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A recent analysis found that exposure to air pollution during specific weeks of pregnancy was negatively associated
with risk of autism spectrum disorder (ASD) when mutually adjusted for postnatal air-pollution exposure. In this com-
mentary, we describe 2 possible selection-bias processes that might lead to such results, both related to live-birth bias
(i.e., the inevitable restriction of the analyzed sample to live births). The first mechanism is described using a directed
acyclic graph and relates to the chance of live birth being a common consequence of both exposure to air pollution and
another risk factor of ASD. The second mechanism involves preferential depletion of fetuses susceptible to ASD in the
higher air-pollution exposure group. We further discuss the assumptions underlying these processes and their causal
structures, their plausibility, and other studies where similar phenomenamight have occurred.

air pollution; autism spectrum disorder; live-birth bias

Abbreviations: ASD, autism spectrum disorder; DAG, directed acyclic graph; NO2, nitrogen dioxide.

The question of whether exposure to air pollution is a risk fac-
tor for development of autism spectrum disorder (ASD) has pro-
duced more than 15 published epidemiologic analyses. Yet—and
despite published reviews, meta-analyses and commentaries
(1–4)—there is still lack of agreement on key specifics among
analyses and authors. In a recent publication of ours in the Jour-
nal (5), we described a distributed lag model implemented with
population-based ASD data and nitrogen dioxide (NO2—a tracer
for traffic emissions) models from Israel that are highly resolved
in time and space, to shed light on the critical perinatal period for
exposure.We found that, whenmutually adjusted in a distributed
lag model (to avoid bias from correlation among exposure peri-
ods) (6), associations vary by week. Postnatal exposures show
statistically significant positive associations a few weeks after
pregnancy, while prenatal exposures reached a statistically
significant negative peak (i.e., an apparent protective association)
near the end of the first trimester (Figure 1, reproduced from Raz
et al. (5)).

One possible explanation for the shape of the curve is that
high exposure to traffic air pollution close to the first and sec-
ond trimesters is indeed protective of ASD in the offspring,
through some unknownmechanism. However, we are not aware
of a possible biological mechanism for this effect or of other con-
vincing examples of air pollution being beneficial for human or

animal health and development. Another possible explanation is
that this is a result of a very strong negative correlation between
NO2 and some other variable that is a risk factor for ASD. There
are not many factors that could vary inversely with NO2 in that
way. Season might be one, but the original results were adjusted
for season. This adjustment should also rule out other variables
that vary seasonally (e.g., pesticide application). Ozone is another
possibility because it was not adjusted for and a negative correla-
tion between these 2 gases is expected (7). In this case, exposure
to ozone duringmid-pregnancywould have to be a risk factor for
ASD. In addition, the original results would suggest that ozone
would be a protective factor after pregnancy. However, the corre-
lation between weekly levels of NO2 and ozone in the study pop-
ulation is just −0.28, which would require an exceptionally
strong association between ozone and ASD to fully explain the
observed protective association with NO2 prenatally. Instead,
we suggest that the shape of the curve could be the result of
live-birth bias (8).

Live-birth bias arises from use of live births as the study pop-
ulation to examine prenatal exposures. The potential problem
arises because it is estimated that 30%–40% of fertilized eggs
will not result in a live birth (9, 10). Under several assumptions
presented below, this inevitable selection of only live births into
a given analysis could lead to bias in the observed association
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compared with the actual causal association. In this commen-
tary, we describe 2 different ways in which live-birth bias could
arise in the case of air pollution andASD.

CONDITIONINGONACOLLIDER

The first bias results from selection processes that might affect
the distribution of exposures in the analyzed sample. Specifically,
selecting on live births could result in selecting a group less likely
to have coexposure to both high air pollution and high levels of
other causes of ASD that also reduce the likelihood of live birth.
Thus, in the analyzed sample, those with high air-pollution expo-
sure are less likely to have other causes of ASD (and thus a lower
percentage of ASD cases) compared with those with low air-
pollution exposure. This scenario is described in a directed
acyclic graph (DAG) (11) in Figure 2, where “Air Pollution” rep-
resents exposure to air pollution during pregnancy; “U” represents
an unobserved, unknown, or simply ignored common cause of
pregnancy loss andASD; and the square around “LiveBirth” rep-
resents (by DAG convention) the restriction of the analysis to
those pregnancies that ended in live birth. In our case, this restric-
tion is inevitable because ASD status cannot be defined or as-
sessed in cases of pregnancy loss. This selective analysis could
create a statistical association between air pollution andASD, and
this could bias the overall observed association between these 2

variables (for an explanation of collider, backdoor path, and other
DAG terms, see Pearl (11)). An intuitive explanation for this bias
is that if both air pollution andU increase the likelihood of preg-
nancy loss, then any live-born child with high air-pollution expo-
sure is less likely to have also had U exposure (than a live-born
child with low air-pollution exposure). Thus, live-born children
exposed to high levels of air pollution are being compared with
live-born children exposed to low levels of air pollution who are
more likely to have been exposed to U. If U is also a risk factor
for ASD, then the live-born children who had low air-pollution
exposure during pregnancy will be more likely to have ASD.
(Note that the same bias would occur if U protected against
both pregnancy loss and ASD). This bias has the same structure
as in the “birth weight paradox,” in which smoking appears pro-
tective for neonatal mortality among low-birth-weight babies
but not overall (12).

For the bias to act, only 2 assumptions need to hold, as speci-
fied in the DAG: 1) Air pollution during pregnancy affects the
chance of a live birth; and 2) another variable (U) exists that af-
fects both the chance of a live birth and ASD in the child. In the
case where air pollution is a risk factor for pregnancy loss, then
—for a protective association with ASD to appear—theU vari-
able must either increase the risk of both pregnancy loss and
ASD or decrease the risk of both.

Assumption 1 (Air Pollution→ Live Birth) is not established
in the literature and has been rarely examined. We believe that
the main reason for this is that most events of pregnancy loss are
caused by spontaneous abortions, which are not fully documen-
ted in medical databases (and losses that occur in very early
stages might be from pregnancies that were not even recognized
by the pregnant woman herself). Still, several studies support this
link: Increased risk of stillbirth with higher exposure to air pollu-
tion was found in studies from New Jersey (13) and Ohio (14) in
the United States and from Sao Paulo, Brazil (15), although other
studies have examined this question and not found significant as-
sociations (16, 17). The role for air-pollution exposure in preg-
nancy loss in earlier stages of pregnancy is harder to study because
many of these incidents are not documented, but some evidence
from various locations exists (18–23), and these are further sup-
ported bymechanistic results from toxicological studies in animals
(24, 25).

One example would be enough to verify assumption 2, that
a variable U exists that is a common cause of both pregnancy
loss and ASD. Such an example might be prenatal stress: Ex-
isting literature supports its involvement in increased risk for
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Figure 2. A directed acyclic graph representing the bias resulting from
conditioning on a collider. Conditioning on the collider, live birth, opens the
backdoor path: Autism Spectrum Disorder (ASD) ← Unobserved (U) →
LiveBirth←Air Pollution, therefore leading to selection bias.
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Figure 1. Results from a distributed-lag model representing polyno-
mial time-dependent associations between weekly nitrogen dioxide ex-
posure and risk of autism spectrum disorder among children born in
central coastal Israel during 2005–2009 (reproduced with permission
from Raz et al. (5)). The black line represents the time-varying function
estimating risk of autism spectrum disorder with weekly exposures dur-
ing 38 weeks of pregnancy (left) and the first 38 weeks of life (right), and
the gray area around it represents its 95% confidence interval. These re-
sults are from a nonlinear distributed-lag model with 7 degrees of free-
dom. A linear association was assumed between the exposure and the
outcome at each time point. Results were adjusted for year of birth, cal-
endarmonth of birth, population group, paternal age, and census poverty
index.
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both pregnancy loss (26–36) and ASD in the offspring (37–45).
Thus, prenatal stress is a valid candidate for ourU, although the
suggested bias mechanism is not limited to this specific factor.

DEPLETIONOF SUSCEPTIBLES

The second possible bias results from processes by which the
exposure of interest (here air pollution) selects into the analyzed
sample (live-born children) those fetuses that are less susceptible
to developing ASD later on. Here, we first assume that among all
conceptions there is a group that is more susceptible to develop-
ing ASD (henceforth: susceptible fetuses) and a group less
susceptible (henceforth: nonsusceptible fetuses). If all fe-
tuses survived long enough to be diagnosed with ASD if they
had it, then a larger proportion of susceptible fetuses would
develop ASD than nonsusceptible fetuses. For a paradoxical pro-
tective association to arise with an exposure like air pollution, the
key factor is that air pollution must lead to fetal loss (selection),
and it must do so preferentially among the susceptible fetuses. In
this case, the proportion of susceptible fetuses selected into the
analysis sample (live-born children that survive to the age of
ASD diagnosis) will vary across air-pollution levels, with a
lower relative proportion of susceptible fetuses at higher
air-pollution exposures.

Because this form of bias involves effect modification, which
cannot be depicted by aDAG,we used a different graphical illus-
tration for it (Web Figure 1, available at https://academic.
oup.com/aje). We assumed no association between air pollution
and ASD and a binary exposure for simplicity. If air pollution
causes the loss of susceptible fetuses, the group of live-born chil-
dren with higher exposure to air pollution will be skewed to have
fewer susceptible fetuses than the lower-exposed group. Thus,
the lower-exposed group will appear to have a higher incidence
of ASD, and the exposure of interest will appear protective. This
bias will generally arise when the exposure of interest (in our
example, air pollution) affects the distribution in the analyzed
sample (typically through selection into the analyzed sample) of
another risk factor of the outcome of interest that is not accounted
for in analyses—usually because information is not available.
One possibility for this other unaccounted-for risk factor could
be some genetic susceptibility to ASD, but it could also be non-
genetic factors, such as components of the timing and intensity of
the exposure that are not captured by the exposure assessment
model. This downward bias can also be present when air pollu-
tion is causally related toASD.

To give a concrete example: Imagine that underlying genetic
differences modify cellular processes of oxidative stress, and
thus render only a subset of fetuses susceptible to developing
ASD (from various factors that might increase oxidative stress).
Let us assume that air pollution leads to preferential loss of
some of the fetuses with this genetic susceptibility for ASD,
possibly because it induces oxidative stress that could lead to
fetal loss. In this case, fetuses exposed to relatively high levels
of air pollution during pregnancy and who also survived to live
birth would be skewed away from susceptible fetuses because
of pregnancy loss, and so fewer cases of ASD would occur. On
the other hand, fetuses with low exposure to air pollution that
survived to live birth would not be skewed to fewer susceptible
fetuses by air-pollution-induced pregnancy loss, and so more

ASDwould occur in those fetuses from other risk factors acting
through oxidative-stress mechanisms. As with the first bias
described, this bias also requires air pollution to cause fetal loss.
In addition, it requires that this loss occur preferentially among
fetuses more likely to developASD (susceptible fetuses).

CONCLUSION

In summary, we suggest that live-birth bias can lead to a
paradoxical reversal of an effect estimate through 2 related but
slightly different biases. One possible reason for this is selection
of a group for analysis among whom those with high exposure
to air pollution have low exposure to other risk factors for ASD
(or higher exposure to protective factors). Another possible rea-
son is selection of a group for analysis among whom those with
high exposure to air pollution have, on average in the live-born
population, lower susceptibility to the effects of other risk fac-
tors for ASD than those with lower air-pollution exposure.

As described by Liew et al. (8), live-birth bias might exist in
other situations of prenatal exposure and postnatally diagnosed
outcomes. In their scenario, the suspicion was that the live-birth
bias might have induced a bias towards the null of the true effect
of exposure to perfluoroalkyl substances during pregnancy on
attention deficit–hyperactivity disorder (8). A more recent study,
however, found prenatal exposure to perfluoroalkyl substances
to be negatively associated with ASD in the offspring (46). This
could suggest a “paradoxical” protective association like thefind-
ings discussed above for NO2. Importantly, other developmental
outcomesmight well be affected by live-birth bias as well.
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