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Abstract

Electronic Health Records (EHR) are mainly designed to record relevant patient information 

during their stay in the hospital for administrative purposes. They additionally provide an efficient 

and inexpensive source of data for medical research, such as patient outcome prediction. In this 

study, we used preoperative Electronic Health Records to predict postoperative delirium. We 

compared the performance of seven machine learning models on delirium prediction: linear 

models, generalized additive models, random forests, support vector machine, neural networks, 

and extreme gradient boosting. Among the models evaluated in this study, random forests and 

generalized additive model outperformed the other models in terms of the overall performance 

metrics for prediction of delirium, particularly with respect to sensitivity. We found that age, 

alcohol or drug abuse, socioeconomic status, underlying medical issue, severity of medical 

problem, and attending surgeon can affect the risk of delirium.
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I. Introduction

Delirium is a common transient neuropsychiatric disorder exhibited abruptly with 

fluctuations in consciousness and mental status (1). Delirium is linked to multiple adverse 

events, including increased morbidity and mortality, prolonged stays in the intensive care 

unit (ICU), and prolonged mechanical ventilation (2).

The prevalence of delirium is as high as 73% among surgical ICU patients, costing US 

between $38 and $150 billion per year (3, 4). Studies show that one third of delirium cases 

can benefit from multifactorial preventive measures and treatments (5–9). The high 

prevalence rate and the potential for successful intervention calls for accura te prediction 

methods to identify patients at higher risk of developing delirium. Previous studies show that 

delirium is currently under-recognized (10), thus preventing timely detection and treatment 

measures. Risk prediction for postoperative delirium is limited to physician’s subjective risk 

assessment models that often rely on elaborate data extraction (11). To remedy this problem, 

machine learning models can be used to predict risk of delirium. The pathogenesis of 

postoperative delirium is not completely determined yet. However, there are many factors 

that are shown to contribute to higher risk of delirium development. These factors include, 

but are not limited to: age, admission type, primary surgical procedure. These factors are 

recorded in electronic health records and have been used in the literature for delirium 

prediction (6, 12, 13).

In this study, we will use preoperative Electronic Health Record (EHR) data for delirium 

prediction. EHR data are routinely collected for all patients at admission, and many studies 

have used them for prediction of health outcomes during and after the hospital stay (14). 

Previous works that have used EHR data for delirium prediction, have mainly used 

multivariate regression models due to their ease of interpretation and analysis (12, 13). 

Using logistic regression analysis, several other studies have identified important features in 

the preoperative dataset contributing to development of delirium, with up to 87% area under 

the receiver operating characteristics (ROC) curve (AUC) (12, 13, 15). Although promising, 

they mostly used additional features such as Mini-Mental State Examination score, Visual 

acuity, and Geriatric Depression Scale, which are not routine assessments in the hospitals. 

Others have been applied to specific populations such as older patients, elderly patients with 

hip surgery, or patients in the ICU (12, 13, 16).

In recent years, machine learning techniques have been used increasingly in medical 

research for analyzing complex medical data (17–21). In this paper, we have used the 

preoperative data routinely collected at admission for developing machine learning models 

to predict delirium. Unlike previous work, we do not rely on special assessments in our 

model. Thus, our model can be readily used in practice, using only EHR data. Our results 

also show better predictive performance compared to classification models in the literature. 

We used several methods including downsampling and Synthetic Minority Over-Sampling 

Technique (SMOTE) (22) to counter the imbalance in the outcome and improve the 

performance of the models. The rest of the paper is as follows: we explain the methods used 

in section II and present the results in section III, while section IV includes the discussion 

and conclusions.
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II. methods

A. Participants

This study was approved by the University of Florida Institutional Review Board and 

Privacy Office as an exempt study with waiver of informed consent. We included all patients 

18 years of age and older who were admitted for longer than 24 hours following any type of 

inpatient operative procedure between January 1, 2000 and November 30, 2010. The final 

cohort consisted of 51,457 patients. The main outcome of this study was delirium occurring 

at any time during the patient’s stay in the hospital. Delirium was identified using the 

International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) 

codes (23).

Based on literature review and clinical expertise, we derived a set of seventy preoperative 

predictor features out of 285 available preoperative demographics, socio-economic, 

administrative, clinical, pharmacy, and laboratory variables. Patient comorbidities were 

derived using up to fifty preoperative ICD-9-CM codes. We used validated methods to 

define binary comorbidity variables (24, 25), and Charlson comorbidity index as a 

composite measure for medical comorbidities (26). We extracted medications dispensed on 

the first day of admission using the RxNorms coding, and grouped them into drug classes 

according to the United States Department of Veterans Affairs National Drug File-Reference 

Terminology (NDF-RT) (27).

B. Analysis

The predictive analytics workflow of the study is outlined in Figure 1. We performed several 

preprocessing steps on the dataset to improve the computational efficiency and robustness of 

prediction models. Data preprocessing included data cleaning with removal of outliers, 

imputation of missing data, and optimization of categorical and nominal variables (28). To 

address the risk of overfitting, we randomly split the data. In each run, 80% of the data was 

used for model development and 20% for testing. Prevalence of delirium was similar in each 

partition using the sampling design. We further split the development data into 80% for 

model training, and 20% for validation to tune parameters. We repeated the process 50 times 

to report performance measures and confidence intervals. In each run, data was reshuffled 

before splitting.

We trained the algorithm on the development cohorts, while the reported results were 

obtained from the test cohorts. We used 20% of the cohort as the test cohort (n= 10,291) in 

each of the 50 repeated 5-fold cross validation runs (resulted in 250 different cohorts). The 

overall sample size allows a maximum width of 95% confidence interval for area under the 

curve of 0.06 for each model when prevalence of predicted complication is 3%.

We compared seven predictive modeling approaches: Naïve Bayes (NB), generalized 

additive model (GAM), logistic regression (LR), support vector machine (SVM), random 

forests (RF), extreme gradient boosting (XGB), and neural networks (NN). Naive Bayes is 

commonly used as a simple generative model, a category of predictive models that learns the 

distribution of the input data using the Bayes rule. On the other hand, discriminative models 

learn a direct map from the input data to the response labels such as logistic regression and 

Davoudi et al. Page 3

Proc IEEE Int Symp Bioinformatics Bioeng. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



generalized additive model (29). Logistic regression is widely used in medical literature, and 

has been used previously for prediction models for delirium (30, 31); with the predicted risk 

monotonically increasing or decreasing. Generalized additive models are additive regression 

models that can relax the monotonicity assumption of logistic models and offer the 

advantage of estimating non-linear risk functions for continuous variables.

Support vector machine, random forests, extreme gradient boosting, and neural networks are 

among widely used machine learning techniques, but they have not been used for prediction 

of delirium before. SVM performs classification by finding a separating decision boundary 

in the input feature space. Random forests constructs many decision trees and typically 

classifies data according to the mode of the decision trees. These decision trees are trained 

by splitting the dataset into subsets on a value at a node, repeating this process on each 

subset in a recursive manner. Random forests improve their performance by averaging over 

multiple decision trees trained on different parts of the dataset, and thus reducing the risk of 

overfitting. Extreme gradient boosting works as an ensemble of weaker prediction models 

(decision trees here) in an iterative fashion. At each iteration, a new model is built that adds 

an estimator to provide a better approximation than the previous iteration, and each model 

learns to correct the previous stage model.

Neural networks are machine learning models inspired by networks of biological neurons. 

They contain layers of simple computing nodes that operate as nonlinear summing 

algorithm, interconnected by weighted connection lines, with weights being adjusted with 

new training samples (32, 33).

We used the event probabilities calculated by the predictive models to classify patients into 

event and nonevent categories. We applied a cutoff defined as the value where the Youden’s 

J Statistic is maximized (34). We used this cutoff from the training dataset on the test 

dataset. Because of imbalance between the two outcome classes, accuracy alone does not 

give a complete view of the models’ discrimination performance. For our study, we 

compared the models using accuracy, AUC, sensitivity as the proportion of true positives 

over total positive targets, and specificity as the proportion of true negatives over total 

negative targets.

We calculated the importance of the based on mean decrease in Gini impurity index. Gini 

impurity index can be calculated as in Equation (1). Every time a split is made on a variable, 

Gini indices for the two descendent nodes are less than the Gini index of the parent node. 

The decrease in Gini index for each variable is calculated by adding up the decreases in Gini 

index for the variables over all trees in the forest.

G = ∑i = 1
nc pi 1 − pi (1)

Here, nc is the number of classes in the outcome and pi is the ratio of the class.

We also used downsampling and SMOTE algorithm to remedy the imbalance in the dataset. 

Downsampling works by randomly selecting equal numbers of the minority class as the 
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majority class for training, thus creating a more balanced dataset for training in each fold. 

One issue with downsampling is that it could lead to loss of potentially important 

information (35). On the other hand, SMOTE algorithm multiplies the vector between K 

neighboring samples of a sample by a random value between 0 and 1, and adds the result to 

that sample, creating synthetic samples.

III. Results

Among 51,457 adult patients who underwent major inpatient surgery in a tertiary care 

academic center, 3.12% had delirium occurring at any time during their hospital stay (Table 

I). Several features were identified as important for delirium prediction (top 15 shown in 

Figure 2.). Importance of features patients’ zip code, county, and primary insurance suggests 

the effect of socioeconomic status of the patients on risk of delirium. Number of medication 

on admission day, number of diagnoses on admission day, time of surgery from admission, 

and admitting service type hint at the effect of severity of the patient’s health problems. 

Primary surgical procedure and major diagnosis category show the importance of underlying 

medical issue on risk of delirium. Attending surgeon feature can show the experience of the 

surgeon. Prevalence of delirium varied among different surgery types, likely reflecting effect 

of the underlying primary disease that may predispose delirium (Table II). Distribution of 

outcome and variables did not differ between developing and testing cohorts.

The predictive performance of the models is given in Table III. Generalized additive model, 

logistic regression, random forests, and extreme gradient boosting had better performance 

compared to Naïve Bayes model, neural network, and support vector machine models, all 

with AUCs above 0.77, except for SVM. Random forests and generalized additive model 

were the only models that had high performance in AUC, accuracy, sensitivity, and 

specificity.

IV. Discussion

In our study, we compared the performance of prediction models for delirium using EHR 

data. We studied seven models: logistic regression, generalized additive models, support 

vector machines, naïve Bayes, random forests, extreme gradient boosting, and neural 

networks. Among these models, random forests and generalized additive models were the 

best performing delirium prediction models. The data that we used for these models are 

available at the point of access to preoperative care and do not require specialized 

assessments or self-report information. We included complex variables, such as residency 

ZIP codes and attending doctor. ZIP codes can act as a surrogate of neighborhood 

socioeconomic characteristics, which has been shown to be associated with multiple disease 

and health behaviors (36–38). The performance of attending doctors can potentially be a 

factor of postoperative outcomes as well (39, 40).

For this study, we first applied a data cleaning step (28) to reduce errors by removing the 

outliers. The preprocessing step was carried out in consultation with clinicians who provided 

a good understanding of the nature of data and clinical needs, and made the algorithms more 

robust and efficient. Generalized additive model and random forests were the preferred 
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models in this study due to their accuracy, relative efficiency, and ability to account for non-

linearity of variables. Generalized additive model is a data driven model that has the 

flexibility to capture non-monotonicity in the predicted outcome. Random forests, as a 

decision tree-based approach, is capable of capturing conditionality, the relations between 

the features, and nonlinear relationships between the features and the outcome. Since 

parameter tuning is critical for support vector machines, neural network, random forests, and 

extreme gradient boosting, further fine tuning of their parameters may potentially improve 

the current results.

We optimized our parameters and model based on maximum Youden’s index rather than 

accuracy. As a result, downsampling and SMOMTE did not significantly improve the 

performance of random forests and generalized additive models. We used external validation 

to report the true performance of the models on unseen data. We also used random forests 

model to rank the features used in the model based on their mean reduction in Gini impurity 

index. Many of the features chosen by the model show the previously overlooked 

socioeconomic features and surgeon experience for delirium prediction.

These models could be applied at point of access to preoperative care. They do not rely on 

self-reported data and specialized testing, and were derived from whole population data, 

routinely collected in preoperative period. They can help healthcare staff in identifying 

patients at higher risk of such complications. These prediction models can also help patients 

make informed decisions about their surgical procedures and the risks involved. Prospective 

validation of the model on different populations can improve the model for implementation 

in real-time clinical workflow for automated and simplified risk stratification in the 

preoperative period. Future work also includes applying other methods of working with 

unbalanced dataset and using other classification methods. We also intend to study the 

performance of prediction models by adding intra-operative and post-operative features to 

capture any complication and the trajectory of the patient during their stay in the hospital.
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Figure 1. 
The analysis workflow for prediction of delirium from EHR data.
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Figure 2. 
Importance of top 15 features based on mean decrease in Gini impurity index for the random 

forests model.
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Table I.

Summary of population demographics

Variables N=51,457

Age, median (25%−75%) 56 (43, 68)

Female gender, n (%) 26337 (49)

Race, n (%)

   -  White 41142 (80)

   -  Hispanic 6584 (13)

   -  African American 1600 (3)

   -  Other 1088 (2)
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Table II.

Distribution of delirium cases among various surgery types.

Surgery type (n) Number of subjects with delirium (%)

All (51457) 1608 (3.1)

Cardiothoracic (6890) 235 (3.4)

Non-cardiac general (20051) 313 (1.6)

Neurologic (8422) 296 (3.5)

Specialty (14740) 452 (3.1)

Other (1354) 
a 312 (23.0)

a.
Other surgeries include ear-nose-throat, ophthalmology, and plastic surgeries.
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