

HHS Public Access

Author manuscript

J Am Chem Soc. Author manuscript; available in PMC 2018 November 01.

Published in final edited form as:

J Am Chem Soc. 2000 November 8; 122(44): 11027–11028. doi:10.1021/ja0027416.

Total Synthesis of (−)-Laulimalide

Arun K. Ghosh and **Yong Wang**

Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607

> Laulimalide (**1**), also known as figianolide B, a 20-membered macrolide isolated from the Indonesian sponge *Hyattella* sp., has shown remarkable antitumor activities.¹ Recently, Laulimalide was also isolated from an Okinawan sponge Fasciospongia rimosa.² It displayed potent cytotoxicity against the KB cell line with an IC_{50} value of 15 ng/mL.¹ Furthermore, it has shown cytotoxicity against P388, A549, HT29, and MEL28 cell lines in the range of 10– 50 ng/mL (IC₅₀ values).^{2b} The structure of 1 was initially established by NMR studies. Subsequently, its absolute configuration was established by X-ray analysis by Higa and coworkers.² The significant clinical potential of laulimalide has stimulated considerable interest in its synthesis and structure-function studies.³ Herein, we report the first synthesis of (−)-laulimalide **1**.

As outlined in Figure 1, our synthetic strategy of laulimalide is convergent and involves the assembly of C3−C16 segment **2** and C17−C28 segment **3** by Julia olefination, followed by an intramolecular Horner-Emmons reaction between the C_{19} phosphonoacetate and C_3 aldehyde. The sensitive epoxide at $C_{16}-C_{17}$ was selectively introduced at the final stage of the synthesis by Sharpless epoxidation.⁴ The construction of both dihydropyran rings of laulimalide was achieved by ring-closing olefin metathesis utilizing Grubbs' catalyst as the key step.⁵

The synthesis of C_3-C_{16} segment is accomplished by modifications of the previously published sequence.^{3a} As outlined in Scheme 1, diastereomerically pure δ -lactone 5 was prepared efficiently by exposure of acryloyl ester **4** to Grubbs' catalyst (10 mol %) in CH₂Cl₂.^{3a} DIBAL reduction of **5** at −78 °C in CH₂Cl₂ followed by reaction with ethanol and CSA afforded the ethyl glycoside.⁶ Reaction of this ethyl acetal with tertbutyldimethylsilyl vinyl ether and Montmorillonite K-10 as the Lewis acid in CH_2Cl_2 at 23 °C followed by NaBH4 reduction of the resulting aldehyde afforded the corresponding dihydropyran as a single isomer (by ${}^{1}H$ and ${}^{13}C$ NMR). Protection of the alcohol with TBSCl and imidazole furnished the TBS ether **6**. Removal of the benzyl group by lithium in liquid ammonia provided the alcohol which was subsequently converted to iodide **7**. To install the C_{13} methylene unit and the C_{15} hydroxyl group, alkylation of lactone **8** was carried out by treatment with NaH in DMF at 0 °C for 15 min followed by reaction with iodide **7** at 23 °C for 15 min and then 60 °C for 12 h, which furnished lactone **9** as a mixture

Supporting Information Available:

Experimental procedures and spectral data for compounds **1**−**3**, **6**−**11**, **15**−**20**; 1H NMR spectra for compounds **1**, **3**, **11**, **15**−**17**, **19**, **20**; and 13C NMR for compounds **1**, **3**, **11**, **17**, and **19** (PDF). This material is available free of charge via the Internet at [http://](http://pubs.acs.org/) [pubs.acs.org.](http://pubs.acs.org/)

(4.2:1 by 1H NMR) of isomers. Reduction of the mixture of lactone **9** by Red-Al provided the diol **10**. Benzoylation of **10** afforded the corresponding dibenzoate which was exposed to Na–Hg in MeOH at –20 °C to provide the olefin 11.⁷ Protection of the C₁₅ hydroxyl group as a MOM ether, removal of the PMB group and Swern oxidation of the resulting alcohol furnished the C_3-C_{16} segment, aldehyde 2.

The synthesis of the $C_{17}-C_{28}$ segment **3** has been achieved by modification of reaction sequences published previously.3b Optically active dihydropyran derivative **12** was prepared in multigram quantity by utilizing ring-closing olefin methathesis⁵ and Corey-Fuchs' homologation⁸ reactions as the key steps. The alkynyl anion of 12 was readily obtained by treatment with n-BuLi at -78 °C for 1 h followed by warming to 23 °C for 1 h (Scheme 2). Reaction of the resulting alkynyl anion with optically active aldehyde **13** at −78 °C furnished a diastereomeric mixture (1.8: 1) of alcohols **14** and **15**, which upon oxidation with Dess-Martin periodinane⁹ gave the corresponding alkynyl ketone. L-Selectride reduction of this ketone at −78 °C furnished the desired synalkynyl alcohol **15** as a single diastereomer (by ¹H NMR and ¹³C NMR). Red-Al reduction of **15** set the $C_{21}-C_{22}$ trans-olefin geometry. Removal of the C₁₉ PMB group by exposure to TFA¹⁰ and subsequent reaction of the resulting diol with p-methoxybenzylidene acetal and CSA provided acetal **16**. DIBAL reduction of **16** at −78 °C in CH₂Cl₂ afforded the C₁₇-C₂₈ segment **3** as a single regio isomer (by ${}^{1}H$ and ${}^{13}C$ NMR).

Our subsequent synthetic strategy calls for the assembly of fragments **2** and **3** by Julia olefination (Scheme 3). Thus, lithiation of sulfone derivative **3** with 2.1 equiv of n-BuLi in THF at −78 °C for 15 min followed by reaction of the resulting dianion with the aldehyde **2** at −78 °C to −40 °C for 2 h furnished the expected R-hydroxy sulfone derivatives. The hydroxy sulfone was transformed into the corresponding $C_{16}-C_{17}$ olefin in a two step sequence involving (1) acylation of the hydroxy sulfone derivatives with $Ac₂O$, Et₃N and DMAP (cat.) and (2) exposure of the resulting acetates to Na(Hg) in methanol at −20 °C for 2 h followed by warming the reaction to 23 °C for 30 min. The C16−C¹⁷ trans olefin **17** was obtained in 34% yield along with 10% cis-olefin, which was readily separated by silica gel chromatography.

Subsequent elaboration to the macrolactone possessing C_2-C_3 *cis*-olefin geometry proved to be a formidable task. We finally relied upon an intramolecular Horner-Emmons reaction of C_{19} phosphonoacetate and C_3 aldehyde using Still's protocol.¹¹ Thus, acylation of C_{19} hydroxyl group with bis-(2,2,2-trifluoroethyl)-phosphonoacetic acid followed by removal of the TBS group by exposure to aqueous acetic acid in THF at 23 °C furnished the acetate derivative **18** in near quantitative yield.12 Oxidation of **18** with Dess−Martin periodinane provided the C_3 aldehyde which upon treatment with K_2CO_3 in the presence of 18-C-6 at −20 °C for 30 min and then at 0 °C for 2.5 h furnished a mixture (2:1) of macrolactones **19** and **20** in 84% yield (Scheme 3). Both cisand trans-lactones were separated by silica gel chromatography. Horner-Emmons reaction of the corresponding (diphenylphosphono)acetate derivative provided slight improvement of the cis-selectivity (cis:trans =1:1.7, 69% isolated yield).13 Further attempts to improve the ratio for **20** by changing reaction conditions or C_{20} protecting group have been unsuccessful. The overall

yield of the desired cis-macrolactone **20** was however improved to 47% after photoisomerization of the trans-macro-lactone **19**. ¹⁴ Thus, irradiation of **19** in ether under UV in a Rayonet photochemical reactor for 50 min afforded a mixture of trans-lactone **19** (33%) and the cis-lactone **20** (33%) which were separated by chromatography. The identity of the *cis*-olefin geometry of 20 was established by its observed coupling constant $(J = 11.6$ Hz). Macrolactone **20** was converted to synthetic (−)-laulimalide **1** as follows: removal of the MOM group by refluxing with PPTS in t -BuOH,¹⁵ exposure of the resulting alcohol to Sharpless epoxidation⁴ with (+)-DET and removal of the C_{20} PMB ether by exposure to DDQ. Spectral data (¹H and ¹³C NMR) of synthetic **1** ([α]²³_D –196 *c* 0.23, CHCl₃) are identical to that from a sample of natural laulimalide (lit.^{2a} [α]²⁹_D –200 *c* 1.03, CHCl₃) kindly provided by Professor Higa.

Thus, a stereocontrolled synthesis of (−)-laulimalide has been achieved. Considering its clinical potential as an antitumor agent, the present synthesis will enable important structure −function studies as well as synthesis of structural variants of laulimalide. Further improvement in synthesis and biological studies are currently in progress.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgment.

Financial support by the National Institutes of Health (GM 55600) is gratefully acknowledged. We also thank Professor Higa for providing a sample of natural laulimalide and Professor Forsyth for the experimental details of bis-(2,2,2-trifluoroethyl)phosphonoacetic acid.

References

- (1). (a)Quinoa E; Kakou Y; Crews P J. Org. Chem 1988, 53, 3642.(b)Corley DG; Herb R; Moore RE; Scheuer PJ; Paul VJ J. Org. Chem 1988, 53, 3644.
- (2). (a)Jefford CW; Bernardinelli G; Tanaka J-I; Higa T Tetrahedron Lett 1996, 37, 159.(b)Tanaka J-I; Higa T; Bernardinelli G; Jefford CW Chem. Lett 1996, 255.
- (3). (a)Ghosh AK; Wang Y Tetrahedron Lett 2000, 41, 2319.(b)Ghosh AK; Wang Y Tetrahedron Lett 2000, 41, 4705.(c)Mulzer J; Hanbauer M Tetrahedron Lett 2000, 41, 33.(d)Shimizu A; Nishiyama S Synlett 1998, 1209.(e)Ghosh AK; Mathivanan P; Cappiello J Tetrahedron Lett 1997, 38, 2427. [PubMed: 30344352]
- (4). Johnson RA; Sharpless KB In Catalytic Asymmetric Synthesis; Ojima I; Ed.; VCH Publishers: New York, 1993, p 103–158.
- (5). Grubbs RH; Chang S Tetrahedron 1998, 54, 4413 and references therein.
- (6). For a related method, see: Dahanukar VH; Rychnovsky SD J. Org. Chem 1996, 61, 8317. [PubMed: 11667826]
- (7). Lee GH; Lee HK; Choi EB; Kim BT; Pak CS Tetrahedron Lett 1995, 36, 5607.
- (8). Corey EJ; Fuchs PL Tetrahedron Lett 1972, 3769.
- (9). Meger SD; Schreiber SL J. Org. Chem 1994, 59, 7549.
- (10). Yan L; Kahne D Synlett 1995, 523.
- (11). Still WC; Gennari C Tetrahedron Lett 1983, 24, 4405.
- (12). This protocol was recently employed in the synthesis of phorboxazole A. See: Forsyth CJ; Ajmed F; Cink RD; Lee CS J. Am. Chem. Soc 1998, 120, 5597.
- (13). Ando KJ Org. Chem 1999, 64, 8406 and references therein.

- (14). Smith AB; Lupo AT; Ohba M; Chen KJ Am. Chem. Soc 1989, 111, 6648 and references therein.
- (15). Monti H; Leandri G; Klos-Ringquet M; Corriol C Synth. Commun 1983, 13, 1021.

Scheme 1^a

^a (a) Dibal-H, −78 °C then CSA, EtOH, 23 °C; (b) K-10, CH₂ = CHOTBS, 23 °C; (c) NaBH₄, MeOH, 0 °C (54%); (d) TBSCl, imidazole, DMF, 23 °C (75%); (e) Li, NH₃ (95%); (f) I2, PPh3, Imidazole (96%); (g) **8**, NaH, DMF, 0°C then iodide **7**, 60 °C (89%); (h) Red-Al, THF, 0 °C; (i) PhCOCl, Et₃N, DMAP (cat.); (j) Na(Hg), Na₂HPO₄, MeOH, -20° to 23 °C (72%); (k) MOMCl, i-Pr2NEt, 23 °C; (l) DDQ, pH 7 buffer, 23 °C (81%); (m) DMSO, (COCl)₂, i -Pr₂NEt, -60 °C (85%).

Scheme 2^a

a (a) n**-**BuLi, −78 °C, 1 h and 23 °C, 1 h then **13**, −78 °C (64%); (b) Dess−Martin, CH2Cl2, 23 °C (81%); (c) L-Selectride, THF, −78 °C (87%); (d) Red-Al, THF, −20 °C (81%); (e) CF_3CO_2H , CH_2Cl_2 , 23 °C; (f) p-MeO-Ph-CH(OMe)₂, CSA, CH₂Cl₂, 23 °C (71%); (g) Dibal-H, CH₂Cl₂, -78 °C (74%).

3

Scheme 3^a

a (a) n**-**BuLi, −78°C, 15 min, Then **2**, −78 to −40 °C, 2 h; (b) Ac2O, Et3N, DMAP (cat.); (c) Na(Hg), Na₂HPO₄, MeOH, -20 to 23 °C (34%); (d) (CF₃CH₂O)₂P(O)CH₂CO₂H, Cl3C6H2COCl, i**-**Pr2NEt, DMAP; (e) AcOH-THF-H2O (3:1:1), 23 °C (99%); (f) Dess −Martin, CH₂Cl₂, 23 °C (79%); (g) K₂CO₃, 18-C-6, -20 to 0 °C (84%); (h) hv, Et₂O, 50 min (66%); (i) PPTS, *t*-BuOH, 84 °C (45%) (j) Ti(OPr)₄, (+)-DET, *t*-BuOOH, -20 °C; (k) DDQ, pH 7, 23 °C (48%).