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Abstract: Indoor positioning technology based on Received Signal Strength Indicator (RSSI)
fingerprints is a potential navigation solution, which has the advantages of simple implementation,
low cost and high precision. However, as the radio frequency signals can be easily affected by the
environmental change during its transmission, it is quite necessary to build location fingerprint
database in advance and update it frequently, thereby guaranteeing the positioning accuracy.
At present, the fingerprint database building methods mainly include point collection and line
acquisition, both of which are usually labor-intensive and time consuming, especially in a large
map area. This paper proposes a fast and efficient location fingerprint database construction and
updating method based on a self-developed Unmanned Ground Vehicle (UGV) platform NAVIS,
called Automatic Robot Line Collection. A smartphone was installed on NAVIS for collecting indoor
Received Signal Strength Indicator (RSSI) fingerprints of Signals of Opportunity (SOP), such as
Bluetooth and Wi-Fi. Meanwhile, indoor map was created by 2D LiDAR-based Simultaneous
Localization and Mapping (SLAM) technology. The UGV automatically traverse the unknown indoor
environment due to a pre-designed full-coverage path planning algorithm. Then, SOP sensors collect
location fingerprints and generates grid map during the process of environment-traversing. Finally,
location fingerprint database is built or updated by Kriging interpolation. Field tests were carried
out to verify the effectiveness and efficiency of our proposed method. The results showed that,
compared with the traditional point collection and line collection schemes, the root mean square
error of the fingerprinting-based positioning results were reduced by 35.9% and 25.0% in static tests
and 30.0% and 21.3% respectively in dynamic tests. Moreover, our UGV can traverse the indoor
environment autonomously without human-labor on data acquisition, the efficiency of the automatic
robot line collection scheme is 2.65 times and 1.72 times that of the traditional point collection and
the traditional line acquisition, respectively.

Keywords: location fingerprint database; indoor positioning; Bluetooth fingerprints; SLAM

1. Introduction

With the increasing influence of Location Based Services (LBS) in human life, such as vehicles’
navigation and social networking, the research and application of localization and navigation
technology has attracted many people’s attention. As is accepted, the widespread application of
Global Positioning System and Inertial Navigation System (GPS/INS) technology has solved most
of the positioning problems outdoors. However, LBS users commonly spend about 70% to 90% time
indoors, where Global Navigation Satellite System (GNSS) signals are blocked by buildings [1]. One of
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the most challenging technological problems today is that “How to get precise indoor positioning
results in real time.” Among the current indoor positioning schemes, the wireless radio frequency
positioning method has become a very promising and competitive technical solution by virtue of low
cost and high precision. The wireless signals that can be used for location fingerprinting include Wi-Fi,
Bluetooth (iBeacons), ZigBee, geomagnetism and the like [2–5].

As it is shown in Figure 1, the location fingerprinting for indoor positioning system is usually
achieved with two steps. Fingerprinting-based positioning is implemented in two phases: the training
phase and the online positioning phase [6–8]. The task of the training phase is to design a sampling
scheme according to the characteristics of the real indoor environment and then sampling all the
sampling points in specified region with Signals of Opportunity (SOP) sensors. Finally, we can
construct a location fingerprint database with recorded data, including corresponding received signal
strength indicators (RSSIs), MAC address and location information, collected by sensors. In the online
positioning phase, the real time Access Point (AP) signal strength and physical address information,
measured by the mobile device, are utilized to match with location fingerprint database, estimating
the location of the target point. Fingerprinting-based positioning technique takes advantages on low
cost and high precision regardless of multipath effect and occlusion effect. However, its positioning
accuracy greatly depends on the data quality of the fingerprint database so that the database need
to be updated frequently due to environmental change. The establishment and maintenance of the
fingerprint database seriously restricts the industrial application of the location fingerprint technology.
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Figure 1. Fingerprinting-based Positioning method. 
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Then, a Pedestrian Dead Reckoning (PDR) algorithm is used to match the position of the line’s end 
point to obtain the real-time position of the device in the moving [10]. Fingerprint database can be 
constructed by interpolating the real-time location and received fingerprints data. Traditional point 
collection and traditional line collection methods are labor-intensive, time consuming, costly and not 
be applicable to large areas and hazardous environments. 

The difficulties on fingerprint database construction and maintenance has attracted the attention 
of many researchers in last decade [11–13]. Racko et al. [14] utilized linear interpolation or Delaunay 
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acquired by the collected large interval points. However, the dense fingerprint map cannot be quite 
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The traditional location fingerprinting methods mainly include point collection scheme and line
collection scheme [9]. The basic idea of the traditional point collection scheme is to traverse a plurality
of pre-planned reference points in a specified environment. The reference points’ positions are known
in advance and each reference point approximately needs 1 min for location fingerprint collection.
The traditional line collection scheme requires the mobile device to collect fingerprints back and forth
along the pre-planned line segments. The coordinates of the line’s starting point and end point are
known in advance and a person should hold the SOP sensors move along the line for data collection.
Then, a Pedestrian Dead Reckoning (PDR) algorithm is used to match the position of the line’s end
point to obtain the real-time position of the device in the moving [10]. Fingerprint database can be
constructed by interpolating the real-time location and received fingerprints data. Traditional point
collection and traditional line collection methods are labor-intensive, time consuming, costly and not
be applicable to large areas and hazardous environments.

The difficulties on fingerprint database construction and maintenance has attracted the attention
of many researchers in last decade [11–13]. Racko et al. [14] utilized linear interpolation or Delaunay
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algorithm to obtain a dense fingerprint map by interpolating the fingerprint map, which was acquired
by the collected large interval points. However, the dense fingerprint map cannot be quite accurate
and stable because of the data loss caused by interpolation. Tang et al. [15,16] proposed a fast
fingerprint database maintenance method based on Unmanned Ground Vehicle (UGV) Simultaneous
Localization and Mapping (SLAM) technology, which tests the indoor positioning accuracy by set
different number of APs. On the one hand, the UGV is essentially manually controlled in reality
and is still labor-intensive and time consuming. On the other hand, the paper only theoretically
describes the feasibility of the fingerprint database maintenance method with UGV. Strictly speaking,
this method lack reasonable quantitative analysis and database should be constructed with better
interpolation method. Gu et al. [17] proposed a method by combining the Sparsity Rank Singular
Value Decomposition (SRSVD) method with the K-Nearest Neighbor (KNN) algorithm to recovering
absent fingerprints and reduce the workload of fingerprinting. Gunawan et al. [18] proposed a
method to generate and maintain a Wi-Fi fingerprinting database automatically by using Radio
Frequency Identification (RFID) tags to estimate the location of the persons, who carry the Wi-Fi
scanner. Obviously, this method needs extra RFID equipment and does not efficiently reduce the
workload of manual data collection.

When it is concerned about Kriging interpolation method and coverage path planning method,
some previous important research results are introduced as follows: Jan et al. [19] proposed Kriging
interpolation method for Wi-Fi indoor positioning system. In their paper, Kriging interpolation was
used to extend the Wi-Fi database size and reduce the workload on data collection when RSSIs
information are scarce. However, the errors involved in the limited RSSIs will get propagated and
amplified through Kriging interpolation. The “new RSSIs data” created by Kriging interpolation will
lack reliability and accuracy when the original RSSIs data are not representative or scarce. Considering
these problems, the Kriging interpolation should be used to optimize existing fingerprint database
instead of linearly interpolating new fingerprint data. Liu et al. [20] also proposed an improved Kriging
interpolation method for fingerprint database construction. The method was mainly used to create
more fingerprint data as well as Jan’s paper and also depend on human efforts for basic data collecting
in essence. Ryerson et al. [21] used grid representation for farming field and a genetic algorithm was
utilized to compute the optimal path traveling through all the grids. However, the research defined
the grid artificially according to the environmental characteristics instead of using SLAM or other
technology to generate grid map. In addition, the algorithm is designed for outdoor farming field
and neglected indoor environmental features. Yang et al. [22] used neutral networks for coverage
path planning. Their simulation results showed that the proposed model was capable of planning
collision-free complete coverage robot paths. However, the method will be invalid in a fast changing
environment, where obstacles suddenly appear in front of the robot, the neural networks will get
terrible results immediately.

There are three main problems, which constrain the development and application of
fingerprinting-based indoor positioning technology, summarized as follows: (1) The building and
updating of fingerprint database are labor-intensive and time consuming; (2) The robot used in
previous fingerprint collection methods seriously depend on manual controlling and cannot be applied
to large unknown indoor environment; (3) The information matrix of SOP fingerprints database needs
to be formulated and optimized with better mathematical algorithm. To address these problems,
we introduce a self-designed autonomous robot platform NAVIS and utilize SLAM (simultaneous
localization and mapping) algorithm to obtain accurate positioning results of the reference points
and indoor grid map simultaneously. Considering the data collection method may apply to large or
hazardous environment, we designed a full-coverage path planning algorithm, allowing the robot
to traverse the entire unknown or known indoor environment autonomously. In addition, a smart
phone was installed on the NAVIS platform to collect Bluetooth Low Energy (BLE) RSSIs in real
time with our self-developed App software. Meanwhile, fingerprint database can be constructed or
updated by interpolating the Bluetooth fingerprints on the position output by the SLAM algorithm.
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In order to test the quality of the location fingerprint database constructed by the automatic robot line
collection scheme, we also did several scenario tests to compare and analyze the static and dynamic
positioning accuracy of three fingerprints collection schemes and verified the scheme’s feasibility,
efficiency and integrity.

The rest of this paper is organized as follow: Section 2 describes the workflow of the automatic
robot line collection scheme. Section 3 designs the field tests and analyzes the experimental results and
conclusions are drawn in Section 4.

2. Fast Fingerprinting Method Using Automatic Robot Line Collection

2.1. NAVIS Hardware Platform

As it is shown in Figures 2 and 3, the NAVIS platform mainly consists of a robot, a smartphone
and a 2D laser scanner. Firstly, the robot used in this experiment is the Pioneer 3/DX pioneer robot,
produced by the Mobile-Robots company, which offers Pioneer Software Development Kit (SDK)
for research. The Pioneer SDK is developed based on the Robot Operating System (ROS) and can
control the robot’s motion state by virtue of the serial communication. In ROS, this paper designs a
full-coverage path planning algorithm, which enables the robot to explore any large unknown indoor
environment autonomously. In addition, a UTM-30LX laser scanner is mounted on the robot platform
for scanning indoor environment and then outputs the real-time position and grid map with the help
of SLAM algorithm. Finally, a smartphone is installed on the robot platform, which is equipped with
its own App software for Bluetooth RSSIs collection indoors. The App is installed on a smartphone
and will collect Bluetooth RSSIs data at a frequency of 1 Hz. It is worth mentioning that the App is very
simply but efficiently because of Bluetooth Module have been widely integrated into a smartphone.
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2.2. Method Overview

As it is shown in Figure 4, the rapid construction method of the location fingerprint database
proposed in this paper includes the following steps: (1) Designing and programming the LiDAR-based
SLAM algorithm to obtain the real-time location of the robot and the current scanned grid map; (2) At
the same time, the real-time location information and the fingerprint data collected by the smartphone
App software will be stored in two matrix respectively and then Kriging Interpolation Algorithm
is used to generate a merging matrix of fingerprint data; (3) The robot full-coverage path planning
algorithm can control the robot to traverse the indoor environment autonomously, thereby generating a
grid map of the entire designated area; (4) Finally, a SOP fingerprint map database can be generated by
merging the fingerprint database and grid map information. The SOP fingerprint map database consists
of numerous location coordinates of indoor grid map nodes and corresponding SOP measurements.
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2.3. Real Time LiDAR-Based SLAM Algorithm

The core of the proposed fast fingerprint database construction method is to obtain the accurate
position of the robot as quickly as possible during the process of data collection. As a high-efficiency
and high-precision indoor positioning and mapping technology, SLAM technology provides powerful
support for the robot’s positioning [23,24]. A real-time two-dimension LiDAR-based SLAM technology
is utilized for the automatic robot line collection scheme. The scan-matching algorithm designed for
the SLAM is called the Improved Maximum Likelihood Estimated (IMLE) based on a multi-resolution
occupied grid map. The IMLE simultaneously calculates the matching results of the point-cloud-frame
mode and the frame to frame mode. Excepting that, all the point cloud information contained in
the proceeded map is also integrated to get optimized results. Tests showed that IMLE performs
well in a given large area indoors, who can get robust and precise matching results. In this paper,
a UTM-30LX laser scanner (HOKUYO Company, Osaka, Japan) is placed on the Pioneer 3/DX robot
(MobileRobots Company, Burbank, CA, USA). The laser scanner has a field-of-view of 270◦ with 0.25◦

angular resolution and the maximum measurement distance is 30 m. The software output module of
the LiDAR-based SLAM algorithm is shown in Figure 5. The NAVIS can achieve an average positioning
accuracy of approximately RMS 10 cm within certain limits by using our SLAM algorithm.
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2.4. Full-Coverage Traversal Algorithm for NAVIS Robot

One of the challenging tasks in database construction is to collect the SOP fingerprints efficiently.
In order to solve this problem, this paper designs a robot full-coverage path planning algorithm based
on SLAM, which allows the robot to traverse all indoor area autonomously without manual controlling.
The full-coverage traversal algorithm used in this paper consists of three modules: Internal Spiral
Coverage (ISC) algorithm, A* algorithm and wildfire algorithm.

2.4.1. ISC Algorithm

The internal spiral coverage algorithm was proposed by Butler et al. [25]. According to Figure 6,
the main idea of this method is that the mobile robot runs clockwise or counterclockwise and
then traverse the whole area from initial point of the edge. For example, when the robot runs
counterclockwise, if the grid on the right of the current heading direction is empty, turn right 90◦ and
inversely if the grid on the right side of the heading direction is not empty and the forward direction
grid is empty, then proceed. In the next, if there are obstacles on the right side and the forward side
of current grid, then turn left 90◦. According to this cycling strategy, the robot traverses the indoor
environment until the right or the front side of robot’s current heading direction is not empty.
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2.4.2. A* Algorithm

The A* algorithm is a heuristic search algorithm based on Dijkstra algorithm, which is one of the
most popular path planning algorithms. The basic idea of the A* algorithm is to judge whether the
current node needs to be traversed by analyzing the actual cost from the starting point to the node
and the estimated cost from the node to the end, so as to find the optimal path from the starting point
to the target point. In this paper, the A* algorithm is designed for path planning of the grid map.
The heuristic information v(n) is the linear distance between the current node (xn, yn) and the target
node (xW , yW). Here, the Euclidean Distance is used:

v(n) =
√
(xW − xn)

2 + (yW − yn)
2 (1)

When the current node gets to be covered, the evaluation function k(n) can be:

k(n) = u(n) +
√
(xW − xn)

2 + (yW − yn)
2 (2)

where u(n) are the actual cost from starting point to the current node and v(n) are estimated cost form
the current node to the end node.

The workflow of the A* algorithm for robot path planning is showed as follows:

Step1: Establish an OPEN table and a CLOSE table with the location data, add the starting point s
to the OPEN table and add the obstacle point to the CLOSE table;

Step2: Add the node n, which affiliated with the smallest k(n) value in the OPEN table, in the
CLOSE table;

Step3: Judge whether n is a target point: if n is a target point and then generate an optimal path
according to its forward pointer; if n is not a target point, expanding node n to generate a
successor node m;

Step4: In the OPEN table, establish a pointer from the successor node m to n and calculate k(m) =
u(m) + v(m);

Step5: Add a judgment statement to determine whether there is a node m in the OPEN table. If the
judgment fails, node m should be included in the OPEN table. If the judgment is successful,
compare the size of the k(m) value with different forward pointers to get the smallest one;

Step6: Updating u(m), k(m) and the forward pointer of the successor node m;
Step7: According to the order, rearrange the k value in the OPEN table and return to Step 2.

In this way, the mobile robot repeatedly selects the optimal value of the evaluation function in the
OPEN table and finally determines the optimal path plan.

2.4.3. The Wildfire Algorithm

The wildfire algorithm is a simple but efficient searching algorithm shown as Figure 7. The core
idea of this method is to start from the starting grid and expand outwards layer by layer. Check whether
each layer contains the target pre-defined grid. If not, continue to expand outward until the target grid
to be found or the entire area is traversed.

In a word, based on the grid map, the full-coverage algorithm for the robot can be summarized in
Figure 8. Firstly, control the robot runs from a point, which is near to the edge of grid map, at a fixed
speed. Secondly, the ISC algorithm is driven to traverse the indoor environment if the robot arrives at
a dead end surrounded by obstacles, the wildfire algorithm is used to search the nearest untraversed
point in grid map. And then, A* algorithm can help the robot to plan an optimal path to the nearest
untraversed point. The whole NAVIS system will stop until all the areas are traversed and the SOP
fingerprints’ data collection is finished.
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Step1: Establish an OPEN table and a CLOSE table with the location data, add the starting point s 
to the OPEN table and add the obstacle point to the CLOSE table; 

Step2: Add the node n, which affiliated with the smallest k(n) value in the OPEN table, in the CLOSE 
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There are several advantages of the full-coverage path planning method. Firstly, the system can
deal with rapidly changing environment by using ISC strategy to avoid obstacles and repeating the
trajectory to get accurate fingerprints data. Secondly, the system can run autonomously and will not
get into a dead end. Finally, the integrated path planning in this paper can also be used in outdoor area.

2.5. BLE Fingerprint Database Construction by Kriging Interpolation

Compared with the Wi-Fi signal, the Bluetooth Low-Energy (BLE) technology have wider device
support and better positioning accuracy and can be set up easily. Moreover, the BLE devices iBeacons
are quite cheap and portable, which enables BLE technology to be a promising solution for indoor
positioning. This paper adopts iBeacons to realize indoor positioning based on location fingerprint
database. The BLE location fingerprint data can be expressed by Equation as follows:

Dm = {(x, y, z), ((MAC1 : RSSI1), (MAC2 : RSSI2), . . . , (MACn : RSSIn))} (3)

where Dm denotes the fingerprint data of the m-th point. (x, y, z) is the coordinate of Dm, MACn denotes
the MAC address of the n-th AP, RSSIn denotes received signal strength from the n-th AP.

As mentioned above, when the NAVIS platform traverses the specified indoor environment,
the SLAM algorithm can obtain a data matrix with a one-to-one correspondence relation between time
and location:

L =


t1 x1 y1 z1

t2 x2 y2 z2
...

...
...

...
tm xm ym zm

 (4)
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Meanwhile, the smartphone is equipped to store BLE fingerprints information into a data matrix:

R =


t1 rssi11 rssi21 · · · rssin

1
t2 rssi12 rssi22 · · · rssin

2
...

...
...

. . .
...

tm rssi1m rssi2m · · · rssin
m

 (5)

Then, the collected fingerprints data can be stored as an information matrix D:

D =


D1

D2
...

Dm

 =


t1 x1 y1 z1 rssi11 rssi21 · · · rssin

1
t2 x2 y2 z2 rssi12 rssi22 · · · rssin

2
...

...
...

...
...

...
. . .

...
tm xm ym zm rssi1m rssi2m · · · rssin

m

 (6)

Obviously, when the robot runs in our indoor environment and collect RSSIs, the trajectory or
coordinates of the robot is not exactly on the center of the grid map. A simple solution is to allocate
the RSSIs collected by robot to the closest center of the grid. In this way, when robot runs fast and
has big distance between two sampling point, some grids may miss relevant RSSIs. On the contrary,
if the robot moves at a low speed, some grids will have superfluous RSSIs. To sum up, considerable
errors will be involved in data matrix construction and cause bad positioning results in simple solution.
To weaken the impact of the errors, Kriging interpolation algorithm is utilized to compute the weighted
sum of several known sampling points’ RSSIs.

Matrix D represents the fingerprints data in a specific study area, the attribute variable is Z(p) ∈ D,
where p denotes the sensor’ spatial position and Z(pi)(i = 1, 2, . . . , k) means the RSSIs at the sampling
point pi(i = 1, 2, . . . , k). According to the ordinary Kriging interpolation principle, the estimated
attribute value Ẑ(p0), where p0 is an un-sampled point, is the weighted sum of the k known sample
points’ attribute values [26]:

Ẑ(p0) =
k

∑
i=1

λiZ(pi) λi(i = 1, 2, . . . , k) (7)

where λi need to be calculated by other constraints.
Considering the spatial variability of wireless signal propagation, the Kriging interpolation

method uses a variant function instead of a covariance function to solve the weight coefficients.
When it is required to satisfy the minimum estimated variance and unbiased estimation, a system of
equations for solving the weight coefficient λi(i = 1, 2, . . . , k) can be obtained:

k
∑

i=1
λiγ
(

pi, pj
)
− µ = γ(p0, pi) i = 1, 2, . . . , k

k
∑

i=1
λi = 1

(8)

Define a variant function to replace a covariance function:

γ
(

pi, pj
)
= γ

(
pi − pj

)
=

1
2

E
[
Z(pi)− Z

(
pj
)]2 (9)

Then, Equation (7) satisfies the unbiased constraint as shown in Equation (10):

E[ẑ(p0)− z(p0)]
2 = 0 (10)
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In this paper, k is defined as the numbers of sampling points in a grid and the coordinate of p0,
which means the coordinate of the center of a grid, can be output by SLAM module. More important,
SLAM module can get the coordinates of all center of the grids in specific. According to Kriging
interpolation algorithm, we can estimate the RSSIs at the center of the grids and get a new fingerprints
data information matrix:

D′ =


p1

0 RSSIs1

p2
0 RSSIs2

...
...

pl
0 RSSIsl

 =


x1 y1 z1 rssi11 rssi21 · · · rssik

1
x2 y2 z2 rssi12 rssi22 · · · rssik

2
...

...
...

...
...

. . .
...

xl yl zl rssi1l rssi2l · · · rssik
l

 (11)

In Equation (11), pl
0(l < m) means the l-th grid’s center location and RSSIsl

0(l < m) means
estimated fingerprints data of the l-th grid’s center.

2.6. Fingerprint Matching Algorithm: WKNN

The fingerprint matching algorithm used in this paper is Weighted K-Nearest Neighbor (WKNN).
The WKNN method searches for the k best matches of the wireless signal strength indicators to the
wireless fingerprint map database and calculates the mean of the k weighted positions to localize
the estimated position. In order to get proper weighted positions, it is critical to formulate a reliable
method for weighting the influence of different positions. The location fingerprint database generally
uses Euclidean Metric (EM) to evaluate the matching degree of two fingerprint feature vectors.

Define a fingerprint feature vector called RSSIi, which belongs to fingerprint database:

RSSIi = {RSSIi1, RSSIi2, RSSIi3, · · · , RSSIim} (12)

Define the current fingerprint feature vector named RSSIk, which belongs to Receive Point (RP):

RSSIk = {RSSIk1, RSSIk2, RSSIk3, · · · , RSSIkn} (13)

And then the EM distance between RSSIi and RSSIk can be calculated as follows:

D{RSSIk, RSSIi} =
√
(RSSIk1 − RSSIi1)

2 + (RSSIk2 − RSSIi2)
2 + · · ·+ (RSSIkm − RSSIim)

2 (14)

Calculating all distances between fingerprint feature vectors RSSIi(i = 1, 2, . . . m) in the database
and the current fingerprint feature vector RSSIk and then sort all D{RSSIk, RSSIi} values from small
to large.

The k smallest EM distance can be recorded as follows:

Dmink{RSSIx, RSSIi} = {D1{RSSIx, RSSIi}, · · · , Dk{RSSIx, RSSIi}} (15)

In the next, distribute different weight to these positions according to their EM distance value
Di(i = 1, 2, . . . , k):

pi =
D1 + D2 + · · ·+ Dk

Di
(16)

Finally, the current location can be calculated as following formula, where (xi, yi) means location
of the i-th fingerprint point:

(x, y) =
1
k

k

∑
i=1

pi(xi, yi) (17)

So far, Section 2 has briefly elaborated the main algorithms or parts included in SOP fingerprint
database maintenance method with autonomous UGV. After that, we will design a series of field tests
in Section 3 to verify automatic robot line collection scheme.
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3. Fields Tests and Comparative Analysis

3.1. Fingerprint Data Collection Schemes Overview

To verify the proposed scheme, we conducted a series of indoor positioning tests on the floor with
a size of 210 m2 and Figure 9 represents the model of the environment. According to the actual scene
of the floor, we designed the traditional point collection scheme, the traditional line collection scheme
and the automatic robot line collection scheme.Sensors 2018, 18, x FOR PEER REVIEW  11 of 17 
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• Traditional point collection scheme: Initially, we selected some sampling points to be collected
and then manually held the smart phone to collect each static point fingerprint data at the center
of selected unit. The fingerprint point acquisition time for each point is taken as 1 min.

• Traditional line collection scheme: We pre-planned several lines for data collection and each
line needs to stake out in advance. Also, we measured the coordinates of the starting point and
endpoint of each line selected. Finally, we used the smartphone to accept BLE location fingerprints
while moving along the lines at an approximate fixed speed.

• Automatic robot line collection scheme: We used the robot to autonomously traverse the entire
environment at a fixed speed (0.5 m/s), combined with the obtained SLAM grid map and the BLE
location fingerprints collected by the smartphone device, the location fingerprint database can be
directly interpolated and updated.

When SOP fingerprints data collection get finished, the original data will be down-sampled
according to the average number of the points to ensure equal density. Then, we compared the indoor
positioning accuracy of static tests and dynamic tests and operation time of three collection schemes
with the same matching positioning algorithm WKNN. The positioning frequency was set 1 Hz in this
paper. Finally, we analyzed the results and evaluated the feasibility and efficiency of the automatic
robot line collection scheme.

3.2. Static Points Positioning Tests

The main idea of static points positioning test is that we construct three BLE location fingerprint
databases in advance according to above three schemes and then match the real-time SOP fingerprints
data, collected by our smartphone, to our databases respectively. Firstly, we selected a typical point in
the experimental environment and keep the smartphone fixed on the platform NAVIS. The reference
point has the same positions in three different databases. Secondly, we put the platform on the
point for about 2 min to collect enough BLE fingerprints and compare the matching positioning
results. The positioning result is shown in the figures below. In Figure 10, the black, blue and green
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symbols represent the positioning results of the traditional point acquisition scheme, the traditional
line collection scheme and the automatic robot line acquisition and the red star marks the real position.
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Figure 10. Positioning results of static test.

As it is shown in Figure 10, an obvious conclusion can be drawn that the matching positioning
points of automatic line collection are closer to the true position among three schemes. The black and
blue symbols scattered around the true position and do not distinguish greatly from each other.

Based on the distance between each point and the true position, we calculated the positioning
error distribution of different intervals. As it is shown in Figure 11, the three colors represent the error
distribution of the positioning tests of three schemes respectively.
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As it is shown in Figure 11, the ratio reflects the percentage of numbers of different positioning
points’ error distance. Obviously, the blue histogram centralizes at the part of smaller values, indicating
that the robot line collection method can get dense error distribution for most points and greatly restrict
the accumulation of the error.
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3.3. Dynamic Line Positioning Tests

In the experimental environment, we selected a typical known line segment and used the above
three fingerprint databases for our dynamic tests. The basic idea of the dynamic tests is controlling the
platform move along the line back and forth and then matching the real-time fingerprints collected by
the smartphone to three databases.

The point map of the positioning results and the real positions are shown in Figure 12. It is
quite clear that the positioning results of automatic robot line collection scheme is closest to the real
trajectory of the robot, followed by the results of traditional line collection method. Unfortunately,
the positioning results of traditional point collection scheme fluctuate fiercely and keep far away from
the true trajectory.
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The positioning results of the dynamic test can be easier understood from Figure 13, in which
the three kinds of positioning results obtained by the database matching are compared with the real
trajectory. The red line is the distance difference between the positioning points estimated by the
traditional point acquisition method and the real positions. The green line means the positioning
difference between the sampling points estimated by traditional line acquisition and the real positions
and the blue line is the distance difference between the positioning coordinates by the robot line
acquisition scheme and the real positions.
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Comparing different lines in Figure 13, we can see that the positioning deviation between the
matching positioning results of robot line collection and the true trajectory is obviously shorter than
another connection lines. In other words, the real-time match-positioning results, based on the NAVIS
line collection database, are closer to the real position of the robot.

As it is shown in Figure 14, we made a statistic analysis of the distance deviation of each point
and calculated the percentage of the numbers of different positioning points’ error.
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Clearly, the robot line collection method can get dense error distribution for most points,
which means that the scheme proposed in this paper can also get better positioning accuracy than
traditional methods in dynamic tests.

3.4. Quantitative Analysis on Positioning Accuracy

To ensure the reliability of experimental results, we selected three typical points and three typical
lines for more field tests. Three static tests and three dynamic tests were conducted and the root mean
square error of positioning results shown in following tables.

As it is shown in Table 1, when down-sampled, the amount of information and the fingerprint
density of each fingerprint point acquired are the same, the average Root Mean Square Error (RMSE)
of the static positioning results based on the automatic robot line collection method is decreased
about 25.0% than that using the conventional line acquisition. Compared with the traditional point
acquisition, the reduction is about 35.9%. The lowest RMSE value indicates that the location fingerprint
database of the automatic robot line collection is reliable and accurate.

Table 1. Positioning RMSE of three static tests.

(m) Point Collection Traditional Line Collection Robot Line Collection

test 1 2.118 1.600 0.920
test 2 2.139 2.047 1.161
test 3 1.955 1.660 1.900

average 2.071 1.769 1.327

As it is shown in Table 2, we can clearly see that the average root mean square error (RMSE) of the
dynamic positioning results in the fingerprint database obtained by the robot line acquisition method
being reduced by about 21.3% compared with the conventional line acquisition, which is lower than
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that of the conventional point acquisition—about 30.0%. The superiority of the automatic robot line
collection method to establish location fingerprint database for indoor positioning is verified.

Table 2. Positioning RMSE of three dynamic tests.

(m) Point Collection Traditional Line Collection Robot Line Collection

test 1 2.351 2.169 1.973

test 2 2.667 2.181 1.867

test 3 2.867 2.660 1.679

average 2.628 2.337 1.840

3.5. Comparative Analysis of Collection Efficiency

We recorded the length of time consumed during the collection experiments. The fingerprint
points collected by the three schemes have the same size and the same number (495). Traditional
methods of point collection, traditional line acquisition and automatic robot line acquisition,
the average number of RSSIs per fingerprint point are: 306.3, 44.6 and 79.7 and the time used to
construct fingerprint database of the whole 210 m2 area is 275 min, 26 min and 27 min respectively.

To compare the collection efficiency of three schemes, we define the acquisition efficiency as:

K = α ∗W/T (18)

In the formula, α is the average number of RSSIs per fingerprint point; W is the total number
of fingerprint points; T is the total time of the acquisition scheme, the unit is min; K is the
collection efficiency.

Therefore, we can get the acquisition efficiencies of the three acquisition schemes as 551.4, 849.5
and 1460.7. Based on the efficiency of the traditional point acquisition scheme, the efficiency ratio is
1:1.45:2.65 and the histogram of the collection efficiency ratio is shown in Figure 15.
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The main reason for the low efficiency of the traditional point collection method and the traditional
line collection scheme is that the measurement and stakeout need to be performed before collection and
that the operation is discontinuous, which extends the collection work time and reduces the collection
efficiency. The automatic robot line collection method can be used for continuous and uninterrupted
operation, making full use of the acquisition time and having high collection efficiency. As can be seen
from the above figure, the acquisition efficiency of the robot line acquisition method is 2.65 times that
of the traditional point collection scheme and is 1.72 times that of the traditional line collection scheme.
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In conclusion, the detailed comparison of the three schemes can be described with Table 3.
According to the positioning results of a series of complex field tests, the automatic robot line collection
is believed to be feasible and reliable in reality.

Table 3. Comparison of three collection schemes.

Methods Reference Points Time Data Quality Positioning Accuracy

point collection many longest acceptable worst
line collection less acceptable worst bad

robot collection least acceptable best best

4. Conclusions and Future Works

This paper mainly proposed a fast and automatic solution for location fingerprint database
maintenance. Field tests were carried out and proved the high efficiency and high reliability of the
method. The main contributions of this paper are summarized as follows: (1) The autonomous
UGV line collection scheme proposed in this paper is feasible, it can quickly setup and update the
fingerprint database and save a lot of manpower and time cost; (2) A hybrid path planning, integrated
with internal spiral algorithm, A* algorithm, the wildfire algorithm and LiDAR SLAM algorithm,
was utilized successfully for full-coverage traverse of closed indoor environment; (3) The Kriging
interpolation algorithm is used to construct an information matrix of location fingerprint database,
which consists of the position information output by the SLAM algorithm and the signal fingerprint
data collected by the smartphone; (4) The performance of the automatic UGV line acquisition method
is compared with the traditional point and line acquisition methods: the RMS error of the static
positioning result is reduced by 25.0% and 35.9%, the dynamic rooting result is reduced by 21.3% and
30%, respectively; (5) The efficiency of the automatic UGV line collection scheme is 2.65 times and 1.72
times that of the traditional point collection and the traditional line acquisition, respectively.

Based on the current autonomous UGV acquisition scheme, it is possible to replace the laser
scanner with a camera, an efficient visual SLAM scheme is also expected for more engineering
applications. Besides, the matching algorithm in this paper can also be optimized for better positioning
accuracy in future work.
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