Skip to main content
. 2018 Oct 30;5(Pt 6):854–865. doi: 10.1107/S2052252518014392

Table 6. Deep Consensus precision and recall on testing sets when trained using synthetic AND sets of different sizes with different levels of mislabelling noise.

R, ribosome data set (EMPIAR-10028); G, β-galactosidase data set (EMPIAR-10061); #Partic, number of true particles included in the data set; corrupt, corruption level. Each cell displays the precision and recall measured in each condition.

#Partic 3000 2000 1000 500
Corrupt R G R G R G R G
30% 0.923/0.942 0.918/0.914 0.920/0.923 0.902/0.917 0.866/0.926 0.876/0.952 0.800/0.888 0.816/0.900
40% 0.839/0.902 0.840/0.897 0.774/0.819 0.835/0.890 0.738/0.820 0.762/0.595 0.693/0.818 0.726/0.586
45% 0.705/0.762 0.695/0.817 0.662/0.698 0.610/0.701 0.602/0.777 0.581/0.731 0.625/0.709 0.578/0.604