Algorithm 1 DCKT |
Input: Source data , target data , source label , regularization coefficients , and dimension m: Procedure: 1. Construct the kernel matrix K from and via (2), matric L via (3), and centering matric H via (6); 2. Solve the eigendecomposition of ; 3. Build P by m smallest eigenvectors via (8); 4. Compute the mapped source domain data ; 5. Compute the mapped target domain data ; 6. Train the SVM classifier with , and predict the odor label of ; |
Output: The classification results of target data. |