouper is a universal gene-centric group-
ing algorithm for bottom up proteomics data that can be
incorporated into existing pipelines that make use of any
search engine and MS1 peak quantifier. It returns a standard-
ized output format for MS1-based iBAQ quantification from
single or mixed species results acquired by label-free, iso-
topic, and isobaric methodologies.
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