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Abstract

Extensive dysregulation of chromatin-modifying genes in dear cell renal cell carcinoma (ccRCC) 

has been uncovered through next-generation sequencing. However, a scientific understanding of 

the cross-talk between epigenetic and genomic aberrations remains limited. Here we identify three 

ccRCC epigenetic clusters, including a clear cell CpG island methylatorphenotype (C-CIMP) 

subgroup associated with promoter methylation of VEGF genes (FLT4, FLT1, and KDR). C-CIMP 

was furthermore characterized by silencing of genes related to vasculature development. Through 

an integrative analysis, we discovered frequent silencing of the his-tone H3 K36 methyltransferase 

NSD1 as the sole chromatin-modifying gene silenced by DNA methylation in ccRCC. Notably, 

tumors harboring NSD1 methylation were of higher grade and stage in different ccRCC datasets. 

NSD1 promoter methylation correlated with SETD2 somatic mutations across and within spatially 

distinct regions of primary ccRCC tumors. ccRCC harboring epigenetic silencing of NSD1 
displayed a specific genome-wide methylome signature consistent with the NSD1 mutation 

methylome signature observed in Sotos syndrome. Thus, we concluded that epigenetic silencing of 

genes involved in angio-genesis is a hallmark of the methylator phenotype in ccRCC, implying a 

convergence toward loss of function of epigenetic writers of the H3K36 histone mark as a root 

feature of aggressive ccRCC.

Introduction

Clear cell renal cell carcinoma (ccRCC) represents the most frequently occurring subtype of 

renal cell carcinomas (1). ccRCC is often characterized by 3p loss and frequent mutation or 

methylation of the tumor suppressor gene VHL (2). The key roles of epigenetic inactivation 

of chromatin-remodeling genes have been uncovered through exome sequencing, revealing 

frequent mutations of PBRM1 (33%), BAP1 (15%), SETD2 (16%), and KDM5C (8%) 

genes (3–5). This is consistent with the notion that cancer is not only a genetic disease but 

also an epigenetic disease (6). The two main mechanisms defining epigenetic alterations in 

cancer are related to DNA methylation and histone modification (6). However, an 

understanding of the prognostic impact of DNA methylation aberrations in ccRCC remains 

limited.

A few studies have assessed the global scale of DNA methylation aberrations in ccRCC as 

well as the role of the polycomb repressive complex (PRC) in this setting (2, 7, 8). The CpG 

island methylator phenotype (CIMP) was initially defined by Arai and colleagues in a 

Japanese ccRCC cohort with 13.4% incidence (7). Another Japanese study used integrative 

analysis to investigate DNA methylation in almost 100 ccRCC cases and identified three 

rather than two ccRCC subgroups, which included a small subgroup that displayed high 

methylation levels (12.3%) (8). However, neither study used integrative analysis to identify 

sets of genes repressed by DNA methylation. In addition, neither study investigated whether 

there were coordinated changes in the methylome associated with somatic mutations. In 

light of reports revealing extensive genetic heterogeneity in ccRCC, it is important to 

determine the level of epigenetic heterogeneity in DNA methylation in ccRCC (9).
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In the landmark paper of The Cancer Genome Atlas (TCGA), investigation of DNA 

methylation data found that promoter DNA methylation increases with cancer stage and 

grade (2). However, the relevance of DNA methylation for classifying ccRCC subtypes and 

especially the role of coordinated cancer-specific DNA methylation have not been 

determined. In an effort to make these determinations, we investigated ccRCC methylome 

datasets from TCGA and two independent cohorts.

Materials and Methods

Characteristics and statistical analysis of the discovery set of DNA methylation arrays

We analyzed DNA methylation of 271 primary ccRCC samples assessed by TCGA using the 

Infinium 450 K arrays (Supplementary Table S1). We performed hierarchical unsupervised 

clustering of probes located in promoter CGIs and described global correlations of DNA 

methylation with mRNA expression. We used the most variable probes for clustering 

analysis after excluding methylation probes found in normal kidney tissue with β value >0.2.

Definition of promoters

We defined promoters as regions located between—1,000 and +1,000 base pairs from the 

transcription start site. After excluding all probes with β values >0.2 in any normal kidney 

tissue sample (n = 161), we used 67,994 probes located in promoter CGIs for analysis on the 

Illumina HumanMeth450 K platform. We used the χ2 test and log-rank test to perform 

correlations between the identified DNA methylation clusters and clinicogenomic tumor 

features as well as overall survival. CGI was defined using Illumina Infinium 

HumanMethylation450 K annotation file.

Integrative analysis of DNA methylation and expression and histone

Chromatin immunoprecipitation-sequencing data.—We obtained chromatin 

immunoprecipitation-sequencing (ChlP-Seq) peak data for histone marks H3K4me3, 

H3K36me3, and H3K27me3 in the normal kidney cell line from UCSC ENCODE Histone 

Modification Tracks (https://genome.ucsc.edu/ENCODE/dataMatrix/

encodeDataMatrixHuman.html). We extracted the histone data o f fetal kidney samples for 

H3K4me3, H3K36me3, and H3K27me3 from the Roadmap Epigenomics Project (http://

www.roadmapepigenomics.org/).

Validation datasets

We validated our C-CIMP subgroup using the Infinium 27 K arrays in an independent 

dataset of 160 ccRCCs from TCGA (2). We applied supervised clustering with probes that 

were differentially methylated between the three groups obtained from Infinium 450 K 

arrays. In promoter CGI probes, 8,334 probes of 18,037 Promoter CGI probes in HM27 

were present in the HM450 Promoter CGI probes. In addition, to explore the association 

between our 3 epi-clusters and response to sunitinib, which is standard first-line therapy for 

patients with metastatic ccRCC, we applied supervised clustering to the dataset from 

Beuselinck and colleagues (10). We assessed progression-free survival according to the 

subgroup classifications we established, as well as for selected genes.

Su et al. Page 3

Cancer Res. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://genome.ucsc.edu/ENCODE/dataMatrix/encodeDataMatrixHuman.html
https://genome.ucsc.edu/ENCODE/dataMatrix/encodeDataMatrixHuman.html
http://www.roadmapepigenomics.org/
http://www.roadmapepigenomics.org/


To explore whether ccRCC cases with NSD1 methylation harbored a methylome alteration 

similar to that of Sotos syndrome, we performed supervised clustering of DNA methylation 

on ccRCC from TCGA training dataset (n = 271 cases) using the methylation signature 

associated with NSD1 mutations reported in Sotos syndrome by Berdasco and colleagues 

(11). We used Fisher exact test to evaluate the association between the epi-clusters and 

frequent somatic mutations in kidney tumors.

Bisulfite pyrosequendng

To estimate the frequency of NSD1 methylation, we applied bisulfite pyrosequendng to 

DNA extracted from 222 primary ccRCC spedmens and 10 adjacent normal kidney samples 

from Pitié-Salpêtrière hospital. All patients had previously provided informed consent for 

tumor collection and analysis. The study was approved by the ethical committee of the Pitié-

Salpêtrière Hospital (IDF-6, lie de France). The collection and use of tissues followed 

procedures in accordance with the ethical standards formulated in the Dedaration of 

Helsinki. All cases were deidentified prior to analysis. We defined samples with NSD1 
methylation as those with average methylation levels that were greater than those of normal 

kidney samples plus three SDs. We used Fisher exart test to determine assodations between 

methylation of NSD1 and dinicopathologic features; we considered a t test less than 0.05 as 

statistically significant. Analysis of NSD1 methylation consisted of performing two-step 

nested PCR. The primers of first Step F1 and R1 are as follows: primer F1

—»GAGGGTAGGTGl I’lAGTGGA and primer R l

—»CATΓCCCATCCCCΓCACCΓACCΓ. The primers of second step are as follows: primer 

F2—»TGGGGAGl’l iGGGTΓGTAAl’l’lAAGAT and primer R l

—»CATΓCCCATCCCCΓCACCΓACCΓ. A calibration curve using in vitro methylated DNA 

(SssI enzyme), which is diluted with normal DNA then bisulfite treated and pyrosequenced, 

was performed. Data points were correrted accordingly.

NSD1 immunostaining

Whole slides from ccRCC with NSD1 promoter methylation (n = 10) and without (n = 10) 

were selerted. Ten normal kidney samples were also used as control. The slides were 

incubated with rabbit polydonal anti-NSDl antibody (ABE1009, Merck). The primary 

antibody was detected by using commerdally available detection kit (EnVisionTMFLEX+, 

Dako) following the manufacturer’s protocol. Slides were washed with Tris-buffered saline 

(TBS, 0.1 mol/L, pH = 7.4), 3–5 times after each step. Finally, the sections were 

counterstained with Mayer hematoxylin and mounted with Biomount (BIO-OPTICA). In the 

negative control tissue sections, the primary antibody was replaced by isotype spedfic 

nonimmune rabbit IgG. Tissue sections from normal kidney, were used as a positive control 

for NSD1 expression. The sections were evaluated by light microscopic examination on 

Olympus BX51 microscope. Each slide was evaluated for NSD1 immunostaining by using a 

semiquantitative scoring system of the percentage of positive neoplastic cells. NSD1 protein 

expression was evaluated by an expert pathologist (E. Compérat) who scored as positive if 

nudear reactivity was observed in tumor cells. The semiquantitative scale was based on the 

percent of immunoreactive neoplastic cells
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Spatial heterogeneity of DNA methylation.—From an independent cohort of 20 

primary ccRCC samples, we randomly selerted multiple cores within the primary tumor 

sample and performed pyrosequendng for NSD1 methylation. Overall, a median of 3 

sections per primary kidney tumor were available.

Pathway analysis

We performed pathway analysis using the default settings for DAVID (https://

david.ndfcrf.gov/; refs. 12, 13). Genes downregulated among the subgroups were defined as 

those with a fold-change ≤ 2, P < 0.05, and FDR < 0.05. Genes upregulated among the 

subgroups were defined as those with a fold-change ≥2, P < 0.05, and FDR < 0.05.

Analysis of histone status of H3K27me3 and H3K4me3 in fetal kidney and normal kidney 
tissue samples

To examine the histone modification profiles of mRNA genes for H3K4me3 and H3K27me3 

in fetal kidney and normal kidney tissues, we analyzed the promoter regions of mRNA genes 

for overlap with histone mark enrichment peaks. Specifically, mRNA was defined as marked 

(associated with a specific histone mark) if the peak from ChlP-Seq data for a specific 

histone mark was located within ± 5 kb from the transcription start site (around promoter 

regions) for the mRNA.

Integrative analysis to identify epi-drivers

We used integrative analysis to investigate genes that are repressed through DNA 

methylation. For this purpose, we defined an arbitrary cutoff of gene expression with the 

value of fragments perkilobase of exon per million fragments mapped (FPKM) > 3 in 

unmethylated ccRCC; below this threshold, genes were considered to have low expression. 

We detected the genes and methylated probes that were significantly differentially expressed 

between the respective C-CIMP and no-CIMP epi-clusters, and then identified the 

significantly downregulated genes that were also differentially methylated. We used a 

starburst plot to visualize the results of the integrative analysis.

Analysis of SETD2 mutations

We used targeted hybrid capture-based next-generation sequencing in collaboration with 

Cancer Genetics, Inc., to detect VHL and SETD2 somatic mutations in cancer and adjacent 

normal tissue samples. Alignment, variant calling, and filtering, and annotation were 

performed essentially as described previously (14). All samples achieved >95% targets 

(2,400 total) with >95% of each target at >100× with a 5% variant allele frequency limit of 

detection or 2% for variants detected in ≥ 2 samples from the same patient.

Results

Identification of a CpG island methylator phenotype (CIMP) associated with patient 
outcome

We analyzed DNA methylation patterns in a discovery set of 271 primary ccRCCs from 

TCGA that were assessed using the Illumina HumanMeth450 K platform. After excluding 
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all probes with β values ≥0.2 in any of the normal kidney samples (π = 161), 67,994 probes 

remained; they were located in promoter CpG islands (CGI) with available DNA 

methylation data across all samples. Using the most variable probes, we performed 

unsupervised hierarchical clustering to identify ccRCC subgroups. We identified three robust 

DNA methylation epi-clusters (Fig. 1A). Epi-cluster Cl (n = 65; 21.8%) displayed markedly 

high DNA methylation levels reminiscent of the coordinated cancer-spedfic methylation 

seen in the CIMP of colorectal cancer; thus, we labeled this subgroup as having a clear cell 

CIMP (C-CIMP). The two other epi-clusters, C2 (n = 53; 17.8%) and C3 (n = 153; 51.4%), 

harbored low or no methylation levels, respectively. We thus respectively labeled the C2 and 

C3 epi-clusters as low-CIMP and no-CIMP subgroups.

We assessed whether tumors belonging to the C-CIMP subgroup were associated with 

distinct clinicopathologic tumor features, and found that C-CIMP tumors harbored higher 

pathologic Fuhrman grades (P < 10–5) and higher TNM stages (P < 10–5; Table 1). We then 

analyzed the association between our three subgroups of DNA methylation classification and 

overall survival (OS). We found that patients with C-CIMP had the worst overall survival 

when compared with the two other subgroups (P = 1.4 × 10–7; Fig. 1B). The median OS for 

patients with CCIMP tumors was 2.6 years [95% confidence interval (Cl), 1.94.4], which 

was significantly lower than the 4.7 years [95% Cl, 2.4-not reached (NR)] and 7.6 years 

[95% Cl, 7.5-NR] experienced by patients with low-CIMP and no-CIMP tumors, 

respectively (P = 1.4 × 10–7). Multivariate analysis revealed that CCIMP was not 

independently associated with poor overall survival when using other clinicopathologic 

features such as Fuhrman grade and TNM stage. This suggests an interplay between DNA 

methylation and known prognostic features in ccRCC.

Independent validation of C-CIMP subgroup

We then considered whether our classification of three ccRCC subtypes using 450 K arrays 

was also valid in an independent dataset of ccRCC that was assessed for DNA methylation 

using Infinium 27 K arrays. Supervised clustering for DNA methylation revealed three DNA 

methylation epi-clusters that were consistent with C-CIMP, low-CIMP, and no-CIMP 

subgroups (Supplementary Fig. S1A). Similar to the training set, the C-CIMP subgroup was 

enriched for tumors with higher pathologic Fuhrman grade (P < 10−5) and TNM stage (P < 

1.2 × 10−5; Table 1). In addition, patients in the C-CIMP subgroup had the worst median OS 

when compared with that of the other subgroups (P = 0.0067); the median OS was 4.5 years 

(95% Cl, 3.4–6.2) for patients in the C-CIMP subgroup, 7.1 years (95% Cl, 6.4-NR) for 

those in the low-CIMP subgroup, and was not reached (95% Cl, 5.7-NR) forpatients in the 

no-CIMP subgroup (Supplementary Fig. S1B).

Methylation of VEGF receptor genes in C-CIMP subgroup

Overall, 13,439 of the 67,994 (19.8%) probes were differentially methylated between the C-

CIMP and no-CIMP epi-clusters [false discovery rate (FDR) <0.05; Supplementary Fig. 

S2A], Using the most stringent criteria (average β-value in no-CIMP epi-cluster <0.2 and 

average β-value in C-CIMP epi-cluster >0.4), we identified 369 probe sets related to 242 

genes that define C-CIMP (Supplementary Table S2). We then ranked the probes by 

decreasing adjusted P values and increasing β-value difference for probes with fold-change 
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> 4 to identify the top hypermethylated probes within the C-CIMP subgroup. The highest 

ranked probes were related to the following genes: GALR1, FLT4, VWC2, SOX8, ASCL2, 
ASCL4, and CLEC2L.

Using DAVID to perform gene ontology analysis, we found that the C-CIMP subgroup was 

enriched for genes related to Homeobox (P = 2 × 10−10), developmental proteins (P = 1.3 × 

10−5), chordate embryonic development (P = 6.4 × 10−5), and neuroactive ligand-receptor 

interaction (P = 2.4 × 10–13). Of the 16 markers of CIMP previously identified in ccRCC 

(7), 8 belong to the set of 242 genes that define C-CIMP: FAM150A, ZFP42, ASCL2, 
RIMS4, TRH, ZNF154, GRM6, and KHDRBS2.

To determine the set of genes regulated epigenetically in CCIMP, we explored genes that 

show gains in DNA methylation in the C-CIMP subgroup (average β-value ≥ 0.25) 

compared with the no-CIMP subgroup (average β-value <0.2; FDR< 0.05), as well as 

downregulation of their expression (FDR<0.05). Amongthese, we identified 75 probes 

related to 34 gene promoters (Supplementary Fig. S2B). DAVID analysis revealed that those 

genes were enriched for VEGF receptors (P = 2.9 × 10−5) and vasculature development (P = 

6.7 × 10−5). VEGF receptor genes FLT4, FLT1, and KDR were methylated in 22.5%, 6.2%, 

and 4.4% of ccRCC samples, respectively (Fig. 2A). Importantly, the highest inverse 

correlation between DNA methylation and expression was related to the FLT4 gene (Fig. 

2B). Among genes associated with angio-genesis, FLT4 was also associated with poor 

patient outcome (Fig. 2C); this was not the case for FLT1 and KDR genes (not shown).

We then considered whether the overall gene expression patterns of the C-CIMP subgroup 

differed from those of the no-CIMP subgroup. We found that 377 genes were significantly 

down-regulated and 477 genes were significantly upregulated in the CCIMP subgroup as 

compared with the no-CIMP subgroup. The differentially downregulated genes were related 

to vasculature development (P = 6.2 × 10−10), cell adhesion (P = 7.8 × 10−9) and cell 

migration (P = 9.1 × 10−8). Most of the significantly upregulated genes were related to 

mitosis (P = 2 × 10−19), cell division (P = 1.8 × 10−11), and regulation of cell proliferation (P 

= 3.3 × 10−6). Gene set enrichment analysis confirmed the activation of the mitosis and 

hypoxia pathways in this setting, which is consistent with VEGF receptor inactivation.

Association between copy number alterations and somatic mutations in C-CIMP subgroup

To determine recurrent alterations in the C-CIMP subgroup, we analyzed statistically 

significant copy number variations in this subgroup as compared with the other subgroups. 

We identified frequent deletions in chromosomes 9p21.3 and 9p23, which are known to be 

associated with aggressive ccRCC (Fig. 1A). We also identified a frequent gain in 

chr8q24.22, which we previously identified as being associated with aggressive ccRCC 

using long noncoding RNA (IncRNA) subtype classification (15). Of note, chr8q24.22 

contains the following overexpressed IncRNAs: PVΓ1, RP11–47304.5, and RP11–62901.2. 

We then looked at the IncRNAs differentially expressed between the three clusters and 

identified PVT1 as overexpressed in C-CIMP, which is consistent with 8q gain. These data 

suggest that MYC might be activated in the C-CIMP subgroup through PVT 1 expression.
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Finally, we investigated the association between somatic mutations and subgroups of DNA 

methylation and found that the CCIMP and low-CIMP subgroups harbored increased 

mutational load as compared with the no-CIMP subgroup (P = 0.0006; Supplementary Fig. 

S3A). In addition, C-CIMP was associated with increased mutational rates of BAP1 (P = 8.6 

× 10−6) and SEΓD2 (P = 0.002) genes (Supplementary Fig. S3B).

Histone marks of C-CIMP-assodated gene promoters are similar to those of no-CIMP and 
low-CIMP subgroups

Of the 242 highly methylated genes in the C-CIMP subgroup, 212 (87.6%) were marked by 

H3K27me3 in fetal kidney samples (Fig. 3A), as compared with 5157 genes (51.1%) marked 

by the PRC in fetal kidney samples (P< 0.0001). Likewise, 204 of the 242 (84.3%) genes 

were marked by H3K27me3 in the normal renal samples as compared with2,363 genes 

(23.4%) marked by PRCin the normal kidney samples (P < 0.0001). These data highly 

indicate that genes that are silenced through DNA methylation in ccRCC are not random and 

are marked by the PRC in normal kidney tissue. Consistent with these data, 162 of 242 

genes showed no expression level in ccRCC (Supplementary Table S2). Based upon cutoff 

(FDR = 0.25), 15 genes were suppressed, 6 were increased, and 221 of 242 genes did not see 

gene expression change (Supplementary Table S2).

We investigated genes that gained DNA methylation in more than 5% of ccRCC samples; we 

identified 868 genes, including 194 genes that are the hallmark of the C-CIMP subgroup. Of 

note, 774 (89.2%) and 684 (78.8%) of those genes were, respectively, marked by 

H3K27me3 in the fetal kidney (Fig. 3B) and the normal kidney tissue, suggesting that these 

features are not defining characteristics of the C-CIMP subgroup but are features of ccRCC.

Identification of NSD1 methylation as an epi-driver of ccRCC

We investigated the set of genes that gained DNA methylation in at least 5% of ccRCCs and 

are downregulated. Using integrative analysis, we identified 108 gene candidates that we 

believe represent the most important epi-drivers in ccRCC. VHL was among those genes and 

was methylated in 6.2% of our total samples, which is consistent with TCGA analysis and 

validates the accuracy of our approach.

To identify the genes that might act as tumor suppressor genes, we looked for genes 

harboring only the H3k4me3 histone mark in the fetal kidney tissue and that were without 

any H3K27me3 mark. This was based on a recent finding that tumor suppressor genes 

harbor broad H3K4me3 peaks in samples of normal tissue (16). Of 108 genes, 25 were 

identified, including VHL (Fig. 3C). We found two other members of the ubiquitin 

conjugation pathway that had not been demonstrated to be involved in renal carcinogenesis, 

namely FBXL7 (10%) and TRIM32 (5.9%). We also discovered NSD1, a SET domain 

histone methyltransferase that primarily dimethylates nucleosomal histone H3 lysine 36 

(H3K36). NSD1 was methylated in 29.1% of ccRCCs. Correlation with clinicopathologic 

features identified a higher rate of NSD1 methylation in metastatic versus localized ccRCC 

cases (52% vs. 16%, P < 0.0001) as well as in tumors with Fuhrman grades III—ΓV (28% 

vs. 16%, P = 0.02).
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We then considered whether there was a correlation between NSD1 methylation and SEΓD2 
mutations using the TCGA training set. Strikingly, 16 of31 (51.6%) ccRCC cases from 

TCGA with SETD2 mutations harbored concomitant NSD1 methylation as compared with 

39 of 219 (17.8%) ccRCC cases with no SETD2 mutations (P < 0.0001; Fig. 4A). We thus 

conduded that ccRCC converges to alter the methylation status of H3K36 through multiple 

aberrations of the pathway by silendng several enzymes, induding SETD2 and NSD1. To 

assess the impact of alterations in NSD1 methylation in TCGA dataset (450 K), we analyzed 

the OS of 2 71 patients with ccRCC and found that NSD1 methylation was assodated with 

poor OS (P = 3.3 × 10−5; Fig. 4B).

Analysis of NSD1 methylation status in two independent cohorts

We then assessed NSD1 methylation using pyrosequendng in an independent cohort of 222 

ccRCCs and 10 samples of normal kidney tissue adjacent to kidney tumors from the Pitié-

Salpêtrière cohort. Median methylation in the normal kidney samples was 1.04% (SD = 

1.39%). Using a stringent cutoff to define NSD1 methylation (above the methylation rate of 

normal tissue plus 3 SDs), 26 of 222 (11.7%) ccRCC samples harbored NSD1 methylation. 

Consistent with TCGA cohort, tumors with NSD1 methylation were more often metastatic 

(n = 6/22; 27.2%) as compared with those without NSD1 methylation (n = 16/200; 8%; P = 

0.03); although there was no difference between NSD1 methylated cases in terms of tumor 

size (P = 0.57). In addition, NSD1 methylated tumors displayed higher Fuhrman grades of 

III—ΓV (n = 15/26; 57.7%) as compared with those without NSD1 methylation (n = 66/196; 

33.6%; P = 0.007). With a median follow-up of 21 months, median recurrence-free survival 

was not different between the patients with and those without NSD1 methylation (P = 0.57; 

Fig. 4C).

To assess whether NSD1 was methylated in a third independent cohort, we used the 

Beuselinck study, which investigated patients with metastatic ccRCC who were treated with 

sunitinib as a first-line treatment (10). We found that NSD1 was methylated in 67.6% of 

metastatic ccRCCs (n = 69/102), which is consistent with the 52% rate that we discovered in 

metastatic ccRCCs from TCGA. Methylation of FLT4, KDR, and FLT1 (13/107) had also 

been found, respectively, in 40.8%, 11.8%, and 12.1% of patients with metastatic ccRCC 

who were treated with sunitinib (10). Importantly, among patients treated with sunitinib, 

VEGF receptor methylation of FLT4, KDR, and FLT1 was not assodated with progression-

free survival (Supplementary Fig. S4A-S4C), but NSD1 methylation was assodated with the 

lowest progression-free survival (P = 0.03; Fig. 4D). The C-CIMP subgroup was not 

assodated with the response to sunitinib in the Beuselinck study (Supplementary Fig. S5A 

and S5B).

NSD1 promoter methylation and NSD1 immunostaining

To assess the correlation between epigenetic silendng of NSD1 gene and the protein levels in 

ccRCCs assessed by IHC, 10 ccRCC tumor samples with NSD 1 promoter methylation were 

compared with 10 ccRCC tumors without NSD1 methylation; ten normal adjacent kidneys 

were also assessed. Of note, we observed 100% NSD1 expression both in normal kidneys (n 

= 10) and in clear cell RCC without NSD1 methylation (n = 10; Fig. 5A and B). Conversely, 
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in NSD1-methylated ccRCC cases, NSD1 expression was completely lost in 5 cases, 

reduced (10%–50%) in 3 cases and normal in 2 cases (Fig. 5C and D).

Association between NSD1 promoter methylation and the ccRCC methylome

We then considered whether NSD1 epigenetic silencing through DNA methylation was 

associated with a specific genome-wide methylome signature of ccRCC, as it is the case for 

NSD1 mutations in Sotos syndrome (17). We used the DNA methylation signature 

associated with NSD1 mutations as reported for the Sotos syndrome (17) and applied it to 

theTCGA cohort of 271 ccRCCs assessed by Infinium 450 K arrays. We obtained two epi-

clusters, namely clusters 1 and 2 (Supplementary Fig. S6A). Strikingly, cluster 1 was highly 

enriched for tumors harboring NSD1 methylation (55.7%; n = 44/79) as compared with 

9.4% (n = 18/192) in cluster 2 (P = 2.7 × 10−15; HR = 12; 95% Cl, 6.0–24.9). Cluster 1 was 

also enriched for tumors harboring SETD2 mutations (27.4%; n = 20/73) relative to 6.2% (n 

= 11/177) in cluster 2 (P = 2.3 × 10−5; HR = 5.6; 95% Cl, 2.4–14). We found that ccRCCs 

with the NSD1 mutation genome-wide methylome signature were associated with poor 

overall survival as compared with those without the signature (P = 0.0021) ; Supplementary 

Fig. S6B).

Spatial heterogeneity o f NSD1 in primary ccRCC tumors

As ccRCC is a genetically heterogeneous disease, we analyzed NSD1 in a fourth 

independent set of 20 primary ccRCCs from the Pitié-Salpêtrière cohort. The median 

number of core sections analyzed for NSD1 methylation was 3 per primary tumor (range: 2–

13), with a total of 114 successfully analyzed. We found heterogeneity of NSD1 methylation 

in at least one section of the primary tumor in 7 of 20 samples (35%; Fig. 6A). That was far 

higher than the approximately 11.7% rate observed in the analysis of one tumor core. 

Strikingly, 100% (n = 6/6) of the ccRCC cases that harbored NSD1 methylation were grade 

IV tumors as compared with none of the cases that were grade I—III tumors (P <0.0001). In 

addition, 80% (n = 4/5) of metastatic ccRCCs harbored NSD1 methylation as compared with 

13.3% (n = 3/15) of the cases with no metastasis at diagnosis (P = 0.03), which is consistent 

with the data on 222 primary ccRCC cases.

We then decided to explore the association between SETD2 mutations and NSD1 
methylation in 13 ccRCC cases for which material was available. Of 114 samples assessed 

for DNA methylation, 47 sections related to 13 cases were also assessed for SETD2 
mutations (Fig. 6B). Strikingly, we observed a high rate of mutation of SETD2 (46.1%, n = 
6/13), with mutational convergence of SETD2 in different loci observed in one case 

(HET-1). Consistent with our analytic results on the data obtained from TCGA, we found an 

association between SETD2 mutations and NSD1 methylation (P = 0.0049).

Discussion

To our knowledge, this work represents the first integrative analysis showing frequent 

epigenetic silencing of NSD1 as the sole methylated and repressed H3K36 methyltransferase 

in ccRCC. Strikingly, compared with localized ccRCC, metastatic ccRCC harbored high 

rates of NSD1 methylation that ranged from 27.2% in Pitié-Salpêtrière cohort to 67.6% in 
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Beuselinck cohort; differences regarding NSD1 methylation rates might be related to distinct 

distribution of clinicopathologic tumor features. Consistent with data showing heterogeneity 

of SETD2 mutations in ccRCC with convergence toward mutations in the SWI-SNF 

complex (18), our analysis uncovered an association between SETD2 somatic mutations and 

NSD1 methylation in two different cohorts, suggesting that loss of H3K36me3 in ccRCC 

might occur through crosstalk between the inactivation of NSD1 and SETD2. Although 

descriptive, our study suggests an epigenetic drift toward inactivating the H3K36 pathway in 

metastatic ccRCC. Further explorations using animal models should be undertaken to 

examine whether the initiating event of metastasis in the context of ccRCC is SETD2 
mutation or NSD1 methylation. Future studies are also needed to clarify genetic hierarchy 

and temporal epigenetic changes in the clonal history of renal carcinomas.

Consistent with the requirement of a minimum of three distinct ∞res for accurate tumor 

genotyping (19), we herein demonstrated heterogeneity of NSD1 methylation with the rate 

of heterogeneity increasing with the number of cores analyzed, reaching a rate of 100% in 

metastatic cases. Although not causative, ccRCCs with NSD1 methylation harbor the 

genome-wide methylome signature of Sotos syndrome (17), suggesting that the silencing of 

this histone methyltransferase affects genes involved in cellular morphogenesis.

Several studies have reported a possible oncogenic role for NSD1 in acute myeloid leukemia 

through the cryptic NLΓP98-NSD1 fusion t(5;ll)(q 35;p l5.5) (20). Other reports have 

implied that NSD1 functions as a tumor suppressor gene, as we observed for ccRCC (20). 

Indeed, NSD1 silencing through CpG island-promoter hypermethylation has been frequently 

observed in neuroblastomas and gliomas and has predicted poor patient outcomes (11). 

Restoration of NSD1 expression in neuroblastoma and glioma cell lines led to decreased cell 

proliferation, which is consistent with the tumor-suppressive effect of NSD1 (11). This is 

also consistent with the genomic analysis of squamous cell carcinomas of the head and neck, 

and endometrial and gastric adenocarcinomas that revealed recurrent loss-of-function 

mutations in NSD1 in approximately 10% of cases (21, 22). Most importantly, NSD1 
hypermethylation was a predictor of poor outcome in ccRCC. These findings highlight the 

importance of NSD1 epigenetic inactivation in ccRCCs, which, concomitantly with SETD2 
mutations, leads to a disrupted histone methylation landscape.

Patients with localized ccRCC of the C-CIMP subtype displayed poor outcomes, but this 

association was not independent from other clinicopathologic parameters, suggesting that 

aggressive tumors might acquire epigenetic aberrations during their evolution. Of note, 

genes that gain DNA methylation in CIMP were in majority repressed and marked by 

H3K27me3 in normal kidneys consistent with previous findings (23). This is also consistent 

with the observation that Polycomb Group (PcG) targets in embryonic stem cells (ESC) are 

12-fold more likely to become methylated in cancer (24). Strikingly, the key feature of C-

CIMP was methylation of VEGF receptor genes, in particular FLT4, as a key feature of C-

CIMP. Inverse correlation between FLT4 methylation and expression was observed to be 

consistent with repression of these receptors. Tumors with C-CIMP seem to rely on a high 

mitotic rate, which may be associated with aggressiveness. Despite the methylation of those 

receptors, response to sunitinib treatment was similar in ccRCC cases without methylation 

of FLT4, KDR, or FLT1 genes, which may result from heterogeneous methylation of these 
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receptors. This provides a rationale for targeting ccRCC using a hypomethylating inhibitor 

in association with a VEGF inhibitor, as recently shown in vitro using several cell lines (25).

Predicting the response to VEGF inhibitors has been an important goal in cancer research 

(14). Whether these agents work via an effect on tumor cells or the environment remains 

unclear. Resistance to sunitinib treatment could not be predicted through our classification of 

ccRCC into three subgroups, nor was it associated with the methylation of a VEGF receptor. 

The heterogeneous nature of the methylation of VEGF receptors, as we showed for FLT4, 

might limit the capacity of such measurement categories to predict treatment sensitivity. 

Epigenetic therapy might work in a large population of patients with ccRCCs that harbor 

these aberrations. Finally, tumors with C-CIMP showed enrichment with BAP1 and SETD2 
mutations consistent with Sato dataset (8). Consistent with these data, Tiedemann and 

colleagues showed that SETD2-depleted cell lines exhibit a DNA hypermethylation 

phenotype coinciding with ectopic gains in H3K36me3 (26). Likewise, SETD2-mutant 

primary ccRCC, papillary RCCs, and lung adenocarcinomes all demonstrated a DNA 

hypermethylation phenotype that segregated tumors by SETD2 genotype (26). Mechanistic 

data are further needed to clarify the link between H3K36 methylation and CpG island 

methylation.

In summary, our study provides evidence about the involvement of alterations of NSD1 
concomitantly with SETD2 in metastatic ccRCC. Epigenetic heterogeneity of NSD1 
methylation seems to mirror SETD2 mutational heterogeneity, leading to a convergence 

toward alterations in the kidney epigenetic machinery. Thus, targeting the H3K3 6 pathway 

may represent a potential avenue in the management of patients with an aggressive ccRCC 

phenotype.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Clustering of TCGA samples in ccRCC reveals a CpG Island methylator phenotype with 

poor outcome. A, Unsupervised hierarchical clustering for the most variable methylated 

probes in promoter CpG islands among 271 ccRCCs. The (β value) level of DNA 

methylation is represented by the color scale. Each column represents a sample; each row a 

probe set. The transcriptomic subtype in TCGA, the copy number variation at 9p23.1 locus 

(CDKN2A), somatic mutation status of four genes (PBRM1, BAP1, SETD2, and VHL) are 

indicated by red, green, and gray squares, with annotations in the legend. B, Kaplan-Meier 

curves showing distinct outcomes of patients according to the three subgroups of DNA 

methylation classification, with patients belonging to C-CIMP subgroup having the worst 

outcome.
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Figure 2. 
Charting methylation of VEGF receptors in ccRCC. A, Heatmap for methylation of FLT4, 
KDR, and FLTÌ in TCGA ccRCC data. B, Correlation of methylation in VEGF receptor 

genes and expression assessed by RNA-seq. C, Kaplan-Meier curves for overall survival of 

patients according to FLT4 methylation status.
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Figure 3. 
Correlation between DNA methylation and polycomb mark. A, Distribution of CCIMP 

genes marked by H3K27me3 in fetal kidney samples. B, Distribution of genes that gain 

DNA methylation in ccRCC according to H3K27me3 mark status in fetal kidney samples. C, 

Twenty-five genes identified as frequently methylated and repressed in ccRCC. Rate of 

Λ/SD7 methylation (red) is high compared with that of VHL (black).
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Figure 4. 
Prognostic impact of NSDΊ methylation and correlation with SETD2 mutation. A, 

Association between NSDΊ methylation and SETD2 somatic mutations in TCGA dataset 

shows high rate of NSDΊ methylation in tumors with SETD2 mutations. B, Kaplan-Meier 

curves for overall survival according to NSDΊ methylation in TCGA cohort (450 K). C, 

Kaplan-Meier curves for recurrence-free survival according to NSDΊ methylation in Pitié-

Salpêtrière cohort. D, Progression-free survival according to NSDΊ methylation in patients 

with ccRCC treated with sunitinib (Beuselinck cohort).
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Figure 5. 
Representative images of IHC staining for NSDΊ protein on whole slides of ccRCCs. A and 

B, Microphotographs are from a ccRCC sample positive for NSDΊ expression. A, Original 

magnification, ×ΊO. B, Original magnification, ×20.C,Weakstaining in one ccRCC case with 

NSDΊ promoter methylation. Original magnification, ×20. D, Negative staining in one 

ccRCC case with NSDΊ promoter methylation. Original magnification, ×ΊO.
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Figure 6. 
Heterogeneity of NSD1 methylation and SETD2 somatic mutation. A, Heterogeneity of 

NSD1 methylation in 20 primary ccRCCs. Each column represents a section; each row a 

primary ccRCC sample. Red, NSD1 methylation; blue, no DNA methylation. B, Association 

between NSD1 methylation and SETD2 mutations in a cohort of 13 primary ccRCCs. Red, 

methylation of NSD1 and mutations of SETD2\ blue, unmethylated NSD1 and wild-type 

SETD2. Annotation according to NM_000551 for VHL and NM_014159 for SETD2.
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