Skip to main content
. 2018 Sep 23;18(10):3209. doi: 10.3390/s18103209
Algorithm 1 DCKT
Input: Source data XS, target data XT, source label yS, regularization coefficients μ, and dimension m:
Procedure:
1. Construct the kernel matrix K from {xSi}i=1NS and {xTi}i=1NT via (2), matric L via (3), and centering matric H via (6);
2. Solve the eigendecomposition of (KLK+μI)1KHK;
3. Build P by m smallest eigenvectors via (8);
4. Compute the mapped source domain data XS=PTXS;
5. Compute the mapped target domain data XT=PTXT;
6. Train the SVM classifier with {XS,yS}, and predict the odor label of XT;
Output:
The classification results of target data.