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Dialog state tracking in a spoken dialog system is the task that tracks the flow of a dialog and identifies accurately what a user wants
from the utterance. Since the success of a dialog is influenced by the ability of the system to catch the requirements of the user,
accurate state tracking is important for spoken dialog systems. .is paper proposes a two-step neural dialog state tracker which is
composed of an informativeness classifier and a neural tracker..e informativeness classifier which is implemented by a CNNfirst
filters out noninformative utterances in a dialog. .en, the neural tracker estimates dialog states from the remaining informative
utterances. .e tracker adopts the attention mechanism and the hierarchical softmax for its performance and fast training. To
prove the effectiveness of the proposed model, we do experiments on dialog state tracking in the human-human task-oriented
dialogs with the standard DSTC4 data set. Our experimental results prove the effectiveness of the proposedmodel by showing that
the proposed model outperforms the neural trackers without the informativeness classifier, the attention mechanism, or the
hierarchical softmax.

1. Introduction

Dialog systems for a task-oriented dialog facilitate the in-
teractions between the systems and their users by a natural
language to achieve the requirements from the users. .us,
the task-oriented dialog systems carry out several tasks such as
identifying the user intention from a user utterance, tracking
a dialog flow, and planning a dialog strategy to fulfill the
requirements. Furthermore, they generate a natural language
response for the user. Since the ability of a task-oriented
dialog system to catch user requirements and to recognize
a dialog flow influences its success heavily, it is essential to
track what has happened and estimate the needs of a user.

.e dialog state tracker in a task-oriented dialog system
estimates the state of a conversation from a user utterance.
.en, the dialog system plans a dialog strategy using the state

to reach a dialog goal that fulfills the user requirements.
Usually, the tracker has a slot-filling architecture which is
based on predefined semantic slots to translate user utter-
ances into a semantic representation [1]. .us, a dialog state
is expressed as a set of slot-attribute pairs. As a result, the
objective of the dialog state tracker is to estimate a true slot
and its attributes from a user utterance.

.e success of a task-oriented dialog depends greatly on
how quickly and precisely the dialog states are caught from
user utterances [2, 3]. .ere have been a number of studies
that make a dialog state tracker more precise and quicker
[4, 5]. However, the previous studies have two kinds of
problems in common. .e first problem is that the previous
studies assume that every utterance delivers slot-attribute
pairs. As a result, they try to estimate slot-attribute pairs for
all user utterances. However, some utterances do not carry
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any information about true slot and true attributes of the
slot. For instance, “Hi. My name is Arlyn”is an utterance for
responding to a system utterance, and “Hello” is an opening
speech but has no information about dialog state. .erefore,
such noninformative utterances should be filtered out before
estimating a dialog state from an utterance.

Another problem is that task-oriented dialogs cover
a large state space. As a result, many slot-attribute pairs
occur rarely in the training data even if they become a dialog
state. .e dialog state tracking can be formulated as a clas-
sification task in which the slot-attribute pairs are classes.
However, the classifiers based on traditional machine-
learning methods including the neural networks with the
softmax do not work well in this task due to a great number
of classes and infrequent classes. To resolve this problem, the
dialog state tracker should not consider only numerous
number of classes, but should be able to predict also rare
classes.

.is paper proposes a two-step neural tracker that solves
the problems..e first step of the proposed tracker filters out
the noninformative utterances. Filtering out noninformative
utterances can be regarded as a binary classification which
determines whether a given utterance has meaningful words
for tracking dialog states or not. Since convolutional neural
networks (CNNs) show good performance in sentence
classification [6, 7], this paper adopts a CNN to filter out
noninformative utterances. .e second step of the proposed
tracker determines actual dialog states by using an attention-
based recurrent neural network (RNN) with the hierarchical
softmax function. .e reason why RNN is adopted in the
second step is that it is effective in classifying dynamic se-
quences with complex behaviors [8]. .is RNN-based dialog
state tracker employs the attention mechanism and the
hierarchical softmax, since the attention mechanism shows
good performances in various NLP tasks [9] and helps
a model focus on valuable words in an utterance. In addition,
the adoption of the hierarchical softmax [10, 11] reduces the
computational complexity in training of the proposed
model. Dialogs are usually described with a large vocabulary,
and every word in the vocabulary can be an attribute or
a class in dialog state tracking. Since the hierarchical softmax
can deal with a large number of classes efficiently, the
proposed tracker can make good estimations of dialog states
for infrequent classes as well as for frequent classes.

.e rest of this paper is organized as follows. Section 2
discusses the previous studies on dialog state tracking.
Section 3 proposes the two-step neural dialog state tracker
and Section 4 describes the details of the two-step
neural dialog state tracker. An evaluation of the proposed
model is given in Section 5. Finally, Section 6 concludes this
paper.

2. Related Work

Conventional dialog systems use handcrafted heuristics to
update proper dialog states from the output of a natural
language understanding module [12, 13]. For instance, Zue
et al. proposed handcrafted update rules to manage dialog
states in a weather information system [14], and Larsson and

Traum adopted handwritten rules to track information states
which represent the necessary information for tracking
a dialog flow [15]. On the other hand, Sun et al. proposed a
rule-based method to compute the confidence scores of the
N-best candidates generated by their spoken language un-
derstanding module [16]. However, these rules are not
derived automatically from real dialog data so that they
require careful tuning and delicate designing efforts. Due to
such characteristics of rule-based methods, these
methods often result in inaccuracy of determining dialog
states.

As a solution to handcrafted rules, statistical methods
have been applied to dialog state tracking [17–19]. Bohus
and Rudnicky used a logistic regression to provide an initial
assessment of the reliability of the information obtained
from a user [17]. To achieve high tracking performance, they
adopted some features such as the prior likelihoods of dialog
state slots. .omson and Young represented dialog state
tracking with a Bayesian network and proposed a belief
update algorithm for resolving the tractability of inference in
the Bayesian network [18]. .eir experimental results prove
that the model can not only deal with a very large number of
slots, but also it achieves significant improvement over the
systems with handcrafted rules. Ma et al. proposed a model
with two trackers for a location-based dialog system [19].
One tracker is designed with a Bayesian network to track
nonlandmark concepts such as a company or a street, while
the other is a kernel-based tracker that deals with land-
mark concepts in a dialog corpus. However, these studies
share a common problem that they have to enumerate all
possible dialog states which is computationally very
expensive.

Due to increasing interests on dialog state tracking,
dialog state tracking challenges (DSTC) have been held for
the last several years. DSTC provided a fully labeled data set
and an evaluation framework for benchmark tasks. .is data
set has evolved from human-machine dialogs to human-
human task-oriented dialogs and from a single domain to
multiple domains. For instance, a person requests bus in-
formation to a machine in the DSTC1. .us, the machine
leads dialogs in DSTC1. On the other hand, a person re-
quests tour information to a (human) tour guide in DSTC4.
Since the DSTC data set is used in most recent studies
[20, 21], it is now regarded as a standard data set for dialog
state tracking.

One notable aspect of DSTC is that the number of studies
which adopt a neural network for dialog state tracking is
increasing explosively. Henderson et al. first applied a neural
network to dialog state tracking [2]. .eir study is mean-
ingful in that it is the first try of using a neural network for
dialog state tracking, but their method still relies much on
handcrafted features. After that, they proposed another
neural network-based model without any handcrafted fea-
tures or explicit semantic representation [8]. .is model
extracts its feature representation automatically from the
N-best list of speech recognition and machine acts. Perez
and Liu used the memory network for easy handling of
dialog history as well as identifying user request [22]. .ey
generated question-answer pairs manually to estimate what
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slot-attribute pairs are actually needed for a subdialog.
However, the main problem of these studies is that they are
based on the assumption that each component of a dialog
system is developed independently. As a result, the problem
of error propagation still remains.

.e most recent neural approach to dialog state tracking
accepts raw user utterances directly rather than analyzing
the utterances through a natural language understanding
module. For instance, Yoshino et al. proposed a neural
tracker based on the long short-term memory (LSTM) [20].
.e input to this LSTM is raw dialog utterances of a user. On
the other hand, Shi et al. used a CNN to focus on tracking
general information in a subdialog segment [21]. To deal
with multitopic dialogs, their CNN is composed of general
and topic-specific filters that share topic information with
each other. .ey showed meaningful results in their ex-
periments for multiple topics, but their model tends to miss
the right timing when the tracker should generate its output
for some specific slots.

3. Two-Step Neural Dialog State Tracker

Figure 1 shows the general structure of traditional task-
oriented dialog systems. .e systems usually consist of six
submodules which are ASR (automatic speech recognition),
NLU (natural language understanding), DST (dialog state
tracking), DM (dialog manager), NLG (natural language
generation), and TTS (text-to-speech). Since they are
pipelined, the errors of one module are easily propagated to
subsequent modules. .us, it is of importance to reduce the
number of modules as well as to minimize the errors of each
module. .is paper proposes a neural dialog state tracker in
an end-to-end style. .at is, the tracker does not use any
output from NLU. Instead, it takes the result of ASR as its
input directly and returns a relevant dialog state as its
output. .erefore, it actually substitutes two components of
NLU and DST in this figure.

.e task-oriented dialogs usually proceed in four steps of
opening, asking, offering, and ending. .ere could be many
user utterances in each step that are not directly related with
dialog states. Especially, the utterances in the opening and
the ending steps deliver no information about dialog states,
since they are usually greetings and closing remarks.
However, asking and offering steps also can have such ut-
terances. For instance, let us consider an example dialog for
tour booking in Figure 2. While the bold utterances deliver
the type of a tour place and restriction information, the italic
utterances have nothing to do with dialog state. Note that
such noninformative utterances can appear between in-
formative utterances. .ese noninformative utterances re-
sult in the performance degradation of a dialog state tracker
if they are given as an input to the tracker. .us, they should
be filtered out before tracking dialog states.

To filter out noninformative utterances before de-
termining actual dialog states, the proposed tracker has two
steps as shown in Figure 3. In the first step, the in-
formativeness classifier determines whether a user utterance
U is informative or not. If it decides that U is non-
informative, then U is discarded. Otherwise, the dialog state

of U is then classified by the actual dialog state tracker. Since
both the informativeness classifier and the dialog state
tracker are implemented with neural networks in this paper,
each user utterance is represented to a sequence of word
vectors by Word2Vec [23].

4. Implementation of Two-Step Tracker

4.1. Informativeness Classifier. Convolutional neural net-
works have been reported to be outstanding in many NLP
tasks including sentence classification [6, 24]..us, a CNN is
adopted for the informativeness classifier in Figure 3. It
accepts the numerical utterance vector as its input. Assume
that the user utterance U consists of n words. .at is,
U � x1, x2, . . . , xn , where xi is the i− th word in U. If xi is
represented as a k-dimensional vector xi byWord2Vec, then
the utterance vector U1:n becomes

DB

ASR

NLGTTS

NLU

DST

DM

Proposed model

Figure 1: .e general structure of traditional task-oriented dialog
systems..e proposed dialog tracker corresponds to both NLU and
DST of the traditional systems.

S: Hello!
T: Hi. My name is Arlyn.
S: What do you want to do in this tour?
T: For this particular tour since we’re gonna probably bring

along our daughter with us we’re sort of thinking going to
a theme park maybe.

S: A theme park. Okay. How old is your daughter.
T: She’s four.
S: Oh, she’s only four year old. Okay.
T: Yeah.
S: But, some of the riders she may not be able to take. You can

visit the theme parks, but they may have restrictions on the
height or the age of children.

Figure 2: An example dialog about a tour booking with some
dialog state independent utterances. S in this example is a system,
and T is a tourist.

U
Dialog
state

Dialog state
tracker

Discard U

No

YesInformativeness
classifier

Figure 3: .e overall structure of the proposed two-step neural
tracker.
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U1:n � x1 ⊕ x2 ⊕ · · · ⊕ xn, (1)

where ⊕ is the concatenation operator.
.e informativeness classifier determines whether the

utterance delivers some information about dialog states or
not. Figure 4 depicts the structure of the informativeness
classifier. .e classifier is a CNN with a convolution layer,
a max pooling layer, a regularization layer, and a softmax
layer. .e convolution layer makes multiple feature maps
with multiple filters, where each filter fw ∈ Rwk is applied to
a window of w words to produce a new feature for the next
layer. .at is, a new feature ciw is derived from a filter fw and
a window of words by

ciw � t fw · Ui:i+w−1 + b( , (2)

where t is a nonlinear function such as the hyperbolic
tangent and b is a bias term. .is filter is applied to every
window of words in U to produce a feature map with
a window size w:

cw � c1w, c2w, . . . , cn−w+1,w . (3)

Multiple filters with various window sizes of words are
used to obtain multiple feature maps.

.e max pooling layer captures the most important
feature for each feature map. When a max pooling oper-
ation is applied to a feature map cw, the maximum value of
the map, cw � max(cw), is obtained as a feature corre-
sponding to the particular filter fw. .is pooling scheme
deals with variable-length inputs and produces fixed-length
outputs for the subsequent layers. A dropout is used for the
regularization of this CNN before the outputs of max
pooling layer are passed to a fully connected softmax layer
whose output is the probability distribution over in-
formativeness labels.

4.2. Neural Dialog State Tracker. Figure 5 shows the struc-
ture of the proposed dialog state tracker. .is tracker
consists of a RNN-based encoder and an output decoder,
where the decoder is composed of an attention layer, a linear
layer, and a softmax layer. .e gated recurrent unit (GRU) is
used for the encoder, since it is widely used in recurrent
neural networks to encode a sentence or an utterance. Each
GRU cell takes an input vector xi, and calculates the hidden
state hi using a reset gate ri, an update gate zi, and weight
matrices W and M for the two gates. .e variables are
actually computed by

hi � 1− zi( hi−1 + zi
hi,

zi � σ Wzxi + Mzhi−1( ,

ri � σ Wrxi + Mrhi−1( ,

(4)

where the hidden state hi of a GRU cell at time i is a linear
interpolation between the previous hidden state hi−1 and the
candidate hidden state hi. .e update gate zi decides how
much the unit updates its content, and ri is a reset gate that
determines whether the GRU cell forgets the previously
computed state or not. .en, hi, the candidate hidden state,

is updated using the current input, the reset gate, and the
previous hidden state. .at is,

hi � tanh Wxi + M ri ⊙ hi−1( ( , (5)

where ⊙ is an element-wise multiplication.
.e slot and its attribute for a dialog state are estimated

by the decoder. .e input for the decoder is an encoded
representation h1:n of the utterance. Since it is important in
estimating slots to focus on some words containing in-
formation about a dialog state, an attention mechanism is
adopted in this architecture. Bahdanau et al. showed that
a basic encoder-decoder architecture with an attention
mechanism outperforms the architecture without attention
at machine translation tasks [9]. .is implies that the at-
tention mechanism can tell roughly the decoder to which
words the decoder has to pay attention in translating
a sentence. In dialog state tracking, the decoder is able to
catch salient words from an input utterance by adopting an
attention mechanism.

.e attention mechanism used in the proposed model
first calculates the normalized alignment scores that refer to
how closely the words from xi to xj are related. .e
alignment score of each hidden layer output is calculated by

eij � a hi, hj , (6)

where a is an alignment model that is implemented by
a feedforward network. Before computing the salience vector
si, the alignment score is normalized by

αij �
exp eij 


n
l�1exp eil( 

 . (7)

.en, the salient vector si that indicates the significance
of the output of a hidden layer is calculated as a weighted
sum of the hidden layer output and the normalized align-
ment scores. .at is,

si � 
j�1

n

αijhi. (8)

After all salience vectors are obtained, they are averaged
into a single vector as

s �
1
n


j�1

n

si. (9)

.en, the dialog state is estimated from s. .at is, s is
inputted to the softmax layer with a hierarchical softmax.
.e hierarchical softmax reduces the computation com-
plexity by representing all classes as a binary tree [11]. A leaf
node of the tree represents a class, and an intermediate node
contains the common representation of its child nodes.
.us, unlike the flat softmax in which every class is pro-
cessed independently, the hierarchical softmax makes a class
be complemented by other classes through the intermediate
nodes [25]. As a result, this hierarchical softmax gets able to
estimate infrequent classes. In general, a dialog has a large
collection of vocabulary, and every word in the vocabulary
becomes a class in dialog state tracking. .us, due to a great
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number of classes and infrequent classes in dialog state
tracking, it is difficult for a tracker to estimate the dialog
state. However, by adopting the hierarchical softmax
function, the proposed tracker can estimate infrequent
classes as well as the frequent classes.

In the proposed model, the slots and their attributes are
considered as words, and thus they are represented as a binary
tree in which a word is a leaf node. Since there areV words, the
tree hasV− 1 inner nodes. For each leaf node, there exists only
one path from a root to the leaf node that is used to estimate
the probability of the word. For example, Figure 6 is a hier-
archical binary tree in which the leaf nodes represent words
(slot-attribute pairs) and inner nodes represent probability
mass. .e highlighted nodes and edges make a path from root
to an leaf node w1, and n(w, j) means the j-th node on the
path from root to a leaf node w. In the hierarchical softmax
model, each of the V− 1 inner node has an output vector
v′n(w,j). .e probability of a word being an output word is

p w � wO(  � 

L(w)−1

j�1
σ I(t) · vn(w,j)

′ · h , (10)

where I(t) is an indicator function whose value is 1 if the
variable t is true and −1 otherwise. In this equation, t checks
if n(w, j + 1) � lch(n(w, j)), lch(n) is the left child of node
n, and L(w) is the length of the path. .us, I(t) examines
whether the (j + 1)− th inner node on the path from root to
w is equal to the left child of the j− th inner node on the path
or not.

5. Experiments

5.1. Data Set. To examine the effectiveness of the proposed
model, we used TourSG data set (http://www.colips.
org/workshop/dstc4/data.html) that was used for DSTC4.
Table 1 shows the simple statistics on the data set. .is data
set has totally 35 dialog sessions on Singapore tour in-
formation collected from Skype call logs. .ree tour guides
and 35 tourists have participated in these call logs. .e 35
dialog sessions are composed of 31,304 utterances and
273,580 words, respectively. .e training set has seven di-
alogs from tour guide SG1 and SG2, the development set has
three dialogs from the same guides, and the test set has three
dialogs from all tour guides. .us, the dialogs from tour
guide SG3 are used only for test. As a result, this data set can
be used to evaluate the robustness of dialog state trackers.

Every dialog in the data set is expressed as a series of
utterances, and each utterance is an unrefined transcription
containing some disfluencies such as “ah,” “uh,” or “um.” A
dialog can be divided again into subdialog segments that
belong to one of nine topic categories of OPENING,
CLOSING, FOOD, ITINERARY, ACCOMMODATION,
ATTRACTION, SHOPPING, TRANSPORTATION, and
OTHER. .e example dialog in Figure 7 has two subdialogs
where a dashed line is the border between the subdialogs. As

n × k representation of
sentence

Convolution layer with
multiple filter widths

and feature maps 

Max-over-
time

pooling

Fully connected
layer with

dropout and
so�max output

xn

xn–1

x1

x2

Figure 4: .e structure of the informativeness classifier.
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Figure 5: .e structure of the proposed dialog state tracker with
attention and hierarchical softmax.
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shown in “Dialog State” column of this table, not all ut-
terances have a slot and attributes.

.e topics of OPENING, CLOSING, ITINERARY, and
OTHER deliver no information about dialog states. .us, they
are all merged into a single topic OTHERS for the in-
formativeness classification. As a result, for the informative
classifier, the five topics of FOOD, ACCOMMODATION,
ATTRACTION, SHOPPING, and TRANSPORTATION are

considered as a informative class, while the topic OTHERS is
regarded as a noninformative class. Table 2 summarizes the
class distribution of the TourSG data set for the in-
formativeness classifier. .e training set has 9,974 informative
utterances and 2,785 noninformative utterances. .e devel-
opment set has 4,139 informative and 673 noninformative
utterances, while the test data set has 6,528 and 1,320 utter-
ances for informative and noninformative classes, respectively.

w1 w2 w3 w4 wn–1 wn

n(w1,1)

n(w1, 2)

n(w1, 3)

Figure 6: An example of hierarchical binary tree.

Table 1: A simple statistics on the TourSG data set.

Set
No. of dialogs No. of segments

No. of utterances
SG1 SG2 SG3 Total Acco Attr Food Shop Trsp Other Total

Training 7 7 0 14 187 762 275 149 374 357 2,104 12,759
Development 3 3 0 6 94 282 102 67 87 68 700 4,812
Test 3 3 3 9 174 616 134 49 174 186 1,333 7,848

Speaker Utterance

Tourist Can you give me some uh- tell me some cheap rate hotels, because I’m planning just to leave my
bags there and go somewhere take some pictures.

Dialog state

TYPE = budget hotel

Tourist Yes. I’m just gonna bring my backpack and my buddy with me. So I’m kinda looking for a hotel that
is not that expensive. Just gonna leave our things there and, you know, stay out the whole day. TYPE = hostel

Guide Okay. Let me get you hm hm. So you don’t mind if it’s a bit uh not so roomy like hotel because you
just back to sleep. INFO = room size

Tourist Yes. Yes. As we just gonna put our things there and then go out to take some pictures. INFO = room size
Guide Okay, um- —
Tourist Hm. —

Guide Let’s try this one, okay? —
Tourist Okay. —

Guide It’s InnCrowd Backpackers Hostel in Singapore. If you take a dorm bed per person only twenty
dollars. If you take a room, it’s two single beds at fifty nine dollars.

PLACE = the inncrowd
backpackers hostel

Tourist Um. Wow, that’s good. PLACE = the inncrowd
backpackers hostel

Guide Yah, the prices are based on per person per bed or dorm. But this one is room. So it should be fifty
nine for the two room. So you’re actually paying about ten dollars more per person only. INFO = pricerange

Tourist Oh okay. That’s- the price is reasonable actually. It’s good. INFO = pricerange

Guide Okay. I’m going to recommend firstly you want to have a backpack type of hotel, right? TYPE = hostel

Figure 7: A sample dialog from TourSG data set for a topic ACCOMMODATION.
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.e data set has two kinds of slots for dialog state
tracking: a regular slot and an INFO slot. .e regular slot is
predefined to deliver the essential content of a subdialog for
a specific topic. A topic contains three to seven regular slots
on average. On the other hand, the INFO slot is for in-
dicating the content mentioned implicitly in the subdialog.
In the second subdialog of Figure 7, there are two slots of
“PLACE” and “INFO” where “PLACE” is a regular slot and
“INFO” is the INFO slot. Since the hotel name is described
explicitly with the words “InnCrowd Backpackers Hotel,” it
becomes the attribute of the slot “PLACE.” In addition, the
dialog participants are discussing the price of the hotel..us,
the attribute of the INFO slot becomes Pricerange, even
though the words “price range” do not appear explicitly in
the dialog. .e possible slot types and the list of their
candidate attributes vary according to a topic category, and
they are described as an ontology provided by DSTC [26].

Table 3 shows the number of slots and their possible
attributes for every topic category. ACCOMMODATION,
ATTRACTION, FOOD, and SHOPPING contain common
regular slots that refer to the names of places, the types of
places, and the information of geographic areas. In detail, the
topic ACCOMMODATION has three common regular slots,
and the topic ATTRACTION includes five regular slots
about the touristic activities, visit-time for attraction, and
three common regular slots. .e topic FOOD has seven slots
that stand for the types of cuisine, the names of dishes and
drinks, the time for eating, and three common regular slots.
.e topic SHOPPING has three common regular slots and
time information for shopping. .e last topic, TRANS-
PORTATION includes the types of transportation, the
destinations and origins, the information on train lines and
stations in Singapore, and the types of tickets. .e regular
slots have 570, 661, 1,411, 651, and 2,450 attributes in
ACCOMMODATION, ATTRACTION, FOOD, SHOPPING,
and TRANSPORTATION, respectively. On average, one
regular slot has roughly 190, 122, 202, 163, and 490 attributes
for each topic category. On the other hand, INFO slot has
only one slot. .is is because INFO is both a slot type and
a slot name. It has 32, 31, 16, 16, and 15 attributes for five
topic categories.

5.2. Evaluation Metrics and Experimental Settings. .e ac-
curacy and the F1-score are used to evaluate both the in-
formativeness classifier and the neural dialog state tracker
where they are defined as follows:

(i) Accuracy: the fraction of predictions in which the
model output is same with the gold label

(ii) Precision/Recall/F1

(a) Precision: the fraction of predictions in the
model outputs that are correctly predicted

(b) Recall: the fraction of predictions in the gold
labels that are correctly predicted

(c) F1: the harmonic mean of precision and recall

For the informativeness classifier, the accuracy checks
how correctly a classifier determines whether a given ut-
terance is informative or not, and the F1-score shows how
precise the informativeness classifier is, as well as how
robust it is. In the dialog state tracking, the predictions are
slot-attribute pairs. .us, the accuracy checks how
equivalent the tracker’s outputs are to gold standard labels
at the whole frame-level, while the precision and the recall
aim to check the partial correctness at the slot-attribute
level.

.e parameters of the informativeness classifier and the
neural dialog tracker are described in Tables 4 and 5, re-
spectively. Every word of the utterances, the input for both
the informativeness classifier and the neural tracker, is
embedded into a 500-dimension vector. .ree different sizes
of filters are used for the informativeness classifier and the
number of filters for each filter size is 128. .e dropout rate
of the classifier is 0.5, the batch size is 50, and the number of
training epochs is 10. For the neural tracker, the hidden layer
size is 500, the dropout ratio is 0.1, the learning rate is 0.005,
and the number of epochs is 100,000.

5.3. Experimental Results. Table 6 shows the classification
performance of the informativeness classifier. .e classifier
achieves the accuracy of 93.16% and F1-score of 93.17 for test
set, while the classifier shows a relatively low precision of
90.89%. .e reason for the relatively low precision is that
there are some utterances about money in the non-
informative class. For instance, the classifier predicts an
utterance “Okay, maybe a thousand dollars for a day.” as
informative due to the words “thousand dollars” and “a day,”
but its gold standard label is noninformative. Since the
dialog to which the utterance belongs is an opening section
before recommending tour information, the utterance is
a noninformative utterance for tracking dialog. .is prob-
lem occurs because the classifier determines the in-
formativeness of utterances without any contextual
information of a dialog flow.

To show the feasibility of the proposed model, the dialog
state tracking performance of the proposed model is com-
pared with those of the participants in the DSTC4 challenge.
.e string match tracker determines the slot and the at-
tribute by a simple exact string match between the slot and
the given utterance [26]. .e LSTM-based neural tracker
proposed by Yoshino et al. [20] is a pure LSTM without the

Table 2: .e class distribution for the informativeness classifier.

Set Informative Noninformative
Training 9,974 2,785
Development 4,139 673
Test 6,528 1,320

Computational Intelligence and Neuroscience 7



attention mechanism..us, it can be directly compared with
the proposed model. Tables 7 and 8 show the performance of
the trackers. .e proposed model outperforms its com-
petitors in both accuracy and F1-score. Especially, it achieves
four times higher accuracy than the LSTM which is a neural
network-based model and is a similar approach as our
proposed model. .is result means that handling necessary
information from utterance is important to tracking dialog
state. .e main difference between the proposed model and
the LSTM is the presence of the attention mechanism. .us,
it can be inferred that it is important in dialog state tracking
to focus on some salient words while processing a user
utterance.

.e performance of the proposed model per topic is
investigated in Figure 8. .e performance is measured for
five topics related with dialog state tracking. .e proposed
model achieves the best performance at every topic. Espe-
cially, the proposed model only obtains lower performance
at the topic ACCOMMODATION. .e reason why the

proposed model shows poor performance for ACCOM-
MODATION is that there are many utterances mentioning
some locations in the dialogs of ACCOMMODATION, but

Table 6: .e classification performance of the informativeness
classifier.

Set Accuracy Precision Recall F1-score
Development 0.9484 0.9202 0.9820 0.9501
Test 0.9316 0.9089 0.9557 0.9317

Table 5:.e parameters for the neural dialog state tracker and their
values.

Parameter Value
Embedding size 500
Hidden layer size 500
Dropout ratio 0.1
Learning rate 0.005
Number of epochs 100,000

Table 3: .e number of slots (regular, INFO) and their attributes.

Topic category
Regular slot INFO slot

No. of slot No. of attribute No. of avg. attribute per slot No. of slot No. of attribute
ACCOMMODATION 3 570 190 1 23
ATTRACTION 5 611 122 1 31
FOOD 7 1,411 202 1 16
SHOPPING 4 651 163 1 16
TRANSPORTATION 5 2,450 490 1 15

Table 4:.e parameters for the informativeness classifier and their
values.

Parameter Value
Embedding size 500
Filter sizes 2, 3, 4
.e number of filters 128
Dropout ratio 0.5
Batch size 50
Number of epochs 1,000

Table 7: .e comparison of the dialog state tracking accuracies
between the proposed model and DSTC4 participants.

Model Accuracy
String match [26] 0.0374
LSTM [20] 0.0270
Proposed model 0.0852

Table 8: .e comparison of the dialog state tracking F1-scores
between the proposed model and DSTC4 participants.

Model Precision Recall F1-score
String match [26] 0.3589 0.1925 0.2506
LSTM [20] 0.3400 0.2010 0.2530
Proposed model 0.5173 0.3499 0.4174
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Figure 8: .e F1-score of the proposed model per topic.
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they are often related with other topics such as TRANS-
PORTATION and SHOPPING. For instance, for the utter-
ance “ten minutes walk to the mrt train station,” the
proposed model predicts its slot as “STATION” and its
attribute as “MRT train station.” .is prediction seems to be
relevant since a train station is usually related to TRANS-
PORTATION. However, the dialog is about the places near
the suggested accommodation. .us, the gold standard slot
for the utterance is “NEIGHBORHOOD,” and the gold
standard attribute is “Kampong Glam,” a location name.

Table 9 implies the dialog state tracking accuracy of the
proposed model for every slot in a topic category. Note that
each accuracy is computed at the utterance level, not the
subdialog level. .e regular slots which have distinguishable
attributes like “TIME” and “TYPE_OF_PLACE” show
moderately high accuracy, while some regular slots such as
“NEIGHBOURHOOD,” “PLACE,” or “DISH” achieve low
accuracy. .e reason why the proposed model shows poor
performance for some regular slots is that they have specific
names for their attributes such as restaurant name, street
name, and dish name that are extremely infrequent in data
set. .e proposed model also achieves meaningful perfor-
mance for INFO slot. .e high performance for INFO slot
implies that the proposed model can catch the contents
mentioned implicitly in an utterance.

To examine the effectiveness of the attention mechanism
and the hierarchical softmax, three variations of the pro-
posed model are compared with the proposed model. One
variant (NT-Atten-NoHier) is the neural tracker with the
attention mechanism and the general softmax. .is is
designed to inspect the effectiveness of the attention
mechanism in dialog state tracking. Another (NT-NoAtten-
Hier) is the neural tracker without the attention but with the
hierarchical softmax. .is is prepared to examine the hi-
erarchical softmax. .e third (NT-Atten-Hier) is the pro-
posed model, the neural tracker with both the attention and
the hierarchical softmax..e informativeness classifier is not
used in comparing them.

Tables 10 and 11 prove the effectiveness of the attention
mechanism and the hierarchical softmax. .e proposed
model (NT-Atten-Hier) outperforms both NT-Atten-
NoHier and NT-NoAtten-Hier, which implies that the
attention mechanism and the hierarchical softmax are all
helpful in enhancing the neural tracker. One thing to note in
these tables is that the performance improvement of the
neural tracker is made mainly by the attention mechanism.
NT-Atten-Hier achieves 1.6 times higher accuracy than NT-
NoAtten-Hier, but it shows a similar accuracy with NT-
Atten-NoHier. Nevertheless, it is also true that the hierar-
chical softmax enhances the neural tracker..is is proved by
the fact that the performance of NT-Atten-Hier is slightly
higher than that of NT-Atten-NoHier.

Table 12 shows the effectiveness of the informativeness
classifier. .e F1-score of the proposed pure neural tracker,
NT-Atten-Hier, is 0.3977, but it goes up to 0.4174 when the
informativeness classifier is applied in front of the neural
tracker as in Figure 3. .e improvement by the in-
formativeness classifier is also discovered in accuracy. .is is
because the adoption of the informativeness classifier

Table 9: .e dialog state tracking accuracy of proposed model for
every slot in topic category.

Topic Slot Accuracy

ACCOMMODATION

INFO 32.4
TYPE_OF_PLACE 48.3

PLACE 18.7
NEIGHBOURHOOD 8.8

ATTRACTION

INFO 21.1
TYPE_OF_PLACE 65.5

ACTIVITY 55.7
PLACE 4.6
TIME 63.3

NEIGHBOURHOOD 17.8

FOOD

INFO 37.1
CUISINE 47.1

TYPE_OF_PLACE 68.6
DRINK 62.2
PLACE 7.7

MEAL_TIME 73.9
DISH 5.8

NEIGHBOURHOOD 27.3

SHOPPING

INFO 41.3
TYPE_OF_PLACE 41.9

PLACE 4.8
NEIGHBOURHOOD 4.1

TIME 75.0

TRANSPORTATION

INFO 23.9
FROM 5.3
TO 5.6

STATION 14.7
LINE 16.1
TYPE 42.8

Table 10: .e dialog state tracking accuracy of the proposed
model’s variants.

Model Accuracy
NT-Atten-NoHier 0.0672
NT-NoAtten-Hier 0.0422
NT-Atten-Hier 0.0697

Table 11: .e F1-score of the dialog state tracking of the proposed
model’s variants.

Model Precision Recall F1-score
NT-Atten-NoHier 0.4403 0.3335 0.3795
NT-NoAtten-Hier 0.3316 0.3058 0.3181
NT-Atten-Hier 0.4662 0.3469 0.3977

Table 12: .e effect of the informativeness classifier in the pro-
posed model.

Model Accuracy Precision Recall F1-
score

Without informativeness
classifier 0.0697 0.4662 0.3469 0.3977

With informativeness
classifier 0.0852 0.5173 0.3499 0.4174

Computational Intelligence and Neuroscience 9



reduces the possibility of misjudgments by noninformative
utterances.

To analyze the shortcomings of various neural trackers,
we use three types of slot-level errors that were defined in the
DSTC challenge. .e error types are as follows:

(i) Missing attribute: the actual dialog has the attributes
for a specific slot, but the tracker does not output
any attribute for the slot

(ii) Extraneous attribute: no attribute for a slot is
contained in an actual dialog, but the tracker out-
puts some attributes for the slot

(iii) False attribute: the attribute for a slot is specified in
an actual dialog, but the tracker outputs a different
attribute from the dialog

According to the result of DSTC4 challenge [26], the
largest error type is the missing attribute.

Figure 9 depicts the number of errors in each error type
by the variants of the proposed model. In this figure,
“Proposed Model” implies that NT-Atten-Hier with the
informativeness classifier. .e number of errors in missing
attribute and extraneous attribute is much reduced in
“Proposed Model” while sacrificing somewhat of false at-
tribute. .erefore, the informativeness classifier is proved to
be helpful actually in reducing the errors in missing and
extraneous attributes. Many errors in false attribute are
made by a limited context of a given utterance. For instance,
let us consider an utterance “uh another place you might
want to check out is opposite to Sentosa island and it is called
Vivocity.” In this utterance, a user wants to know another
shopping place. Since the proposed model focuses only on
the utterance, it predicts the slot for the utterance as
“NEIGHBOURHOOD” and its attribute as “Sentosa.”.is is
wrong but plausible predictions, since the utterance also
contains locational information semantically. .at is, many
errors by the proposed model are not critical in un-
derstanding the user intention.

6. Conclusion

.is paper has proposed a task-oriented dialog state tracker
in two steps. .e proposed tracker is composed of an in-
formativeness classifier and a neural dialog state tracker. It
first filters noninformative utterances in dialog by using
informative classifier. .e informativeness classifier is
implemented by CNN which showed good performance in
sentence classification. In the next step, the neural tracker
determines dialog states from informative utterance with
attention mechanism and hierarchical softmax. By adopting
the attention mechanism and hierarchical softmax, the
proposed model can not only focus on salient word in
a given utterance but also deal with a large of vocabulary in
dialog efficiently. .e experimental results on dialog state
tracking to examine the capability of the proposed model
show that the proposed model outperforms both the neural
tracker without informativeness classifier, the attention
mechanism, and the hierarchical softmax as well as the

previous work, which implies the plausibility of adopting
them in dialog state tracking.

.ere is still some room for its improvement although
the proposed model achieves an acceptable result. One
possible improvement for the current neural tracker is to
preserve topic consistency when a model predicts slots.
.e proposed model considers only a given utterance
when it predicts a slot. However, since a general dialog has
a single topic, the topic of the utterances in the same
dialog segment has to continue when a model predicts the
slots of the utterances. .us, we will consider a dialog
history to catch the flow of a dialog and to preserve topic
consistency of predicting slots in the future work.

Data Availability

We used dialog state data (TourSG data set) which are
provided from ETPL-A∗STAR (dialog state tracking chal-
lenge 4 organization). .e TourSG is a research dialog corpus
in the touristic domain and is divided by train/development
data and test data. Train and Development data include
manual transcriptions and annotations at both utterance and
subdialog levels for training model and fine-tuning its pa-
rameters. Test set includes manual transcriptions for evalu-
ating the model. All researcher/company can access the data in
following site: https://www.etpl.sg/innovation-offerings/ready-
to-sign-licenses/toursg-a-research-dialogue-corpus-in-the-
touristic-domain. Researchers or their company need to pay
a license fee for getting the TourSG data set after signing
a license agreement with ETPL-A∗STAR. .e data set include
transcribed and annotated dialogs, as well as ontology objects
describing the annotations.
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