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Despite the rapid development of sequencing technologies, the assembly of mammalian-scale genomes into complete chro-

mosomes remains one of the most challenging problems in bioinformatics. To help address this difficulty, we developed

Ragout 2, a reference-assisted assembly tool that works for large and complex genomes. By taking one or more target assem-

blies (generated from an NGS assembler) and one or multiple related reference genomes, Ragout 2 infers the evolutionary

relationships between the genomes and builds the final assemblies using a genome rearrangement approach. By using Ragout

2, we transformed NGS assemblies of 16 laboratory mouse strains into sets of complete chromosomes, leaving <5% of se-

quence unlocalized per set. Various benchmarks, including PCR testing and realigning of long Pacific Biosciences (PacBio)

reads, suggest only a small number of structural errors in the final assemblies, comparable with direct assembly approaches.

We applied Ragout 2 to theMus caroli andMus pahari genomes, which exhibit karyotype-scale variations compared with other

genomes from theMuridae family. Chromosome paintingmaps confirmedmost large-scale rearrangements that Ragout 2 de-

tected. We applied Ragout 2 to improve draft sequences of three ape genomes that have recently been published. Ragout 2

transformed three sets of contigs (generated using PacBio reads only) into chromosome-scale assemblies with accuracy com-

parable to chromosome assemblies generated in the original study using BioNano maps, Hi-C, BAC clones, and FISH.

[Supplemental material is available for this article.]

The year 2001 marked an important step in genome biology with
the release of the first near-complete human genome (Lander
et al. 2001; Venter et al. 2001). Since then, numerous near-com-
plete mammalian genome sequences have been made available
(Pontius et al. 2007; Church et al. 2009; Scally et al. 2012). These
finished genomes, while being expensive to produce, have greatly
advanced the field of comparative genomics and provided many
new insights to our understanding of mammalian evolution. The
initial achievement was quickly followed by the era of high-
throughput sequencing technologies—next-generation sequenc-
ing (NGS). These cost-effective technologies are allowing many
sequencing consortia to explore genomes from a large number of
species (Jarvis et al. 2014).

Recently, new de novo assembly algorithms have been devel-
oped to combine high-throughput short-read sequencing data
with long single-molecule sequencing reads or jumping libraries
to completely assemble bacterial genomes (one chromosome into
one contig) (Koren and Phillippy 2015). In contrast, the complete
assembly of mammalian genomes using current short-read se-

quencing technologies remains a formidable problem, since such
genomes are larger and have more complicated repeat structures.
Most current mammalian assemblies produced by NGS assemblers
(Butler et al. 2008; Simpson et al. 2009) contain thousands to hun-
dreds of thousands of contigs/scaffolds and provide limited value
for comparative genomics as constructed syntenic regions are
highly fragmented. Recently, some studies (Chaisson et al. 2015;
Jain et al. 2018; Kronenberg et al. 2018) have applied long-range
technologies (10× Genomics, Hi-C, BioNano, Pacific Biosciences
[PacBio], Oxford Nanopore) to improve the assembly of larger ge-
nomes. However, the cost of generating long-range connection
data in a high-throughput manner is still much higher compared
to that of generating short-read libraries.

Since many complete genomes are now available, an alterna-
tive approach is to use these genomes to guide the assembly of the
target (assembled) genome, in a method called “reference-assisted
assembly” (Gnerre et al. 2009). In such methods, the information
from a closely related reference genome is used by an NGS as-
sembler for resolving complicated genomic structures, such as
repeats or low-coverage regions. This technique was implement-
ed in a number of assemblers/scaffolders (Zerbino and Birney
2008; Peng et al. 2010; Gnerre et al. 2011; Iqbal et al. 2012) and
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proved to be valuable when a close reference is available. Another
commonapproach is to alignpreassembled contigs of the target ge-
nome against the reference and order themaccording to their posi-
tions in the reference genome (Richter et al. 2007; Rissman et al.
2009). However, for both approaches, simplistic modeling, in
which each breakpoint is treated independently, still introduces
many misassembly errors when structural variations between the
reference and target genomes are present.

To improve over the single-reference-genome approach, Kim
et al. (2013) introduced the RACA tool, which represented an im-
portant step toward reliable reconstruction of the target genome
by analyzing the structure of multiple outgroup genomes in addi-
tion to a single reference. The investigators showed that consistent
adjacency information across multiple outgroups is a more power-
ful predictor of adjacencies in the target assembly than single
genomes alone. Similar to other genome rearrangement approach-
es, RACA relies on the decomposition of the input sequences into a
set of synteny blocks—long and conservative genomic regions
with respect to micro-rearrangements. However, RACA recon-
structs synteny blocks by aligning all input sequences against a sin-
gle reference genome. This approach is biased toward the reference
genome and, in some cases, cannot detect synteny blocks (Pham
and Pevzner 2010).

To address some limitations of the RACA approach, we previ-
ously developed the Ragout algorithm for reference-assisted as-
sembly of bacterial genomes (Kolmogorov et al. 2014), which
was coupled with Sibelia (Minkin et al. 2013) for synteny block re-
construction.Whilewe showed that Ragout performed better than
RACA on bacterial data sets, Ragout could not be applied to more
complex eukaryotic genomes, as the current version of Sibelia is
limited to small, closely related genomes with low repeat content.
The current mammalian genome assembly strategies typically in-
clude multiple stages of scaffolding using different technologies
(such as mate-pairs or Hi-C). Aggressive scaffolding strategies typ-
ically lead to significant number of errors (Salzberg et al. 2012;
Bradnam et al. 2013), which marks another challenge in reference
assembly.

Thiswork attempts to address the issues described above. First,
we present a new algorithm for synteny block reconstruction for
multiple mammalian genomes. Our approach combines Cactus,
a multiple whole-genome aligner (Paten et al. 2011), with a new it-
erative graph simplification algorithm that produces hierarchical
synteny blocks on multiple scales. Second, we show how to apply
the two-break rearrangement model (Alekseyev and Pevzner
2009) to distinguish between target-specific rearrangements and
chimeric misassemblies. We also describe an additional algorithm
that fills assembly gapswithmissing repetitive sequence by analyz-
ing repeat content of reference genomes. These new algorithms
were combined into the Ragout 2 package.

Results

Synteny blocks

Nucleotide-level alignments between diverged genomes contain
millions of small variations. To analyze karyotype-level rearrange-
ments, studies typically use lower-resolutionmappings. Suchmap-
pings are denoted as a set of coarse synteny blocks and could be
defined as nonoverlapping strand-oriented chromosome intervals
in the set of genomes being compared (Kent et al. 2003; Pevzner
and Tesler 2003b). Synteny blocks are a convenient way to repre-
sent the homology relationship between large segments of the ge-

nomes. In this study, we also use synteny blocks to separate large
structural variations from small polymorphisms. However, we
take a hierarchical approach, with multiple sets of synteny blocks,
each defined at a different resolution, from the coarsest, karyotype
level all the way down to the fine-grained, nucleotide level. To cre-
ate the hierarchy, we use the principles developed by the Sibelia
tool (Minkin et al. 2013) but adapted with a graph simplification
algorithm for constructing synteny blocks fromamultiple genome
alignment in HAL format (Hickey et al. 2013), produced by Cactus
(Paten et al. 2011). In contrast to other whole-genome aligners,
Cactus represents the alignments as nonoverlapping blocks. Our
algorithm starts from these local alignment blocks (or synteny
blocks of the highest resolution) and constructs an A-Bruijn graph
from them (Fig. 1A–F). The graph is then iteratively simplified by
removing bubbles and collapsing unbranching paths. As a result,
initial coarse blocks are merged into the larger blocks, which de-
fines the hierarchy. See theMethods section “Construction of syn-
teny blocks” for the detailed description of the algorithm.

Incomplete multicolor breakpoint graph

The input genome sequences are now represented in the alphabet
of synteny blocks. Ragout 2 further constructs an incomplete mul-
ticolor breakpoint graph as previously described by Kolmogorov
et al. (2014). Here we provide a brief summary of the approach.
For the sake of simplicity, let us assume that every synteny block
is represented exactly once in each genome and all reference ge-
nomes are complete (the issue of repetitive synteny blocks will be
addressed later in this paper). Given an assembly T and k reference
sequences R1,… , Rk in the alphabet of synteny blocks B, we con-
struct the incomplete multicolor breakpoint graph BG(T, R1,… ,
Rk) = (V, E), where V= {bhi, b

t
i|bi∈B} (Fig. 2A,B). For each synteny

block, there are two vertices in the graph which correspond to
the tail and head of the block. Edges are undirected and colored
by k+1 colors. An edge connects vertices that correspond to
heads/tails of adjacent synteny blocks and is colored by the corre-
sponding color of the genome/assembly. We use red, R1,… , Rk to
refer to the colors of edges, where red edges represent the adjacen-
cies of syntenyblocks in the target assemblyT, andRi represents the
adjacencies of synteny blocks in genome Ri. If the target genome
were complete, the set of all red edgeswoulddefine aperfectmatch-
ing in the graph. However, since the genome is fragmented into
contigs, the adjacency information at the vertices that correspond
to contigs ends is missing. The ultimate goal of Ragout 2 is to infer
thesemissing red edges in the graph, whichwill define the final as-
sembled chromosomes.

Repeat resolution

As noted above, the breakpoint graph analysis requires all synteny
blocks to appear exactly once in each genome. A common ap-
proach is to filter out all repetitive blocks before analyzing the
breakpoint graph. While this approach works for bacterial ge-
nomes, it is not optimal formammalian assemblies since the num-
ber of repeats is much larger. Filtering out all such repeats would
lead to many gaps in the final assembly. Here we present a new al-
gorithm that addresses this issue by resolving repeat sequences
based on the information from the references. Intuitively, for
each unresolved repeat in the target genome, we create k different
copies of it (where k is the estimated copy number of this repeat in
the complete genome). As some repeats could already be resolved
by the NGS assembler, the corresponding synteny blocks in the
target contigs will be surrounded by other unique synteny blocks.

Chromosome assembly of large and complex genomes

Genome Research 1721
www.genome.org



Weuse this “context” information tomap repeat instances in con-
tigs to the corresponding repeats in reference genomes. See
additional details about the repeat resolution algorithm in the
Methods section “Repeat resolution algorithm.”

Detection of chimeric sequences

In contrast to bacterial assemblies, mammalian assemblies usually
contain a higher fraction of misassembled contigs/scaffolds due
to increased size and repeat complexity (Salzberg et al. 2012;
Bradnam et al. 2013). A large portion of misassembled contigs
are chimerical, created when anNGS assembler artificially joins re-
gions in the assembled genome that are not truly adjacent. These
false adjacencies correspond to erroneous red edges in the break-
point graph. Ragout 2 identifies erroneous red edges and removes
them before the missing adjacency inference step, since mis-
assemblies in different contigs will join together and cause large
structural errors. The Methods section “Detection of chimeric ad-
jacencies” introduces a new algorithm for the detection of errone-
ous red edges.

Generating chromosome assemblies

Afterconstructingthe initialbreakpointgraph,Ragout2 resolves re-
peats and removes chimeric connections as described above.
Ragout 2 further infers the phylogenetic tree of all genomes (Fig.
2C) by computing pairwise breakpoint distances and applying the
neighbor-joining algorithm (Saitou and Nei 1987). In contrast,
the original Ragout package required the tree as input, which is
not alwaysavailable (see theMethods section“Phylogenetic tree re-
construction” for the algorithmdetails). Afterward, Ragout 2 infers
missing breakpoint graph adjacencies by solving the half-break-
point parsimony problem as described by Kolmogorov et al.

(2014) (Fig. 2D). The chromosome assemblies are then generated
according to the inferred adjacencies. The assemblyprocedure is re-
peated in multiple iterations on a different synteny blocks scale,
and the final scaffolds are generated as a consensus ofmultiple iter-
ations. Intuitively, the large synteny block scale provides a reliable
“skeleton,”while the smaller synteny blocks help to fill the gaps in
assembly(fordetails, see theMethodssection“Iterativeassembly”).

Benchmarking Ragout 2 and RACA on simulated data sets

To benchmark Ragout 2 and RACA performance in the presence of
extensive structural rearrangements, we generated multiple data
sets from human Chromosome 14 sequence as described in the
Methods section “Comparing Ragout 2 and RACA using simulated
human Chromosome 14 assemblies.” Each data set included four
genomes: three references and a target genome fragmented into
contigs (approximately 5000 fragments with a mean length of
18,000 bp). Each data set contained multiple genome rearrange-
ments (from 50 to 500) that were evenly distributed along the
branches of the phylogenetic tree. The contigs additionally includ-
ed 5% of chimeric sequence. To benchmark the Ragout 2 chimera
detection module, we performed extra Ragout 2 runs with the fol-
lowing modifications. The first extra run is called permissive with
the chimera detection module turned off. The second extra run
is denoted as conservative, in which all unsupported target adjacen-
cies are broken (to mimic the common mapping approach in
reference-guided assembly). Note that the permissive strategy
benchmark could be also viewed as a comparison of Ragout 2
with the original Ragout, as the original version was not capable
for chimera detection. We performed RACA runs on simulated
data sets without using read mapping information (similar to the
strategy described by Kim et al. 2013) to focus on comparison be-
tween the rearrangement models.

A

C

E

B

D

F

Figure 1. Synteny blocks reconstruction algorithm. (A) Three genomes—G1, G2, G3—are encoded in the alphabet of local sequence alignment blocks.
|a4| < |a1| < |a3| < |a2| < |a5|. Alignment is performed using theCactusmultiplewhole-genome aligner. (B) TheA-Bruijn graph constructedwithminBlock= |a4|.
Blackedges correspond to the alignmentblocks, and the colorededges connect the adjacent alignmentblocks in the correspondinggenome.Dashededges
denote the start/endof eachgenome. Because theminBlockparameter is equal to the size of the smallest block, all blockswere included in the graph. (C) The
A-Bruijn graphafterbubble simplification andcollapsingunbranchingpaths.a123nowrepresents thenewmergedblock (from a1,a2,a3). (D) Anext iteration
of the A-Bruijn graph with |a4| <minBlock≤ |a1|, which eliminates block a4. (E) a123 and a5 are merged into a larger block a1235. (F ) The hierarchical repre-
sentation of synteny blocks: The larger block a1235 from the genome G1 can be decomposed into smaller blocks a1, a2, a3, and a5.
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Given a resulting set of chromosomes, we call an adjacency (a
pair of consecutive contigs) correct if these contigs have the same
sign and their original positions in the target genome are adjacent
(allowing jumps throughunplaced fragments thatwere not includ-

ed into the final scaffolds). Otherwise,
the adjacency is called erroneous. For
each run, we measured the error rate as
the number of erroneous adjacencies di-
vided by the total number of adjacencies.
The computed error rates as well as the
statistics of unplaced contigs are shown
on the Figure 3. As was expected, the nor-
mal Ragout 2 strategy, which keeps a sub-
set of target-specific adjacencies (rather
than all/none of them), produces fewer
errors comparedwith thenaive strategies.
RACA performance was intermediate be-
tween that of the conservative and per-
missive Ragout 2 strategies for the data
sets with 50–250 rearrangements, while
for more complex data sets, RACA pro-
duced the least accurate assemblies. The
normal and conservative strategies result-
ed in almost the same number of un-
placed contigs. However, this number
was higher for the permissive strategy,
which is a consequence of including chi-
meric adjacencies in the final scaffolds.
RACA produced a higher number of
unplaced contigs compared with all the
Ragout 2 strategies. We additionally
benchmarked Ragout 2 on the incom-
plete sets of references. As expected, the
assemblies using all three references con-
sistently had fewer errors compared with
the assemblies using one or two closest
references (for details, see Supplemental
Note“BenchmarkingRagout2on incom-
plete sets of references”).

Additionally,we comparedRagout 2
andRACAusing the comprehensive set of

multiple humangenomeassemblies fromSalzberg et al. (2012).On
mostdata sets, Ragout2performedequallyorbetter thanRACA(for
details, see SupplementalNote “BenchmarkingRagout 2 andRACA
on multiple human genome assemblies”).

A B

C D

Figure 2. Incomplete breakpoint graph andmissing adjacencies inference. (A) Two reference genomes
(R1 and R2) and a target genome T represented in the alphabet of four signed synteny blocks (a, b, c, d).
All genomes are circular. Reference R1 could be transformed into R2 with two inversions: (a, b, c, d )→
(a, −c, −b, d )→ (a, −c, −d, +b). Target genome T is structurally similar to R1; however, T is fragmented
into three contigs (missing adjacencies are shown with dashed lines). (B) Incomplete breakpoint graph
of all genomes. Each synteny block corresponds to two nodes representing its head and tail (denoted
as h and t). Colored edges connect synteny block ends that are adjacentwithin a corresponding genome.
Two inversions between R1 and R2 correspond to two cycles of length four with alternating colors.
Because T is fragmented, some red adjacencies are missing (dashed lines). (C) A phylogenetic tree is
reconstructed based on pairwise breakpoint distance between the genomes. Because T shares more
breakpoints with R1 than with R2, T is closer to R1 within the tree. (D) Missing adjacencies are recovered
based on the graph structure and phylogenetic tree. Since T is closer to R1, the algorithm prefers the pair
of breakpoints (bt, ch), (dt, ah) to an alternative, (bt, ah), (ch, dt). The reconstructed adjacencies define the
synteny block order in the final chromosomes.

Figure 3. Benchmarking RACA and different Ragout 2 strategies using the simulated human Chr 14 assembly. A target and three reference genomes
were simulated by randomly distributing the corresponding number of rearrangements along the branches of a phylogenetic tree. In addition to the
normal Ragout 2 run, we performed the “permissive” run in which all target-specific adjacencies are accepted and the “conservative” run in which
all target-specific adjacencies are broken. (Left) Misassembly rate between the ordered contigs, computed relative to the complete simulated sequence.
(Right) The number of unplaced contigs (missing in the assembled chromosomes). Each data set contains approximately 5000 contigs with a mean
length of 18,000 bp.
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Assembly of 16 laboratory mouse strains

WeappliedRagout 2 to 16mouse genomes,which included 12 lab-
oratory strains (129S1/SvimJ, A/J, AKR/J, BALB/cJ, C3H/HeJ,
C57BL/6NJ, CBA/J, DBA/2J, FVB/NJ, LP/J, NOD/ShiLtJ, NZO/
H1LtJ) and four wild-derived strains (WSB/EiJ, PWK/PhJ, CAST/
EiJ, SPRET/EiJ) (Lilue et al. 2018). The initial Illumina sequenc-
ing libraries (40×–70×) were assembled using SGA (Simpson and
Durbin 2012). The contigs N50 ranged from 5 kb (PWK/PhJ) to
26 kb (AKR/J). Scaffolding was performed with SOAPdenovo2
(Luo et al. 2012) usingmultiple paired-read andmate-pair libraries
with insert sizes 3, 6, and 10 kb; 40-kb fosmid ends for eight
strains- and BAC ends for NOD/ShiLtJ. The improved scaffold
N50 ranged from 231 kb (FVB/NJ) to 1575 kb (LP/J). Finally, the
three most divergent genomes (PWK/PhJ, SPRET/EiJ, and CAST/
EiJ) were additionally scaffolded using the Dovetail Genomics
Chicago libraries (Putnam et al. 2016), which gave a significant
contiguity improvement. The final scaffold N50 ranged from 20
Mb for SPRET/EiJ to 25 Mb for PWK/PhJ. Detailed information
about the initial assembly is given in the Supplemental Note
“Additional information about 16 laboratory mouse strain assem-
bly statistics” and by Lilue et al. (2018).

For the Ragout 2 assembly, we chose the C57BL/6J Mus mus-
culus strain as a single reference, as all target genomes have the
same karyotype and show a good structural similarity with the
C57BL/6J reference: On average, 254 adjacent synteny block pairs
>10 kb from the target NGS assemblies were not adjacent in the
C57BL/6J reference (which correspond to large putative rearrange-
ments). Ragout 2 was run in three iterations with the default syn-
teny block scale for mammalian assemblies (10,000, 500, 100).
Also, see the Methods section “Synteny Block Size Selection” for
an extended discussion. For each target strain, Ragout 2 produced
a complete set of full-length chromosomes with the expected
large-scale structure. Some assemblies also included short unlocal-
ized fragments (homologous to the corresponding sequences in
C57BL/6J) or mitochondrial (Mt) chromosomes. The statistics of
assembly results are given in Table 1. The unplaced sequence for

each assembly comprised <5%of the total length.We also estimat-
ed the number of missing exons as <2% for each assembly (see be-
low). On average, 49 adjacencies between synteny blocks >10 kb
from the assembled chromosomes were not present in the
C57BL/6J reference (excluding the threemost divergent genomes).

To estimate the structural accuracy of the assembled chromo-
somes, we used multiple sets of PacBio reads that were availa-
ble for the three most divergent genomes (PWK/PhJ, SPRET/EiJ,
and CAST/EiJ). The samples included whole-genome sequence
data at approximately 0.5–1× coverage and mean read length of
∼3000 bp, as well as cDNA sequencing data from liver and spleen
for each of the three strains.We classified each adjacency (a pair of
consecutive NGS fragments on a Ragout 2 chromosome) as covered
if both fragments have read alignments of at least 500 bp or as un-
covered otherwise (47%, 43%, and 55% adjacencies were covered
for the PWK/PhJ, SPRET/EiJ, and CAST/EiJ genomes, respectively).
We call an adjacency validated if there is at least one read that has
alignments >500 bp on both parts of the adjacency with a correct
orientation. We then calculated the validated adjacency ratio as
the number of validated adjacencies divided by the number of cov-
ered adjacencies (Fig. 4A,B show the validated adjacency ratio as a
function of the maximum gap size of an adjacency). As expected,
longer gaps were harder to validate as the chance of being covered
with a single read decreases. Genomes that were closer to the
C57BL/6J reference had more validated adjacencies, which is ex-
plained by the increasing structural divergence between the refer-
ence and the target assembly. Additionally, since the PacBio cDNA
data had lower coverage, fewer adjacencies could have been vali-
dated using that data set. The probability of a correct and covered
adjacency without a gap not being validated by the reads of length
3000 kb at 1× coverage could be estimated as 15%, which was in
agreement with the experimental data. Additional details about
this benchmark are given in Supplemental Note “Additional infor-
mation about adjacency validation using PacBio reads.”

To further investigate the accuracy of coding sequence, we
performed a transcript consistency analysis using the Ensembl/
GENCODE comprehensive transcript set (GENCODE version

Table 1. Summary for 16 laboratory mouse strains assemblies

Genome and
strain Scaffolds

Scaffolds
length (Mb)

Unplaced
sequence (Mb)

Lost
exons

Chimeric
adjacencies

Specific
adjacencies

C57BL/6NJ 23 2765 108 4737 275 65
NZO/H1LtJ 23 2655 108 5320 69 31
NOD/ShiLtJ 21 2922 109 5680 125 47
FVB/NJ 21 2560 112 7040 88 38
LP/J 21 2695 123 5384 125 53
129S1/SvimJ 21 2694 119 6035 145 26
AKR/J 22 2633 109 6318 124 32
BALB/cJ 22 2594 92 5108 228 75
A/J 22 2590 103 6283 212 52
DBA/2J 21 2576 105 5682 170 39
CBA/J 21 2872 115 5440 189 58
C3H/HeJ 22 2666 107 5328 71 33
WSB/EiJ 22 2662 145 6610 57 41
CAST/EiJ 22 2868 115 6203 74 249
PWK/PhJ 21 2588 108 5487 87 347
SPRET/EiJ 21 2652 116 5558 116 659

The genomes are ordered according to the phylogenetic distance from the C57BL6/J reference from the least (C57BL/6NJ) to the most (SPRET/EiJ)
divergent. Lost exons are defined as protein-coding exons that align better to unplaced sequences than to chromosomes. The total number of protein-
coding exons in the database was 356,151. The fraction of unplaced sequence does not exceed 5% for each genome. Similarly, the fraction of lost
exons does not exceed 2%. The number of chimeric and specific adjacencies correspond to the adjacencies between synteny blocks >10 kb in the as-
sembled chromosomes that were not observed in the C57BL/6J reference. These adjacencies were classified as either chimeric (and removed) or specific
(and included into the final chromosomes) by the Ragout 2 algorithm.
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M4/Ensembl 78) (Flicek et al. 2011). We aligned 356,151 protein-
coding exons from the database on the combination of Ragout
2 chromosomes and corresponding unplaced sequences using
BWA (leaving only the best hit for each exon) (Li and Durbin
2009). We defined lost exons as exons that align better to the un-
placed sequence than to chromosomes (see Table 1). Then, for
each of 78,378 transcripts, we determined its primary chromosome
and primary orientationwith respect to the alignments of themajor-
ity of its exons. Exons that align to a nonprimary chromosome of
the corresponding transcript are calledmisplaced. Similarly, we cal-
culated exons with incorrect orientation among the exons that align
to the primary chromosome. Exons that belong to multiple tran-
scripts were counted once. The results are shown in Figure 4, C
andD. As expected, NGS assemblies had significantly higher num-
bers of misplaced exons than Ragout 2 chromosomes (15,519 and
2116 on average, respectively). The average number of exons with
wrong orientation over all genomeswas 69 for NGS assemblies and
469 for Ragout 2 (excluding PWK/PhJ, SPRET/EiJ, and CAST/EiJ).
To estimate the specificity of the described benchmark, we also
ran it on the C57BL/6J reference (false-positive calls may happen
because of ambiguous alignments or annotation errors); the num-
ber of misplaced exons was 1638, while the number of exons with
wrong orientation was 517. Thus, both statistics for Ragout 2 chro-
mosomes are only slightly higher or equal to ones calculated for

the reference, which confirms the high accuracy of the reconstruc-
tion of coding sequence.

Finally, we benchmarked the ability of Ragout 2 to preserve
target-specific rearrangements that are not observed in reference
genomes. We used 688 PCR primer pairs available from previous
studies (Yalcin et al. 2012) that surround structural variations in
different mouse genomes (Keane et al. 2014). For each genome,
we extracted primer pairs that align on a single NGS scaffold
with a variation in distance with respect to the C57BL/6J reference
(on average, 496 primer pairs were chosen). For each such pair, we
compared the alignment distances between the NGS assembly and
the Ragout 2 chromosomes. While Ragout 2 corrected many struc-
tural misassemblies (see Table 1), all these target-specific structural
variations were preserved.

We also compared Ragout 2 performance against RACA using
three genomes for which long PacBio reads were available (PWK/
PhJ, SPRET/EiJ, and CAST/EiJ). Similarly to Ragout 2 runs, RACA
runs were performed using one reference (C57BL/6J), as well as
all available paired-end and mate-pair libraries. Ragout 2 chromo-
somes consistently showed fewer split transcripts and transcripts
with wrong orientation, while the number PacBio reads with cor-
rect alignment orientations was higher (for the detailed compari-
son, see Supplemental Note “Comparing Ragout 2 RACA using
laboratory mouse genomes”).

A B

C D

Figure 4. Sixteenmouse laboratory strain assemblies validation. (A,B) The validated adjacency ratio using PacBio reads depending on the maximum gap
size of an adjacency for the three most divergent strains. (A) Whole-genome sequence data with approximately 0.5×–1× genome coverage. (B) Whole-
exome sequencing with approximately 0.3× genome coverage. The probability of a correct and covered adjacency without a gap not being validated
by the reads of length 3000 bp at 1× coverage could be estimated as 15%. (C,D) Ensembl/GENCODE transcript consistency analysis. The genomes are
ordered according to the phylogenetic distance from the C57BL6/J reference from the least (C57BL/6NJ) to the most (SPRET/EiJ) divergent.
(C) Number of exons found on nonprimary scaffolds/chromosomes. (D) The number of exons on the primary chromosome in a wrong orientation.
The total number of transcripts in the database was 78,653. The control analysis of C57BL/6J reference genome yielded 1638 misplaced exons and
517 exons in the wrong orientation (due to ambiguous alignments of short exons). The three most divergent genomes were scaffolded using the
Dovetail technology, which explains the increased number of exons with wrong orientation in the NGS scaffolds. Interestingly, the difference between
the number of exons with wrong orientation between Ragout 2 chromosomes and NGS scaffolds was lower for the Dovetail-scaffolded genomes.
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Mus caroli and Mus pahari assemblies

In order to see how our method performs in assembling more dis-
tant genomes from the references, we applied Ragout 2 to the
Mus caroli and Mus pahari genomes. These genomes exhibit 4%
and 8% sequence divergence from M. musculus (which is equiva-
lent to the human–orangutan and human–marmoset divergence,
respectively). The M. caroli and M. pahari contigs were assembled
from Illumina reads at 135× (M. caroli) and 185× (M. pahari) cover-
age and further scaffolded using multiple mate-pair libraries with
up to 3-kb insertion using ALLPATHS-LG (Butler et al. 2008). The
scaffolds N50 was 195 kb for M. caroli and 331 kb for M. pahari.
Additionally, both genomes were further scaffolded using OpGen
optical maps, which improved contiguity to 4.3 Mb for M. caroli
and 3.6 Mb for M. pahari (the details of NGS assembly are given
by Thybert et al. 2018).

SinceM. caroli andM. pahariwere evolutionarily intermediate
between M. musculus and Rattus norvegicus, we used both of these
references for the Ragout 2 assembly. Additionally, for both the
M. pahari and M. caroli assemblies, we used the fragments from
the other genomeas an extra third reference, as they provided extra
adjacencies not observed in the M. musculus and R. norvegicus ge-
nomes. Similar to the laboratory mouse strains assembly, Ragout
2 was run in three iterations: (10,000, 500, 100). Ragout 2 assem-
bled M. caroli into 26 scaffolds (consisting of 28,486 NGS frag-
ments), which correspond to 19 autosomes, Chromosome X, and
six small, unlocalized fragments. Detailed assembly statistics are
given in Table 2. The assembledM. caroli chromosomes do not ex-
hibit any large inter-chromosomal rearrangements with respect to
theM. musculus genome, which was expected from physical maps
as well as chromosome paintings (Thybert et al. 2018). However,
we detected a large cluster of inversions in Chromosome 17 of
∼5 Mb. In addition to this karyotype-scale variation, we detected
12 synteny block adjacencies that do not appear in any of the
three referencegenomes, suggesting target-specific rearrangements
>10 kb. In the assembled chromosomes, 28 connections between
contigs >10 kb were supported by only theM. pahari and/or R. nor-
vegicus genomes.

The same protocol was used to assemble the M. pahari ge-
nome (see the results in Table 2). Ragout 2 reconstructed 23 scaf-
folds from 16,108 assembly fragments. In contrast to M. caroli,
chromosome painting and physical mappings ofM. pahari suggest
extensive inter-chromosomal rearrangements (Thybert et al.
2018). Ragout 2 detected five chromosome fusions, four of which
are consistent with the chromosome color maps and one that is
supported by the R. norvegicus reference and might have been
missed from the maps due to its relatively small size (∼2 Mb).
The dot-plots of the detected large-scale rearrangements and their
corresponding chromosome paintings are shown on Figure 5. Four
expected chromosome fusions and 13 expected chromosome fis-
sions were not detected by our algorithm. This was mainly caused
by the missing signatures of the rearrangements in the input se-
quences; in particular, it is currently very hard to predict a chro-
mosome fission if it is not supported by any of the references
since target fragments cannot provide positive evidence of such
an event. Ragout 2 resolves this issue by integrating physical map-
pings from Thybert et al. (2018). Importantly, Ragout 2 did not
generate any large inter-chromosomal rearrangements that were
not expected from physical mappings or references. We also de-
tected 36 adjacencies that do not appear in any of the reference ge-
nomes, suggesting target-specific rearrangements of size >10 kb.
Twenty-one connections between contigs >10 kb in the final chro-
mosomes were supported by only theM. caroli and/or R. norvegicus
genomes. We also detected a cluster of inversions with the same
structure as in the M. caroli genome in a chromosome, homolo-
gous to aM. musculusChromosome 17. The breakpoints of the de-
tected inversions in both genomes were contained within the
scaffolds generated using optical maps. M. musculus and R. norve-
gicus references also contain different structural variations within
this region and share one inversion breakpoint (Fig. 6A,B). This
might be a signature of a rearrangement hotspot (Pevzner and
Tesler 2003a).

We also applied RACA to assembleM. caroli andM. pahari ge-
nomes and compared its performance against Ragout 2 (see Table
2). We used the same set of reference genomes and all available
paired-end and mate-pair libraries. Synteny block size was set to
50 kb as it previously produced the optimal results onM. musculus
genomes in terms of assembly contiguity and coverage. Some of
the assembled M. caroli chromosomes were left fragmented (63
scaffolds, N50=86 Mb), and a significant portion of sequence
(344 Mb) was left unplaced by RACA, which could be explained
by the fact that only a single fixed synteny block size is used. In
contrast, an assembly with synteny block scale of 10 kb left 63
Mb of sequence unplaced, but N50 was two times lower (40 Mb).
Similarly, for the M. pahari assembly, RACA produced scaffolds
with higher fragmentation (56 scaffolds, N50=96 Mb) and left
more sequence unplaced (see Table 2). RACA found four of the
five chromosome fusions detected by Ragout 2.

Comparative assembly of three ape genomes

To further investigate howRagout 2 performs in combinationwith
multiple long-range technologies, we applied it to three recent ape
genome assemblies published by Kronenberg et al. (2018). In the
original study, the genomes were initially assembled using high-
coverage whole-genome PacBio sequencing, which resulted in
contiguous assemblies with N50 ranging from 10–12.5 Mb (de-
tailed statistics are shown in Supplemental Note “Additional infor-
mation on comparative assembly of three ape genomes”). These
contigs were further ordered and oriented using various

Table 2. Statistics for the M. caroli and M. pahari assemblies using
Ragout 2 and RACA

Statistic

M. caroli M. pahari

Ragout RACA Ragout RACA

No. of sequences 26 63 23 56
Assembly N50 (kb) 138,363 86,701 145,528 95,590
Assembly length (Mb) 2556 2476 2477 2454
Used NGS fragments 27,642 9679 15,349 6748
Unplaced NGS fragments 5792 20,291 4159 10,726
Unplaced length (kb) 55,865 344,887 49,747 181,150

The initial N50 of NGS fragments (scaffolds) were 1539 kb for M. caroli
and 3045 kb for M. pahari. For each run, three references were used:
M. musculus, R. norvegicus, as well as M. caroli/M. pahari NGS fragments,
respectively. Ragout 2 was run in three (default) iterations with synteny
block sizes 10,000, 500, and 100. Synteny block size for RACA was set to
50,000, as it previously produced optimal results in laboratory mouse
strains assembly. Both Ragout 2 and RACA are able to split input se-
quences into multiple fragments; thus, the sum of the number of used
input fragments and unplaced fragments is not necessarily equal to the
total number of input sequences. Unplaced fragments are defined as
the input sequences (or their parts) >1 kb that were not represented in
the resulting scaffolds.
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experimental data, including BioNano optical maps, Hi-C, BAC
clones, and FISH. This resulted in new reference-quality assemblies
of the chimpanzee, gorilla, and orangutan genomes.

Here we used Ragout 2 to assemble the initial PacBio con-
tigs (chimpanzee: GCA_002880755.1; orangutan: GCA_0028807
75.1; gorilla: GCA_900006655.2) using multiple references (hu-
man, gibbon, rhesus, as well as the draft PacBio contigs). Since
the PacBio assemblies were highly continuous, the synteny block
sizewas increased to (500,000, 50,000) in comparison to themouse
assemblies. The resulting chromosome-scale assemblies were com-
pared against the chromosomes generated by Kronenberg et al.
(2018) using MashMap (Jain et al. 2017). For all three assemblies,
Ragout 2 produced sets of complete chromosomes thatwere largely
collinear with the directly assembled references (whole-genome
dot-plots and additional statistics are shown in Supplemental
Note “Additional information on comparative assembly of three
ape genomes”).We identified nine large karyotype-scale rearrange-
ments ingorilla, six in chimpanzee, and seven inorangutanRagout
2 assemblies that are likely to represent misjoins. Likewise, the in-
vestigators of the original study report that they corrected three
and five large-scale misassemblies in BioNano scaffolds in the
orangutan and chimpanzee assemblies, respectively. The Ragout
2 misjoins were mainly caused by the unique rearrangements in
the assembled genomes. The breakpoints of these rearrangements
were not captured in PacBio contigs since they were flanked with
long segmental duplications, unresolved by the PacBio assembler.
Weadditionally found two smaller (<5Mb) inversions in thegorilla
and orangutan genomes. Thirteen small inversions were detected
in the chimpanzee genome. However, only one of these inversions
was confirmed against the RefSeq version of the chimpanzee ge-
nome (panTro4). We thus think that these small inversions do
not necessarily represent Ragout 2 artifacts and require further in-
vestigation. Overall, Ragout 2 produced chromosome-scale assem-

blies with a number of errors comparable to the direct sequencing
approaches.

Discussion

Despite recent advances in sequencing technologies and bioinfor-
matics algorithms, de novo assembly of a mammalian scale ge-
nome into a complete set of chromosomes remains a challenge.
Many genome sequencing projects (Wang et al. 2014; Dobrynin
et al. 2015; Vij et al. 2016) have used reference-guided assembly
as a step in genome finishing, often followed by manual sequence
curation. While multiple tools for reference-assisted assembly
exist, their performance has proved limited when the reference ge-
nomes exhibit a significant number of structural variations relative
to the target genome being assembled. In this paper, we have pre-
sented Ragout 2, an algorithm for chromosome assembly of large
and complex genomes using multiple references. Ragout 2 joins
input contigs or scaffolds into larger sequences by analyzing ge-
nome rearrangements between multiple references and the target
genome. In contrast to previous approaches, Ragout 2 utilizes hier-
archical synteny information, whichhelps to reduce gaps in the re-
sulting chromosomes. We used simulations to show that Ragout 2
makes few errors, even in the presence of complicated rearrange-
ments, and outperforms previous approaches in both accuracy
and assembly completeness.

By using the existing M. musculus reference, we applied
Ragout 2 to assemble 16 diverse laboratorymouse strains. Through
the benchmarks, which included validations with long PacBio
reads, transcriptome analysis, and PCR testing, we show that Ra-
gout 2 produced highly accurate chromosome assemblies with
<5% of sequence unplaced (2% of coding sequence). An analysis
of transcript data showed a substantial improvement of the result-
ing assemblies from a gene structure perspective. Importantly, our
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Figure 5. Dot-plots and corresponding chromosome paintings (A–D) showing inter-chromosomal rearrangements in M. pahari assembly. The rear-
rangement shown in E is supported by the R. norvegicus reference and might be missed from chromosome painting due to its small size (∼2 Mb).
Chromosome paintings were generated by Thybert et al. (2018).
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algorithm is capable of preserving target-specific rearrangements,
which are observed in the NGS assembly but not in the reference
genomes, thus having less reference bias than simpler reference-
guided approaches. We also used Ragout 2 to assemble two more
challenging genomes:M. pahari andM. caroli, which exhibit major
karyotype-scale differences compared with these references. M.
caroli was assembled into a complete set of chromosomes with
the expected karyotype structure. M. pahari chromosomes assem-
bled byRagout 2 contained five large intrachromosomal rearrange-
ments, four of which were confirmed by chromosome painting
techniques. The fifth rearrangement was supported by the R.
norvegicus reference and might have been missed from chromo-
some maps due to its relatively small size. While Ragout 2 did
not generate any unexpected rearrangements (not supported by
chromosome maps or references), some expected rearrangements
remained undiscovered. Most of these rearrangements were chro-
mosome fissions, which are difficult to predict using only NGS
sequencing data. Ragout 2 has a module that uses chromosome
maps to guide the final assembly and successfully incorporated
all expected rearrangements into the final chromosomes. We
have thus shown that Ragout 2 produces accurate and complete
chromosome assemblies of mammalian-scale genomes even in

the presence of extensive structural rear-
rangement. The assembled chromo-
somes were used as starting points for
manual sequence curation in the mouse
strains assembly project (Lilue et al.
2018; Thybert et al. 2018).

Thegenomesof16 laboratorymouse
strains,whichhavebeenassembledusing
Ragout 2 with additional curations, are
available from the NCBI BioProject
database (https://www.ncbi.nlm.nih.gov/
bioproject/) under the PRJNA310854 bio
project ID. The genome assemblies of
M. caroli andM. pahariwere submitted to
the European Nucleotide Archive (www.
ebi.ac.uk/ena) and are available with
accession numbers GCA_900094665.2
(M. caroli) and GCA_900095145.2 (M.
pahari).

OnelimitationofRagout2 is that the
algorithmcurrentlydoesnot supportdip-
loid genomes, thus only a single copy of
each chromosome is reconstructed (pos-
sibly, as a mixture of different alleles).
Complete de novo diploid genome as-
sembly remains a challenging task, even
with recent improvements in sequencing
technologies, which include long Hi-C
interactions or 10× read clouds that can
linkheterozygousvariations. Beingmost-
ly orthogonal problems, the information
from reference genomes could be further
coupled with the direct sequencing ap-
proaches to improve de novo diploid
genome assembly and phasing. While
Ragout 2 uses a two-break rearrangement
model to distinguish chimeric adjacen-
cies from real rearrangements, the RACA
algorithm implements a different ap-
proach in which the information from

the paired-end sequencing libraries is used detect unreliable scaf-
fold connections. The two approaches are orthogonal and ideally
shouldbecombined together in the future toget theoptimalassem-
bly results.

Manynew technologies that capture long-range adjacency in-
formation are now becoming popular for de novo genome assem-
bly (Chaisson et al. 2015; Jain et al. 2018; Kronenberg et al. 2018).
The recent developments include long reads produced by PacBio
and Oxford Nanopore sequencers, linked reads produced by 10x
Genomics, Hi-C (Dovetail) libraries for chromosome-scale interac-
tion maps, as well as long-range optical maps (BioNano). Current-
ly, none of these technologies alone can provide a complete
assembly of a large genome; thus, the assembly projects often em-
ploy a combination of multiple approaches followed by manual
merging and curation. By analyzing three recently published ape
genome assemblies, we illustrate that our comparative approach
can provide a cost-efficient alternative to direct sequencing exper-
iments and serve as an orthogonal source of adjacencies, which
could be useful inmisassembly detection. Importantly, the Ragout
2 algorithm does not depend on a particular sequencing or scaf-
foldingmethod and thus could be easily applied to improve assem-
blies generated by various long-range technologies in the future.

A B
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Figure 6. Large inversion detected inM. caroli Chr 17. Genome dot-plots of a Chromosome 17 region
of M. caroli againstM. musculus (A) and R. norvegicus (B) showing a cluster of structural variations of size
∼5 Mb. M. pahari chromosomes shows the same genomic structure. The inversion breakpoints are sup-
ported by the optical maps in both the M. caroli and M. pahari genomes. M. musculus and R. norvegicus
references share one breakpoint of two different inversions. (C,D) An illustration of the chimera detection
algorithm. The same inversion with highlighted synteny blocks (C) forms an alternating cycle of length
four in the breakpoint graph (D). Thus, the Ragout 2 chimera detection algorithm classified these red
edges as genomic (not artificial) and included the corresponding adjacencies into the assembled
chromosomes.
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Methods

Construction of synteny blocks

Ragout 2 constructs synteny blocks at multiple scales and provides
a hierarchical relationship among these different scales of synteny
blocks (for a complete discussion of multiscale synteny blocks, see
Minkin et al. 2013; Ghiurcuta andMoret 2014). At the highest lev-
el of resolution, the alignment of multiple genomes is represented
as a set of alignment blocks. Each alignment block is a set of orient-
ed, nonoverlapping, homologous subintervals of the input ge-
nomes. To derive a set of alignment blocks, we use Cactus. Each
genomic sequence st can be represented in the alphabet of align-
ment blocks st= b1,… , bn, where bi is an alignment block of length
|bi|. Given a set of k sequences S= {s1,… , sk } and a parameter
minBlock, we construct an A-Bruijn graphG(S, minBlock) as follows:
For each alignment block bi such that |bi|≥minBlock, we create two
nodes bhi and bti (representing the head and tail of each block) and
connect them by a black edge. We connect heads and tails of adja-
cent alignment blocks in each genome st with an adjacency edge
with colorCt. The length of an adjacency edge is defined as the dis-
tance between the two alignment blocks in the corresponding ge-
nome. We also include a special infinity node (Alekseyev and
Pevzner 2009) representing the ends of sequences (telomeres in
complete genomes or fragment ends in draft genomes). A node
is called a bifurcation if it is connected with more than one
node (by colored edges) or is connected with an infinity node. A
path without any bifurcation node except for its start and end is
called nonbranching. Figure 1B shows an example of an A-Bruijn
graph constructed from alignment blocks present in Figure 1A.
Intuitively, this construction is equivalent to (1) representing
each sequence in the alphabet of alignment blocks and (2) gluing
together two alignment blocks if they are homologous and have
size larger than minBlock (for a formal definition of gluing, see
Medvedev et al. 2011). Constructing this A-Bruijn graph is also
equivalent to constructing the breakpoint graph frommultiple ge-
nomes (for a proof of equivalence, see Lin et al. 2014).

Small polymorphisms andmicro-rearrangements correspond
to certain cycle types or local structures in the A-Bruijn graph and
disrupt large homologous regions into many shorter ones (for a
thorough cycle type classification of an A-Bruijn graph, see
Pham and Pevzner 2010). We use a simplification algorithm to
simplify bulges and parallel paths in the A-Bruijn graph. The
algorithm consists of two subprocedures—CompressPaths and
CollapseBulges—and is parameterized with a value maxGap, which
is the maximum length of the cycle/path to be simplified.
CompressPaths is used to merge collinear alignment blocks into
a larger synteny block. It starts from a random bifurcation
node and traverses the graph in an arbitrary direction until it
reaches another bifurcation node or an adjacency edge that is lon-
ger than maxGap. Then, it exchanges the traversed path with two
nodes connected by a black edge (which corresponds to a new
synteny block) (e.g., see Fig. 1E). A complementary procedure—
CollapseBulges—finds all simple bulges having branch length
shorter thanmaxGap in a similar manner and exchanges the bulge
with a single synteny block as described previously (see Fig. 1B).
These two procedures are applied one after another multiple times
until no more simplification can be done. It is easily verified that
the result is invariant to the order of such operations. After the sim-
plification step, the sequences of synteny blocks are recovered by
“threading” the genomes through the graph. If the blocks require
additional simplification, a larger value ofminBlock is used to con-
struct the new A-Bruijn graph (see Fig. 1D).

The choices of minBlock and maxGap are not independent;
their scales should be in agreement with each other. Using a small

value of minBlock with a big value of maxGap will lead to longer
blocks with low similarity (false blocks). On the other hand, if
maxGap ismuch smaller thanminBlock, the effect of simplification
will be minor. Moreover, we cannot start from bigminBlock as the
initial alignment might be highly fragmented into many small
alignment blocks. As a solution for these issues, we run the simpli-
fication algorithm iteratively. Starting from a small minBlock and
maxGap, we gradually increase them until we reach the target syn-
teny block scale. The values of minBlock andmaxGap were chosen
empirically by comparing the final results with 2D synteny dot-
plot pictures.

Repeat resolution algorithm

Repetitive synteny blocks are defined as blocks with at least two
copies in a genome. We denote a set of all instances of a single re-
petitive synteny block inside a genome as a repeat family. Given a
repeat family RF, for each instance in RF we define context as an
ordered set of at most 2b closest synteny blocks (b from the left
and b from the right, any or all of which may be repetitive as
well). We call a repetitive block resolved, if there is at least one
unique synteny block among these 2b blocks. If all blocks in the
context are repetitive or the context is empty, the repetitive block
is called unresolved. It is expected that orthologous copies of a re-
peat share a similar context during genome evolution. Given two
contexts c1 and c2, we define score(c1, c2) as the alignment score be-
tween the sequences of blocks from c1 and c2 (a match between
unique/repetitive blocks adds +2/+1 to the score, respectively; mis-
matches and gaps are penalized by −1). Let Gr and Gt be the refer-
ence and the target genomes, respectively. First, we find amapping
between Rr and Rt, which are resolved blocks from Gr and Gt, re-
spectively. We construct a full bipartite graph, where nodes from
each set correspond to repetitive blocks from Rr and Rt, respective-
ly. Then for each pair of nodes ri, rj from two sets, we put an edge
with weight equal to score(ci, cj), where ci and cj are contexts of ri, rj.
We then find amaximumweightmatching, which corresponds to
an optimal mapping between Rr and Rt.

After finding the matching for resolved blocks, we apply a
similar approach for unresolved ones, with an exception that
one repeat block from the target assemblymaymatch againstmul-
tiple repeats from the reference. The above algorithm is extended
in the case of multiple references by using a strategy similar to
the progressive method for multiple sequence alignment.

Detection of chimeric adjacencies

Wedenote a red edge in the breakpoint graph as supported if there is
at least one parallel reference edge in the graph; otherwise, the red
edge is denoted unsupported. We call an adjacency genomic if it is a
true adjacency present in the target genome and artificial if it is a
result of a chimeric contig. Supported red edges are unlikely to
be artificial; however, an unsupported red edge could be either ge-
nomic (coming from a rearrangement specific to the target ge-
nome) or artificial (in case of misassemblies). To classify each red
edge as either genomic or artificial, Ragout 2 analyzes the rear-
rangement structure between the target genome and references.
Under the k-break rearrangement model (Alekseyev and Pevzner
2009), any genome rearrangement (such as inversion, transloca-
tion, or chromosome fusion or fission) can bemodeled as a k-break
operation on the breakpoint graph. These operations generate cy-
cles with multiedges of alternating multicolors (Fig. 6C,D). Thus,
we expect each genomic edge to belong to an alternating cycle (in-
cluding trivial cycles of length one). For each unsupported edge, if
it does not belong to an alternating cycle, Ragout 2 classifies it as
artificial and removes from the breakpoint graph.
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Phylogenetic tree reconstruction

When the phylogenetic tree of the input sequence is not available,
it can be inferred from the adjacency information (Lin et al. 2011).
Given a set of genomes represented as permutations of synteny
blocks, for each pair of genomes we first build a breakpoint graph.
Let b1 be a set of all breakpoints (graph edges) from the first ge-
nome and b2 from the second genome. We denote b1 & b2 as a
set of breakpoints that are shared in both genomes. The distance
between two genomes is defined as min{size(b1), size(b2)}–size(b1
& b2). Ragout 2 then builds a distancematrix and runs the standard
neighbor-joining algorithm (Saitou andNei 1987), which provides
a good approximation of a real phylogenetic tree (Moret et al.
2001). A phylogenetic tree of human, rat, M. pahari, M. caroli,
and 16 laboratory mouse genomes inferred by Ragout 2 and
visualized using iTOL (Letunic and Bork 2016) is shown in
Supplemental Note “Phylogenetic tree inference using Ragout 2.”

Synteny block size selection

Synteny block scale is an important parameter for the Ragout 2
pipeline. As synteny blocks breakpoints are defined by the struc-
tural rearrangements between genomes, longer blocks represent
more conserved and reliable markers. Additionally, increasing
block size helps to filter out common repetitive sequence (such
as SINE/LINE repeats). On the other hand, synteny blocks comput-
ed for draft assemblies might be artificially shortened because of
contig fragmentation.

Through our experiments we found that blocks of size 10 kb
represent a good trade-off for improving an NGS draft using refer-
ence genomes from the same species or genus. Intuitively, it is larg-
er than typical LINE repeat size (7 kb) and covers most of the NGS
contig sequence but is yet reliable enough for homologousmarkers
comparison. The default settings for mammalian genomes addi-
tionally include two iterations with synteny block sizes 500 bp
(longer than most of the of SINE repeats) and 100 bp. These addi-
tional iterations are aimed to fill assembly gaps and do not change
the structure of the final chromosomes. The default synteny block
size could be changed by the user. For example, onemight increase
it for analysis of the highly contiguous assemblies using relatively
distant reference genomes.

Iterative assembly

We first performmultiple rounds of scaffold assembly with differ-
ent synteny block resolution. The scaffolds from the largest scale
represent a “skeleton” for the final assembly. We then iteratively
merge the existing skeleton with the set of scaffolds constructed
from finer-scale synteny blocks, so as the new assembly is consis-
tent with the skeleton structure (for details, see Kolmogorov
et al. 2014). As discussed above, by default Ragout 2 is run in three
iterations with synteny blocks sizes equal to 10,000, 500, and 100.

Let Sskeleton be a current skeleton of scaffolds and Snew the scaf-
fold set that is being merged. The merging algorithm consists of
two parts: rearrangement projection and gap filling. During the re-
arrangement projection, we first detect rearrangements between
Snew and Sskeleton by constructing a two-color breakpoint graph.
Nodes in this graph correspond to the contigs in Sskeleton and
Snew. As some target-specific rearrangements were not detected in
Sskeleton but appear in Snew, they will form alternating cycles on
the breakpoint graph. We then apply (project) the newly detected
rearrangements to the Sskeleton. Not all rearrangements can be safely
projected, because some of themmight be erroneous (since smaller
synteny blocks are less reliable). We call a rearrangement safe, if it
(1) involves fewer than k breaks and (2) the chromosomal similar-
ity before and after applying this rearrangement to Sskeleton is more

than c. Chromosomal similarity is defined as the percentage of
synteny blocks that stay in the same scaffold after applying the re-
arrangement. This prevents large chromosomal translocations, fu-
sions, and fissions from being projected. We found that k=4 and c
=0.9 work well in most cases. This setting also allows all common
rearrangement types: inversion, transposition, small chromosom-
al translocation, and gene conversion. After projecting rearrange-
ments, we insert small contigs from Snew to Sskeleton, such as the
resulting contig order is consistent with the order in Sskeleton as de-
scribed by Kolmogorov et al. (2014).

Comparing Ragout 2 and RACA using simulated human

Chromosome 14 assemblies

We simulated multiple data sets with extensive structural rear-
rangements to benchmark the Ragout 2 algorithm and compared
its performance against RACA. We took human Chromosome 14
(GRCh37/hg19 version) as an ancestral genome and chose a set
of breakpoints such that they divide the chromosome into inter-
vals of exponentially distributed length (Pevzner and Tesler
2003a), in approximate concordance with empirical data. Then,
we modeled structural rearrangements (inversion, translocation,
and gene conversion) with breakpoints randomly drawn from
the defined breakpoint set. These rearrangements were uniformly
distributed on the branches of the phylogenetic tree. Next, we
modeled the NGS assembly process by fragmenting the target ge-
nome. Since each breakpoint inmammalian genomes is associated
with repetitive elements (Pevzner and Tesler 2003a; Brueckner
et al. 2012), we marked half of the repeats that are located near
the breakpoints as “unresolved” by the assembler and fragment
the genome in the correspondingpositions.We further applied ad-
ditional fragmentation at random positions to model the other
sources of contig breaks. Finally, to mimic chimeric scaffolds gen-
erated in typical NGS studies (Kim et al. 2013),we randomly joined
together 5% of the target fragments. By using this setting, we sim-
ulated three reference genomes and a target genome consisting of
approximately 5000 fragments with a mean length of 18,000 bp
(for the corresponding phylogenetic tree, see Supplemental Note
“Benchmarking Ragout 2 on incomplete sets of references”). We
then benchmarked Ragout 2 and RACA on data sets simulated as
described abovewith different number of rearrangements (ranging
from 50 to 500, which also corresponded to the breakpoint reuse
rates of 5% and 50%, respectively). We note that while the newer
version of human reference genome (GRCh38) is now available,
our benchmarks do not depend on a particular reference build, as
the synteny block reconstruction algorithm is not sensitive to
slight changes in nucleotide sequence.

Running time and memory usage

Ragout 2 requires as input a whole-genome alignment generated
by Cactus (Paten et al. 2011). Generating this alignment is the
most computationally demanding step of the process, taking ap-
proximately 1000 CPUhours permammalian genome, scaling lin-
early with genome number, with ∼120 GB of RAM used at peak. It
is typically run using an HPC cluster or on a cloud platform, such
as Amazon Web Services. The next steps in the Ragout 2 pipeline
do not take more than an hour for all experiments performed in
this paper and can easily run on a standard desktop with 32 GB
of RAM.

Data access

The Ragout 2 package is freely available in the Supple-
mental Material and at http://fenderglass.github.io/Ragout/. The
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assemblies generated by Ragout 2 and RACA as well as the Supple-
mental Scripts are available at https://doi.org/10.5281/zenodo
.1408269.
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