Skip to main content
. 2018 Sep 30;18(10):3297. doi: 10.3390/s18103297
Algorithm 1 CKF algorithm
  • Require: 

    k=0, x^0|0, P^0|0, Q, R

  • Ensure: 

    x^k|k, P^k|k

  •   1:

    if k1 then

  •   2:

        Cholesky decomposition of Pk-1|k-1;

  •   3:

        Calculate the Cubature point set Xi,k-1|k-1(i=1,2,,2N);

  •   4:

        Propagate the Cubature point by using the state equation Xi,k|k-1*;

  •   5:

        Calculate the prediction of the state x^k|k-1;

  •   6:

        Calculate the prediction of the state covariance matrix Pk|k-1;

  •   7:

        Cholesky decomposition of Pk|k-1;

  •   8:

        Calculate the Cubature point set again Yi,k|k-1(i=1,2,,2N);

  •   9:

        Propagate the Cubature point by using the measurement equation Yi,k|k-1*;

  •   10:

        Calculate the prediction of the measurement y^k|k-1;

  •   11:

        Calculate the autocorrelation matrix Pk|k-1zz;

  •   12:

        Calculate the cross-correlation matrix Pk|k-1xz;

  •   13:

        Calculate the filtering gain Kk;

  •   14:

        Calculate the estimation of the state x^k|k-1;

  •   15:

        Calculate the estimation of the state covariance matrix Pk|k;

  •   16:

    end if