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(Budweis), Czech Republic, 3 Faculty of Sciences, University of South Bohemia,České Budějovice
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Abstract

Fe-S clusters are ubiquitous cofactors of proteins involved in a variety of essential cellular

processes. The biogenesis of Fe-S clusters in the cytosol and their insertion into proteins is

accomplished through the cytosolic iron-sulphur protein assembly (CIA) machinery. The

early- and middle-acting modules of the CIA pathway concerned with the assembly and traf-

ficking of Fe-S clusters have been previously characterised in the parasitic protist Trypano-

soma brucei. In this study, we applied proteomic and genetic approaches to gain insights

into the network of protein-protein interactions of the late-acting CIA targeting complex in T.

brucei. All components of the canonical CIA machinery are present in T. brucei including, as

in humans, two distinct CIA2 homologues TbCIA2A and TbCIA2B. These two proteins are

found interacting with TbCIA1, yet the interaction is mutually exclusive, as determined by

mass spectrometry. Ablation of most of the components of the CIA targeting complex by

RNAi led to impaired cell growth in vitro, with the exception of TbCIA2A in procyclic form

(PCF) trypanosomes. Depletion of the CIA-targeting complex was accompanied by reduced

levels of protein-bound cytosolic iron and decreased activity of an Fe-S dependent enzyme

in PCF trypanosomes. We demonstrate that the C-terminal domain of TbMMS19 acts as a

docking site for TbCIA2B and TbCIA1, forming a trimeric complex that also interacts with tar-

get Fe-S apo-proteins and the middle-acting CIA component TbNAR1.
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Author summary

Cytosolic and nuclear proteins containing iron-sulphur clusters (Fe-S) are essential for

the survival of every extant eukaryotic cell. The biogenesis of Fe-S clusters and their inser-

tion into proteins is accomplished through the cytosolic iron-sulphur protein assembly

(CIA) machinery. Recently, the CIA factors that generate cytosolic Fe-S clusters were

characterised in T. brucei, a unicellular parasite that causes diseases in humans and ani-

mals. However, an outstanding question in this organism is the way by which the CIA

machinery directs and inserts newly formed Fe-S clusters into proteins. We found that the

T. brucei proteins TbCIA2B and TbCIA1 assemble at a region of the C-terminal domain

of a third protein, TbMMS19, to form a complex labelled the CIA targeting complex

(CTC). The CTC interacts with TbNAR1 and with Fe-S proteins, meaning that the com-

plex assists in the transfer of Fe-S clusters from the upstream members of the pathway

into target Fe-S proteins. T. brucei cells depleted of CTC had decreased levels of protein-

bound cytosolic iron, and lower activities of cytosolic aconitase, an enzyme that depends

upon Fe-S clusters to function.

Introduction

Iron-sulphur (Fe-S) clusters are simple and versatile cofactors involved in a plethora of cellular

processes from bacteria to humans and theorised to have formed the ancient surfaces upon

which prebiotic chemical reactions took place, laying the ground for the origin of life itself

[1,2]. Biogenesis of Fe-S clusters and their subsequent incorporation into polypeptide chains

are intricate processes involving dedicated compartmentalised pathways that comprise dozens

of proteins [3,4]. At least three such pathways are conserved in eukaryotes, namely the cyto-

solic Fe-S protein assembly (CIA) machinery, the mitochondrial Fe-S cluster assembly (ISC)

system and the plastidial sulphur mobilisation (SUF) system [4–6].

A cytosolic pathway for maturation of Fe-S proteins was first described in the early 2000’s

when a genetic screen aimed at the reconstitution of the [4Fe-4S] cluster on human IRP1, also

known as cytosolic aconitase, identified the cytosolic P-loop NTPase Cfd1 as essential for the

maturation of IRP1 and other cytosolic, but not mitochondrial Fe-S proteins [7]. Since then, at

least eight additional proteins (nine in yeast) have been associated with the CIA machinery,

which has been implicated in the maturation of a growing list of cytosolic and nuclear Fe-S

proteins [4].

The biogenesis of Fe-S proteins can be conveniently simplified in two discrete yet concerted

steps: one for assembly of the clusters into a protein scaffold and another for their trafficking/

insertion into client proteins. Functional studies have shown that the CIA machinery is highly

conserved from yeast to man, and is organised into several sub-complexes that support differ-

ent stages of the process [8], allowing the components of this pathway to be grouped in a mod-

ular fashion as follows: (i) an early-acting module encompassing proteins of the electron

transfer chain Tah18 and Dre2 [9], and a heterotetrameric protein scaffold formed by Cfd1

and Nbp35, in which [4Fe-4S] clusters are initially assembled [10,11]; (ii) a middle-acting

module, represented by Nar1 [11, 12] and concerned with the transfer and trafficking of the

pre-formed Fe-S clusters to (iii) the late-acting or targeting module that facilitates the target-

specific insertion of clusters into client proteins [13,14]. In yeast, the CIA targeting complex

(CTC) is composed of Mms19, Cia1, and Cia2 [15], while human cells possess two isoforms of

Cia2, labelled CIA2A and CIA2B, with the former displaying a notable specificity for the

Trypanosoma brucei CIA pathway
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maturation of a subset of client proteins implicated in cellular iron homeostasis, while the lat-

ter is involved in canonical Fe-S cluster assembly.

Trypanosoma and Leishmania species are causative agents of human diseases that threaten

hundreds of millions of people mostly in developing countries, as well as of major economi-

cally important veterinary diseases [16–19]. T. brucei is the best-studied member of the super-

group Excavata [20] serving as a model organism due to its genetic tractability [21–24]. The

early- and middle-acting modules of the CIA pathway have been previously characterised in

this parasite [25], however, the components of the late-acting part had yet to be studied. In

addition to this, the Fe-S proteome of this divergent protist remains vastly unexplored, thus

providing an excellent opportunity to study these two biological questions.

In this work, we demonstrate that the late-acting module of the CIA machinery is essential

for the survival of this parasite in vitro, but not in vivo. TbCIA2B and TbCIA1 assemble at the

C-terminal domain of TbMMS19 to form the canonical ternary targeting complex. Moreover,

in both procyclic (PCF) and bloodstream stages (BSF) of T. brucei, binary configurations remi-

niscent of those observed in human cells were also present. Members of the CTC interacted

with client Fe-S proteins and TbNAR1, while depletion of CTC components impaired cell

growth and led to decreased protein-bound cytosolic iron levels and aconitase activity.

Results

Identification of CIA-targeting complex and subcellular localisation

Four proteins, termed TbCIA1 (Tb927.8.3860), TbCIA2A (Tb927.9.10360), TbCIA2B

(Tb927.8.720) and TbMMS19 (Tb927.8.3920, Tb927.8.3500), were previously identified in T.

brucei on the basis of their similarity to yeast and human CTC components [26,27]. Only

TbCIA1 has been characterized to date [25]. T. brucei encodes two different MMS19 proteins,

sharing 99.6% amino acid identity. As in humans, two genes encoding homologues of yeast

Cia2 protein were found in T. brucei. The phylogenetic position of these proteins, designated

TbCIA2A and TbCIA2B, has been analysed elsewhere [28].

We determined the subcellular localisation of TbCIA2A, TbCIA2B, and TbMMS19 by indirect

immunofluorescence, crude digitonin fractionation and selective permeabilisation with digitonin.

Cell lines expressing in situ C-terminally V5- or HA-tagged CIA proteins were produced (see

Materials and Methods). Fixed parasites were probed with anti-V5 and anti-enolase antibodies

(TbENO) [29] to detect the fusion proteins and the cytosolic marker, respectively. The co-localisa-

tion of all V5-tagged proteins with TbENO suggests their cytosolic localisation (Fig 1A). To fur-

ther confirm this finding, the subcellular distribution of the CIA pathway components was

analysed by a fractionation with digitonin. For this, we incubated the cells with a concentration of

digitonin that liberates the cytosol, separating it from the mitochondrial fraction (Fig 1B). The sig-

nal for all of the CTC components co-localizes with that of the cytosolic marker (Cyt), TbENO.

The mitochondrial marker, TbmtHSP70, is only present in the mitochondrial (M) fraction. The

pellet (P) denotes the insoluble fraction after solubilizing the mitochondrial fraction, which exhib-

its proteins that are membrane-bound, such as part of TbmtHSP70. A parallel corroboration was

performed by selective permeabilisation with digitonin. In this experiment, equal numbers of cells

were incubated with increasing concentrations of the detergent, causing progressive cell mem-

brane permeabilisation and sequential release of the cytosolic and organellar fractions. TbCIA2B-

HA and TbMMS19-HA were co-released with the cytosolic control phospholipase A1 (TbPLA1)

[30], while the trypanosome alternative oxidase (TbTAO), which served as a mitochondrial

marker [31], was released only at higher detergent concentrations (Fig 1C). Taken together,

immunofluorescence and detergent-based cell fractionation identified TbCIA1, TbCIA2A,

TbCIA2B and TbMMS19 as cytosolic proteins.

Trypanosoma brucei CIA pathway
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Essentiality and functional analysis of the CIA targeting complex

Analysis of the function of the putative CTC members was carried out in uninduced and

RNAi-induced PCF and BSF cell lines. The efficiency of the RNAi knockdowns was monitored

for up to 8 days in the PCF and 6 days in the BSF and was further assessed by Western blot

analysis (Fig 2A–2F and 2J–2O). While the growth rate of TbMMS19 RNAi in the BSF was

Fig 1. The CIA targeting complex is localised in the cytosol of T. brucei. (A) Confocal microscopy of PCF T. brucei cells expressing in-
situ V5-tagged CIA components. Anti-V5 antibody (green) was used to detect the CIA proteins localized throughout the cell body. Enolase

(red) was used as a cytosolic marker. DAPI (blue) stained DNA. Scalebar 1 μm. The merge displays co-localization of enolase with the

V5-tagged proteins. (B) Isolation of mitochondrial fraction with digitonin. PCF trypanosomes were incubated with 0.4% (w/v) digitonin

and fractions were separated by centrifugation. V5-tagged targets were visualized with anti-V5 monoclonal antibody. MtHSP70 and

enolase were used as mitochondrial and cytosolic markers, respectively. P = pellet; M = mitochondrial fraction; Cyt = cytosolic fraction. All

methods indicated that the proteins of the CIA targeting complex are present in the cytosol of PCF T. brucei.(C) Selective permeabilisation

of whole PCF T. brucei cells with digitonin: supernatants of cells incubated with increasing amounts of digitonin were assessed by Western

blot. Samples were probed against -HA (CIA components) and organelle markers: TbPLA1 (cytosolic marker); TbTAO (mitochondrial

marker). The graphs represent densitometric quantifications of the Western blots for each experiment. Cells permeabilised with the

highest concentration of digitonin were used as 100% release control.

https://doi.org/10.1371/journal.ppat.1007326.g001
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mostly unaffected upon depletion, the same downregulation in the PCF exhibited considerable

growth impairment (Fig 2A and 2J). On the other hand, the BSF TbCIA2A RNAi cell line

showed a mild growth phenotype (Fig 2K), whereas in PCF this downregulation does not

affect the growth rate (Fig 2B). Two days after the downregulation of TbCIA2B, a decrease in

the growth of the PCF was observed (Fig 2C), but this effect was less pronounced in the BSF

(Fig 2L). We have previously shown that depletion of the scaffold proteins TbCFD1 and

TbNBP35 caused mild to severe growth impairment in PCF and BSF, but knocking down the

expression of individual components upstream of the CTC did not affect the growth rate [25].

However, stringent pairwise knockdowns of the early-acting components of this pathway (e.g.

TbTAH18 and TbDRE2) caused marked growth defects [25], suggesting an interaction of CIA

factors, which only becomes critical upon simultaneous RNAi knockdown of more than one

of them. We sought to employ this phenomenon by silencing the expression of two CTC mem-

bers simultaneously. However, the observed phenotype of double knockdowns in PCF

(TbCIA1-TbCIA2B and TbCIA2A-TbCIA2B) was no more pronounced than the phenotype

observed following the depletion of TbCIA2B alone (S1 Fig).

To assess the role of the CTC components on the pathogenicity of T. brucei, we infected

mice with BSF RNAi cell lines of TbMMS19 and TbCIA2B. As shown in S2 Fig, these infection

experiments suggest that neither protein is essential in BSF, in agreement with the mild in
vitro growth phenotypes described above, as well as with the initial observation of the double-

knockdown cell lines in this life stage, in which at least two components of the pathway had to

be ablated in order to obtain a clearer growth phenotype (S1 Fig) [25]. We next asked whether

depleting the cells of individual CTC members would impact the activity of known Fe-S pro-

teins. Aconitase (TbACO), a Fe-S enzyme that catalyses the reversible isomerisation of citrate

to isocitrate, is encoded by a single gene and has a dual subcellular localisation, being ca. 70%

in the cytosol and 30% in the mitochondrion [32,33]. These features qualify it as a suitable sur-

rogate for Fe-S cluster-dependent enzymatic activity in these two cellular compartments [27].

As shown in Fig 2G and 2I, cytosolic TbACO activity was reduced in 60% and 40%, when

TbMMS19 and TbCIA2B were knocked down, respectively, whereas the mitochondrial activity

remained unchanged. Furthermore, the depletion of TbCIA2A did not affect aconitase activity

in these cellular compartments (Fig 2H). Hence, TbMMS19 and TbCIA2B seem to be required

for the maturation of this Fe-S protein, providing a functional link between the CTC and the

transfer of Fe-S clusters to target proteins.

Several lines of evidence have linked the pathways for Fe-S cluster biogenesis to DNA repair

processes in humans, yeast, and plants [13,14,34–37]. Surprisingly, even efficient depletion of

the CTC members did not affect the ability of T. brucei to cope with DNA damage caused by

various genotoxic agents as determined by Alamar blue assays, and in some cases the EC50 was

in fact higher for the CIA-depleted parasites (S1 Table).

Since TbMMS19 and TbCIA2B exhibited essentiality in T. brucei (Fig 2A and 2C), we

addressed the influence of these CTC components on the iron metabolism of the parasite. For

this purpose, we used deferoxamine (DFO), a siderophore that chelates Fe3+ but has no effect

on iron bound to either haem or transferrin [38] and which starves the cells by sequestering

the labile iron pool [39–41]. TbCIA2B RNAi cell lines were induced with tetracycline (Tet) for

24 hours and then challenged with different concentrations of DFO for 2 or 3 days (PCF and

BSF, respectively), when cell proliferation was measured. When depleted of TbCIA2B, both

life stages were significantly more susceptible to DFO compared to those with normal levels of

this protein (Fig 3A and 3C), suggesting a decrease in the pool of available intracellular iron. A

similar effect was observed upon TbMMS19 knock down in PCF cells (Fig 3E). Additionally,

WT PCF cells grown in the presence of Tet and treated with DFO under the same conditions

displayed identical EC50 values as those grown in the absence of the antibiotics (Fig 3I),

Trypanosoma brucei CIA pathway
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confirming that this result was specifically due to TbCIA2B or TbMMS19 knockdown and not

to the synergistic effects of DFO and Tet, which is also a chelator of polyvalent metal cations

[42]. In agreement with this finding, no DFO toxicity was observed when TbCIA2B or

TbMMS19 RNAi parasites were treated with drug pre-saturated with an excess of Fe3+ (Fig

3B, 3D, 3F and 3H), strongly indicating that the enhanced sensitivity can be specifically attrib-

uted to iron depletion and not to off-target effects of DFO. Furthermore, ferene assays

Fig 2. The CIA targeting complex is essential for the cell growth of T. brucei and activity of cytosolic aconitase. Growth curves of RNAi cell lines in PCF T. brucei of

TbMMS19, TbCIA2A, and TbCIA2B (A-C), induced (Tet +) and uninduced (Tet -) with tetracycline (n = 3 ± SD). Western blots shown under each growth curve were

probed with anti-HA, anti-V5 or specific antibodies and were used to assess protein expression before and after RNAi induction (D-F). Anti-tubulin or anti-enolase

antibodies were used as loading controls. The activity of the Fe-S dependent enzyme TbACO was measured in cytosolic and mitochondrial fractions (G-I) of the above-

mentioned cell lines (n = 3 ± SD). Growth curves for BSF RNAi cell lines of TbMMS19, TbCIA2A, and TbCIA2B (J-L, n = 3 ± SD). Western blots assessing

downregulation of each BSF RNAi cell lines (M-O).

https://doi.org/10.1371/journal.ppat.1007326.g002

Trypanosoma brucei CIA pathway
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Fig 3. Knockdown of CIA members affects iron levels and sensitivity to iron depletion. Wild type (WT), TbCIA2B, and TbMMS19

RNAi cells were grown without (blue, Tet -) or with (red, Tet +) tetracycline for 24 hours and then treated with different

concentrations of deferoxamine (DFO). After 2 or 3 days of incubation (PCF and BSF parasites, respectively), cell growth was

measured by the Resazurin method for determination of EC50s. Representative DFO concentration-response curves are shown in (A)

TbCIA2B PCF, (C) TbCIA2B BSF, (E) TbMMS19 PCF, (G) TbMMS19 BSF, or (I) WT PCF. Representative plots of DFO pre-

Trypanosoma brucei CIA pathway
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suggested that the content of iron bound to proteins in the cytosolic lysates of TbCIA2B knock-

downs was lower than that found in uninduced cells, whereas protein-bound iron levels did

not change in the organellar fractions (Fig 3J).

Yeast complementation assay

For functional complementation assays, TbCIA2A, TbCIA2B and TbMMS19 were PCR-ampli-

fied from genomic DNA and cloned into yeast expression vectors under the control of the

TDH3 or MET25 promoters of Saccharomyces cerevisiae [25,43]. Plasmids without insert or

plasmids encoding endogenous yeast CIA genes were used as controls. Subsequently, these

constructs were transformed into regulatable yeast Gal-CIA mutants, in which the expression

of the cognate CIA gene is induced in the presence of galactose and repressed by the presence

of glucose as described elsewhere [25]. The growth defect of Mms19-depleted cells on glucose-

containing medium was not restored by TbMMS19 expression, even when TbMMS19 was co-

expressed with either TbCIA2A or TbCIA2B (Fig 4A). Expression of TbCIA2B partially res-

cued the growth of Cia2-depleted cells, but TbCIA2A failed to do so (Fig 4B). For both

TbCIA2 proteins, co-expression with TbMMS19 not only failed to enhance the rescue, but

exhibited a dominant negative phenotype (Fig 4). Interestingly, when TbMMS19 is co-

expressed with Cia2 from S. cerevisiae (Fig 4B), the same dominant negative-like effect is

observed. These findings show that TbCIA2B can partially take over the role of its yeast coun-

terpart, suggesting that it performs an orthologous function.

Protein-protein interactions of the CTC

Individual interactions of the CTC proteins had only been mapped in detail for a few represen-

tatives of the eukaryotic supergroup Opisthokonta [44]. Moreover, the progress made in the

field of Fe-S biology in the past decade suggests Fe-S proteins are diverse and abundant in a

typical eukaryotic cell, but remained overlooked due to the difficulties related to their instabil-

ity under aerobic conditions. To the best of our knowledge, the dynamics of protein-protein

interactions of the CTC had not been studied in any Excavata, with only a few examples of

identification and functional studies of CTC components [45]; despite ~0.6% of the annotated

proteins of T. brucei being predicted to contain Fe-S clusters [46–48], its Fe-S proteome

remains largely unexplored.

One of the most valuable tools that contributed to expanding the list of mammalian Fe-S

proteins was the use of mass spectrometry (MS) and affinity purifications to detect potential

Fe-S proteins interacting with the human CIA targeting complex [13,14,49]. Therefore, aiming

to gain insight into the composition of the T. brucei CTC and its interactions with cytosolic

and nuclear Fe-S proteins, three complementary strategies for affinity purification/MS were

devised: (i) in situ PTP-tagged CTC members in PCF were affinity purified by a two-step

approach [50], (ii) V5-tagged CTC members in PCF and iii) V5-tagged CTC members in BSF

were immunoaffinity purified using a technique suited for the detection of transient and/or

weak interactions [51]. In all cases, MS detected proteins co-purifying with the tagged baits.

incubated with an excess of iron before adding to (B) TbCIA2B PCF, (D) TbCIA2B BSF, (F) TbMMS19 PCF, (H) TbMMS19 BSF. The

values shown in the inset of the curves are the mean DFO EC50s for induced or uninduced cultures. The bar charts on the right side of

the curves are the mean ± SEM EC50s of 3 independent experiments performed in quadruplicate. ns = non-significant; � = p< 0.05; ���

= p<0.001 (two tailed paired t test). (J) PCFTbCIA2B RNAi cells were grown for 4 days in the presence (red) or absence (blue) of

tetracycline and the content of iron bound to proteins was measured in the cytosolic and organellar fractions of digitonin

permeabilised parasites. The purity of the cellular fractions was validated by Western blot using anti-HA (TbCIA2B-HA), anti-TbPLA1

(cytosolic marker), or anti-TbTAO (mitochondrial marker).

https://doi.org/10.1371/journal.ppat.1007326.g003
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Tandem affinity purifications were performed using PTP-TbCIA1, PTP-TbCIA2B, or

TbMMS19-PTP as baits, and mock purifications with wild type PCF parasites served as nega-

tive controls. Unfortunately, we were not able to purify PTP-TbCIA2A complexes by this

method for reasons that remain unclear, but may be related to the PTP tag (~19 kDa) being

larger than TbCIA2A, which is a protein of ~17 kDa. SYPRO Ruby stained SDS-PAGE gels of

the final PTP elutions are shown in Fig 5A–5D. This exercise revealed that PTP-tagged CTC

components can be reciprocally co-purified, proving the existence of the canonical ternary

complex (TbCIA1-TbMMS19-TbCIA2B). In TbCIA2A-V5 pull-down assays (S3 and S4

Tables), TbCIA1, but not TbCIA2B or TbMMS19, was found interacting with the bait protein,

in a configuration reminiscent of that described for the human CTC [13–15]. Abundant pro-

teins such as tubulins and the eukaryotic elongation factor 1α (EF1α) were present in control

PTP purifications, but no detectable levels of CIA proteins were seen in these samples (Fig

5A). A summary of the PTP/MS data for the co-purified CTC members is shown in S2 Table.

In addition to this, affinity pull-downs with V5-tagged TbCIA1, TbCIA2A, TbCIA2B, and

TbMMS19 in PCF and BSF confirmed the reciprocal nature of the interactions and the pres-

ence of the similar complex configurations in both life stages (S3 and S4 Tables), and also

showed in PCF that TbCIA1, TbCIA2A and TbMMS19, but not TbCIA2B, co-immunoprecipi-

tated with TbNAR1, the upstream CIA component that mediates the transfer of Fe-S clusters

from the early-acting part of the pathway to the CTC (S3 Table). Moreover, co-IP performed

Fig 4. TbCIA2B, but not TbCIA2A, functionally replace yeast homologue ScCia2. Plasmids p424, p426 or p416, empty

(Ø), or with the indicated genes, under the control of the strong promoters MET25 or TDH3, and the natural promoter

(NP) of S. cerevisiae CIA2 were transformed into W303 cells, strains GalL-MMS19 (A) and Gal-CIA2 (B). Cells were

grown for 16 h in liquid minimal medium supplemented with glucose (2%). After washing, 10-fold serial dilutions were

spotted onto agar plates containing minimal medium supplemented with galactose or glucose and incubated at 30˚C for 2

days. The result was reproduced at least three times with independent transformations.

https://doi.org/10.1371/journal.ppat.1007326.g004
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Fig 5. Protein-protein interaction profile of the CIA targeting complex. (A)-(D) Tandem affinity purification from WT parasites (mock) or PTP-

tagged CIA components. Eluates were resolved in Bis-Tris gels and sections were analysed by mass spectrometry for protein identification. (E) Co-IP of

PTP-TbNAR1 with TbMMS19-HA. Lysates of double tagged PCF parasites were incubated with IgG-Sepharose and the bound material subjected to

SDS-PAGE and immunostaining with anti-HA and anti-protein A (PTP) antibodies. (F) Pull-down of TbFHc-HA from PCF T. brucei extracts by GST

alone, rTbMMS19-NTD, rTbMMS19-CTD. (G) Pull-down of TbXPD-HA, or TbACO-HA from T. brucei PCF extracts by HIS-tagged rTbCIA2B. The

bound material of the pull-downs was resolved by SDS-PAGE and immunostained with anti-HA, anti-Strep Tag II, or anti-HIS antibodies. (H)

Schematic representation of the protein-protein interaction profile of the T. brucei CIA targeting complex. The shaded blue bubble represents the

identified members of the canonical CIA targeting complex and the green bubble represents the binary complex formed by TbCIA2A-TbCIA1.

https://doi.org/10.1371/journal.ppat.1007326.g005
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with lysates of a double-tagged strain of PCF parasites co-expressing PTP-TbNAR1 and

TbMMS19-HA further validated this interaction (Fig 5E).

Next, in an attempt to identify potential target Fe-S proteins, we investigated other proteins

co-eluting with members of the CTC. The combined TAP/MS and co-IP experiments identi-

fied over 200 such proteins, most of them in association with TbMMS19 and/or TbCIA1 (S5

Table). To inquire if these proteins were known or could be predicted to contain Fe-S clusters,

the amino acid sequences of the hits were retrieved from the TriTryp database [46] and ana-

lysed with MetalPredator [48], a tool to predict Fe-S clusters in polypeptide chains based on

the presence of known Fe-S domains and metal-binding motifs. This analysis returned three

positive hits: the catalytic subunit of Pol δ (TbPOLD1, Tb927.2.1800), the class I cytosolic

fumarate hydratase (TbFHc, Tb927.3.4500), and a putative radical SAM tRNA modification

enzyme (Tb927.6.3510) (S5 Table).

In order to further examine the interactions of the CTC with Fe-S proteins, the amino- or

carboxy-terminal domains of TbMMS19 (respectively, recombinant (r) TbMMS19-NTD and

rTbMMS19-CTD) were expressed in E. coli as GST-Strep-Tag II fusion proteins. Equimolar

amounts of purified recombinant proteins or glutathione S-transferase (GST), used as a nega-

tive control, were coupled to glutathione Sepharose 4B beads, incubated with soluble extracts

of PCF parasites expressing HA-tagged TbFHc, and the interactions were assessed by Western

blotting. This pull-down confirmed the interaction detected by TAP/MS and further showed

that TbFHc was able to interact with rTbMMS19-NTD, but not rTbMMS19-CTD or GST

alone (Fig 5F). Also, a relatively low number of proteins were detected in PCF TAP/MS or V5

co-IP/MS experiments with TbCIA2B (S5 Table). In order to verify possible protein-protein

interactions of TbCIA2B that could not be detected by other methods, this protein was

expressed in E. coli as a fusion with an N-terminal Strep-Tag II and a C-terminal hexahistidine

tag (rTbCIA2B), then immobilised to Strep-Tactin Sepharose and incubated with extracts of

parasites expressing either tagged aconitase (TbACO-HA) or the DNA helicase XPD (Xero-

derma pigmentosum group D homologue,TbXPD-HA). As shown in Fig 5G, TbXPD interacts

with rTbCIA2B. Moreover, TbACO also interacted with rTbCIA2B (Fig 5G). This is in accor-

dance with the results depicted in Fig 2G and 2I, where the silencing of TbCIA2B led to

decreased cytosolic activity of TbACO. These results validate the position of the CTC as the

late-acting module of the CIA machinery at the interface between the upstream TbNAR1 and

the client Fe-S proteins.

A summary of interactions detected by TAP/MS experiments and additionally confirmed

by co-IPs is depicted in Fig 5H. The interaction with TbNAR1 was not observed in the

V5-tagged co-immunoprecipitations performed in BSF trypanosomes (S4 Table). This differ-

ence may reflect stage-specific requirement of the CIA pathway. Importantly, mutual interac-

tions of the CTC members are the same in the BSF and PCF cells, although the sets of their

targets differ from one another and require further analysis to determine their capability to

bear an Fe-S cluster.

Interestingly, several proteins captured by the PCF TAP/MS methodology show multiple

clustered cysteine residues, including Cys-Pro dipeptide sequences (Tb927.3.4360,

Tb927.7.4390, Tb927.2.5130 and Tb927.8.4890). We are currently pursuing the possibility that

these proteins harbour an Fe-S cluster by heterologous expression and purification.

The CTC is assembled at the C-terminal domain of TbMMS19

Aiming to better understand the dynamics of the interactions amongst the CTC members, it

was of interest to identify the site through which members of this complex interact. However,

the amino acid sequence of TbMMS19 is poorly conserved when compared to its human or
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yeast homologues [52], and no crystal structures of this protein have been elucidated so far.

Nevertheless, in silico homology modelling of the tertiary structure of TbMMS19 using the

Phyre2 server [53,54] suggested the overall architecture of an Armadillo-like protein that con-

tains α-helical HEAT repeat motifs throughout its sequence [55,56], as previously predicted

for MMS19 in higher eukaryotes [57]. In human cells, CIA2B and CIAO1 interact with the

tightly spaced HEAT repeats at a region of the MMS19 C-terminal domain [58], whereas in

TbMMS19 these motifs seem to be more loosely distributed and are more numerous (S3 Fig).

We hypothesised that the binding site for the CIA proteins would be different in trypano-

somes, given the divergent amino acid composition and apparent different distribution of the

repeats.

To clarify this question, TbCIA2B-HA cell lines of PCF parasites were transfected with con-

structs derived from the pLEW82 vector that integrates into the non-transcribed spacer of the

rDNA locus and allows strong ectopic overexpression of proteins in the presence of Tet [21].

We engineered cell lines in which the PTP-tagged full-length TbMMS19 (PTP-TbMMS19), its

N-terminal (PTP-TbMMS19-NTD) or C-terminal domain (PTP-TbMMS19-CTD) can be

conditionally overexpressed. Both the overexpression of the control PTP tag alone and PTP-

TbMMS19 did not impact the cell growth (Fig 6A and 6B, respectively). However, overexpres-

sion of PTP-TbMMS19-NTD caused a mild cell growth delay (Fig 6C), whereas a prominent

dominant-negative phenotype developed when excess PTP-TbMMS19-CTD was produced,

causing near-arrest of the cell growth after two days in culture (Fig 6D). Interestingly, overex-

pressing PTP-TbMMS19 or PTP-TbMMS19-CTD for two days resulted in ~2 and ~3-fold

higher levels of TbCIA2B-HA, respectively, and this effect was sustained after 4 days of overex-

pression (Fig 6E, 6G and 6H). Conversely, in cells induced to overexpress PTP-TbMMS19-

NTD, the levels of TbCIA2B-HA remained unaltered (Fig 6F and 6H).

To investigate if the up-regulation of TbCIA2B by TbMMS19 or its C-terminal domain was

dependent on their interaction, we performed co-IPs with extracts of parasites induced over-

night to overexpress PTP-tagged TbMMS19, TbMMS19-NTD or TbMMS19-CTD. Cells over-

expressing only the PTP-tag or those not transfected with pLEW82 constructs were used as

controls. Although lower levels of PTP-TbMMS19-NTD were observed when compared to

those achieved for PTP-TbMMS19 or PTP-TbMMS19-CTD after induction, co-IP assays indi-

cated that TbCIA2B-HA was able to bind PTP-TbMMS19 and PTP-TbMMS19-CTD, but not

PTP-TbMMS19–NTD (Fig 7B). Additional TAP/MS assays revealed that TbCIA1 was only

detected in eluates from PTP-TbMMS19 and PTP-TbMMS19-CTD, but not PTP-TbMMS19-

NTD (S4 Fig), which implicates that TbMMS19-CTD acts as a docking site for the assembly of

the ternary complex.

To pinpoint the binding site of TbCIA2B within TbMMS19-CTD, we used recombinant

fragments of the latter (named C1-C5, Fig 7A), expressed as GST-Strep-Tag II fusions. Equi-

molar amounts of C1-C5 or GST were bound to glutathione Sepharose 4B beads and incu-

bated with cellular extracts of T. brucei expressing HA-tagged TbCIA2B (Fig 7C) or purified

rTbCIA2B (Fig 7D). Fragments C1-C4 were able to bind TbCIA2B-HA from cell lysates,

although fragment C2 appears to bind with higher affinity, while the C5 fragment, containing

only 1 HEAT domain, has very weak affinity (Fig 7C). Moreover, fragments C1, C2, C4 and

C5 captured purified rTbCIA2B and also in this case, C2 displayed the highest binding capacity

(Fig 7D). Curiously, C1 was less capable of binding to TbCIA2B than the smaller C2 or C3

fragments. One possible explanation is that C1 adopted a fold that hinders the ability of

TbCIA2B to reach the interaction surface which could, in turn, be more accessible in C2. We

also observed that the C3 and C4 fragments have an enhanced ability to bind TbCIA2B in cell

extracts in comparison to the purified recombinant protein, hinting at the presence of a factor

that stabilises the complex. The C5 fragment interacted (albeit weakly) with recombinant and
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native TbCIA2B (Fig 7C and 7D), suggesting that this repeat is the minimal structural unit

necessary to form the TbMMS19-TbCIA2B complex. This fragment contains 50 amino acids

that roughly correspond to the most C-terminal HEAT repeat in TbMMS19, although such

interaction likely spans a much larger contact surface, involving at least two HEAT repeats

localized between the residues Val763 and Lys947 of TbMMS19.

Given the paucity of structural analyses for the CIA proteins, individually or in a complex,

the 3D structures of TbMMS19 and TbCIA2B were modelled by homology using the Phyre2

server [53]. The predicted structures were subsequently used to generate models of protein-

protein interaction by in silico docking with ClusPro [59]. Corroborating our experimental

findings, the top scoring model for the TbMMS19-TbCIA2B complex correctly predicted that

TbCIA2B should bind to TbMMS19–CTD (Fig 7E). In fact, most of the top scoring models

also pointed to the binding site of the C-terminal domain of TbMMS19 (S5 Fig). Given this

reassuring overlap between the experimental data and in silico predictions, we aimed to refine

this analysis by examining the best complex model with PredHS, a tool that integrates analysis

of structural and energetic properties to identify regions at the contact surface, which are more

likely to be crucial for protein-protein interactions (i.e. hot spots or hot regions of interaction)

[60,61]. This analysis suggested that although Thr808 seems to be important, a contiguous

region of 12 amino acids in the TbMMS19-CTD (Phe762-Thr773) could be essential for the

interaction with TbCIA2B. These residues are depicted in a scale of red in Fig 7E. This model

fits satisfactorily our experimental data, which indicated that the C2 fragment (Val763-Lys947)

binds tightly to rTbCIA2B, while the C3 fragment (Thr808-Lys947) interacted (very) weakly

with it, although this association was stabilised when the native protein was present in cell

lysates. Collectively, these results indicate that TbCIA2B binds directly and tightly to the C-ter-

minal domain of TbMMS19, but this interaction is likely to require additional factors to stabi-

lise the complex.

Fig 6. Overexpression of the C-terminal domain of TbMMS19 is detrimental for cell growth and increases TbCIA2B levels. Growth curves of PCF T. brucei
carrying an in situ HA-tagged copy of TbCIA2B and overexpressing an ectopic inducible copy of (A) PTP tag, (B) PTP-MMS19, (C) PTP-MMS19-NTD, or (D)

PTP-MMS19-CTD. Cell numbers were assessed in the presence (Tet +) or absence (Tet -) of tetracycline in the culture medium for the specified number of

days. Data points represent the mean ± SD of 2 independent experiments. (E)-(G) Parasites were grown for 2 or 4 days in the presence or absence of

tetracycline. Total cell lysates were probed by Western blot using anti-Protein A (PTP-tag), anti-HA and anti-tubulin antibodies. (H) Protein expression was

calculated by densitometry and the HA/tubulin ratio in induced cells was normalised to the respective ratio of uninduced cultures (dashed line). Bars represent

the mean ± SEM of two experiments.

https://doi.org/10.1371/journal.ppat.1007326.g006
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Discussion

Since the subcellular localisation of the CIA components seems to depend upon the organism

under study [34,62–66], we aimed to clarify the cellular compartment in which the late-acting

module of the CIA machinery was present in trypanosomes. For this aim, a combination of

immunofluorescence and immunoblot analyses of detergent-permeabilised cell extracts local-

ised all four studied proteins to the cytosol, in agreement with data from mammalian cells

[13,15,67]. However, Mms19 in Schizosaccharomyces pombe, and Cia1 in S. cerevisiae are pre-

dominantly nuclear [34,68]. In the plant Arabidopsis thaliana, MMS19 is exclusively cytosolic,

although other members of the CTC exist both in the nuclear and cytosolic compartments

Fig 7. The C-terminal domain of TbMMS19 is the binding site of TbCIA2B. (A) Schematic representation of T. brucei MMS19. The N-terminal domain is depicted in

blue and the C-terminal domain in red. Grey boxes show the position of the 11 HEAT repeats identified in TbMMS19. C1-C5 represent the position of GST/Strep-

tagged recombinant fragments of TbMMS19-CTD used in pull-down experiments. (B) Co-IP of TbCIA2B with TbMMS19. Lysates of TbCIA2B-HA cells overexpressing

the PTP tag (empty vector), PTP-TbMMS19, PTP-TbMMS19-NTD, or PTP-TbMMS19-CTD were incubated with IgG Sepharose. The bound proteins were subjected to

Western blot and probed with Anti-HA and Anti-Protein A (PTP) antibodies. Identification of the TbCIA2B binding site at TbMMS19. Cell extracts of T. brucei
expressing HA-tagged TbCIA2B (C), or rTbCIA2B (D) were incubated with GST/Strep-tagged fragments (C1-C5) immobilised in glutathione Sepharose beads. Bound

material was resolved by SDS-PAGE and immunoblotted with anti-HA or anti-HIS tag antibodies as indicated. (E) The 3D structures of TbMMS19 and TbCIA2B were

modelled by homology using the Phyre2 server. The grey and green surfaces represent respectively TbMMS19-NTD, and TbMMS19-CTD while the blue ribbon

corresponds to TbCIA2B. The TbMMS19-TbCIA2B complex was modelled in silico with ClusPro and correctly predicted that TbCIA2B binds to TbMMS19-CTD. This

theoretical complex was analysed with PredHS to identify TbMMS19 residues at the surface of interaction with TbCIA2B. The surface of interaction is represented in a

red scale according to their PredHS SVM-Hot spot score. Labelled residues at the inset had the highest SVM-Hot spot scores. PyMol (Schrödinger, LLC) was used to

visualise and generate the figures. The binding site of TbCIA2B was found to be in a region comprising ~185 amino acids at the C-terminal domain of TbMMS19.

https://doi.org/10.1371/journal.ppat.1007326.g007
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[66]. Moreover, Giardia intestinalis exhibits a dual localisation of Cia2, between the intermem-

brane space of the mitosome and the cytosol [45].

TbMMS19 and TbCIA2B were shown to be essential for the survival of PCF, but their

depletion exhibited only marginal defects in BSF trypanosomes. In human cells, the levels of

CIA2B are greatly reduced when MMS19 is ablated [10,12,49], yet MMS19 remains steady

regardless of the absence of CIA2B, suggesting a tight regulation of CIA2B rather than recipro-

cal stabilisation between the interacting partners, since MMS19 prevents proteasomal degrada-

tion of CIA2B in a binding-dependent manner [49]. Interestingly, overexpressing the C-

terminal domain of TbMMS19 produced a dominant-negative phenotype with severe defects

on the cell growth and concomitant up-regulation of the TbCIA2B levels. One plausible expla-

nation for this finding concerns the modes of interaction within the CTC, since the C-terminal

domain of TbMMS19 appears to be the docking site of the targeting complex, as recently

described also for human cells [58]. It is possible that high levels of this truncated protein can

sequester TbCIA2B, TbCIA1, as well as client proteins into non-functional complexes, thus

depleting the cell of at least two CTC members and mimicking the effect of a double knock-

down. On the other hand, the depletion of TbCIA2A does not affect PCF, and only has a mild

effect in BSF. Though the MS data suggests non-redundant functions, such as the formation of

different subcomplexes among various components of the CTC, the growth phenotype in the

RNAi cell lines, as well as the capability of infection of BSF RNAi cell lines, hint at the possibil-

ity of function overlapping. However, residual proteins escaping RNAi knockdown may be

sufficient to maintain the functionality of the CIA machinery.

The effect of RNAi-mediated depletion of the late-acting CIA factors was monitored

through the activity of TbACO. The CIA2A protein aids the maturation of iron regulatory pro-

tein 1 (IRP1), the human homologue of TbACO, and stabilizes IRP2 by Fe-S independent

mechanisms, whereas CIA2B has a role in the maturation of numerous cytosolic and nuclear

Fe-S proteins [15]. Conversely, the CIA proteins do not exert a direct impact on iron regula-

tion in S. cerevisiae, and an IRP1-like mechanism has not been implicated in T. brucei iron reg-

ulation [32,69] Regardless, TbMMS19 and TbCIA2B were found to be essential for the activity

of the cytosolic but not the mitochondrial fraction of this enzyme. This is in line with previous

studies, which demonstrated that the mitochondrial pool of this enzyme is matured by the ISC

pathway, the mitochondrial machinery for Fe-S biogenesis [70–72], while the cytosolic fraction

requires both the ISC and CIA machineries to obtain its cluster [25,73]. Furthermore, TbACO

was shown to interact with TbCIA2B in dedicated pull-down assays. The growth complemen-

tation of Cia2-depleted yeast cells by TbCIA2B presents independent evidence for the func-

tional conservation of this protein in the CTC. Taken together, the functional and physical

interactions of the CTC with TbACO provide an example of a maturation mechanism of cyto-

solic Fe-S proteins in T. brucei.
We observed that upon silencing of TbCIA2B or TbMMS19, PCF cells displayed an

enhanced sensitivity to the iron chelator deferoxamine, with EC50 values about 1.5 times lower

than in uninduced controls. The specificity of this effect was confirmed by incubating trypano-

somes with deferoxamine pre-saturated with iron, which abolished its toxicity. Furthermore,

BSF parasites depleted of TbCIA2B also displayed equally lower EC50 values. This effect was

consistent, although not as pronounced as in conditional null mutants of the cation channel

mucolipin 1 that delivers iron to the cytosol of BSF flagellates [74]. Although IRP1-like mecha-

nisms implicating the CIA machinery in iron sensing and regulation, such as those described

in human cells [15], seem unlikely to exist in T. brucei [32,69], a role for unknown Fe-S clus-

ter-containing factors in iron regulation cannot be completely ruled out. Deferoxamine acts by

scavenging the cellular labile iron pool (LIP), thus preventing incorporation of this element

into the newly synthesised apo-proteins [75]. The precise composition of LIP is uncertain, but
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free iron is seldom present in the intracellular milieu, given its capacity to generate reactive

oxygen species via the Fenton reaction [26,76]. The source of iron for the assembly of Fe-S

clusters in the cytosol remains unknown, although one line of thought speculates that the scaf-

fold proteins for Fe-S cluster assembly can bind LIP directly [77]. If this was the case, LIP

depletion by deferoxamine would magnify an already impaired CIA function in cells depleted

of TbCIA2B or TbMMS19, thus explaining the increased sensitivity. The LIP is expected to

account for 0.2 to 3% of total cellular iron, with its bulk bound to the cytosolic and/or mito-

chondrial proteins [78]. Lower levels of protein-bound iron were observed in the cytosol of

PCF flagellates depleted of TbCIA2B but remained unchanged in organellar fractions, indicat-

ing that Fe-S proteins may comprise a considerable portion of the cytosolic iron content in T.

brucei.
Collectively, these data demonstrate that the CTC is essential for the survival of T. brucei in

vitro but does not seem to have an influence on the pathogenicity of the parasite in in vivo
mouse experiments. The CTC further functions in both the iron metabolism and the matura-

tion of target Fe-S proteins. However, the processes of DNA damage repair appear to be more

resilient to the depletion of the CTC in this excavate protist when compared to other eukary-

otic systems, where they are strongly linked to the functionality of Fe-S assembly pathways

[13,14,35–37]. This observation can be partially attributed to the unique mechanisms of nucle-

otide excision repair (NER) utilised by this parasite. In yeast and humans, XPD is part of the

transcription factor complex TFIIH [79]. Along with XPB, XPD forms the core of this com-

plex, acting together in transcription initiation and DNA repair [79]. In T. brucei, TbXPD and

TbXPB are not part of the same complex [80], nor do they respond to DNA damage in the

same fashion [80,81]. Moreover, XPB exhibits two orthologues in this flagellate, known as

TbXPB and TbXPB-R (or TbXPBz), of which only the latter seems to be involved in NER inde-

pendently of TFIIH [80,81]. Yet, contrary to yeast and humans, TbXPD knock-downs in PCF

and BSF exhibit different growth phenotypes, the protein does not influence NER proficiency

and seems to be mostly involved in transcription initiation [80,81]. The genetic, functional

and physical interactions of XPD (Rad3 in yeast) with the late-acting members of the CIA

machinery have been well described in various organisms, and the ternary CTC is necessary

for efficient maturation of this protein [12,35,36,82]. Interestingly, TbXPD was undetectable in

our TAP/MS and V5 co-IP/MS assays, which could suggest a lower affinity of this transient

association with the CTC in T. brucei than that observed for its human and yeast counterparts,

although an interaction with TbCIA2B was seen in a dedicated pull-down assay. It is also plau-

sible that down-regulation of the CIA machinery can trigger compensatory mechanisms of

DNA repair, which are Fe-S independent. An alternative explanation is that residual levels of

the CTC components upon RNAi knockdown may be sufficient to maintain adequate levels of

maturation of Fe-S proteins involved in DNA repair.

We used a combination of TAP/MS, co-IP/MS and dedicated pull-downs to detect potential

client Fe-S proteins of the CTC. This approach validated the interactions amongst the late-act-

ing members of the CIA machinery. A relatively large number of proteins was found in (tran-

sient) association with the CTC, with only a few of them predicted to contain Fe-S clusters.

These analyses revealed that the three core components of the canonical ternary CTC could

indeed be reciprocally co-purified showing that the CTC is conserved to both life stages of T.

brucei. Interestingly, in both PCF and BSF cells, TbCIA2A was only observed in complexes

purified from PTP-TbCIA1 or TbCIA1-V5, while TbMMS19 and TbCIA2B were not detected

in co-IPs with V5-tagged TbCIA2A (S2, S3 and S4 Tables). Consistent with our findings,

CIA2A was not reported as a core CTC member in the seminal studies that established the role

of the ternary complex CIAO1-MMS19-CIA2B in the maturation of Fe-S proteins [13,14].

However, in HeLa cells CIAO1 was shown to associate with both CIA2A and CIA2B in a
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mutually exclusive fashion, with these complexes interacting selectively with distinct subsets of

target proteins [15]. The lack of interaction, between TbCIA2A and either TbCIA2B or

TbMMS19 indicates the existence of a binary complex comprised of TbCIA1 and TbCIA2A in

a configuration that is reminiscent of that described in mammalian cells [15], although the bio-

logical purpose of TbCIA2A or the complex it forms with TbCIA1 remains elusive at this time.

It is worth mentioning here that a very weak interaction between TbCIA2A and TbMMS19

was detected in the BSF cells.

We demonstrate that TbCIA2B interacts with the C-terminal domain of TbMMS19. A sche-

matic representation of the proposed model for the ternary T. brucei CTC is depicted in Fig 8.

The C-terminal domain of TbMMS19 (TbMMS19-CTD) acts as a docking site for the other

two members of the trimeric complex, namely TbCIA2B and TbCIA1. We can also conclude

from our pull-down assays that TbCIA2B independently interacts with TbMMS19-CTD. In

humans, the interaction between CIA2B and MMS19 has been shown to be vital not only for

the stability of the CTC itself, but also for the association with client Fe-S proteins [58,83].

Interestingly, van Wietmarschen and colleagues [67] reported that in vitro translated murine

CIA2B and MMS19 were not able to bind directly to each other, although both could interact

with CIAO1. However, in support of our observations, Odermatt and Gari [58] showed that

CIA2B binds to the C-terminal HEAT repeats of MMS19 in HeLa cells, and similar results

were observed in pull-down assays with purified human proteins [83]. The status of TbCIA1

in the CTC of T. brucei is less clear, since from our results we cannot distinguish whether its

interaction with TbMMS19 depends on the presence of TbCIA2B. However, recombinant

fragments of the C-terminal domain of TbMMS19 had an enhanced ability to bind TbCIA2B

in cell extracts if compared to the purified recombinant protein. In agreement with these

observations, human CIAO1 was reported to stabilise the interaction between CIA2B and the

HEAT repeats at the C-terminal domain of MMS19, forming a trimeric complex [58]. Thus,

we favour the interpretation that TbCIA2B independently interacts with the C-terminal

domain of TbMMS19, yet this interaction may be further strengthened by other proteins, with

TbCIA1 being a prime candidate. Considering that both TbCIA1 and TbCIA2B are involved

in the maturation of Fe-S proteins, it is possible that the assembly of the clusters into apo-pro-

teins takes place at this C-terminal docking site [58].

The binding site of TbCIA2B, as supported by in silico modelling of theTbCIA2B-

TbMMS19 complex, was narrowed down to a region between the residues Val763-Lys947 of the

C-terminal domain of TbMMS19. The remarkable complementarity of the experimental

observations with the in silico predictions allowed us to model the interface between the two

proteins and identify residues likely involved in their interaction. However, bearing in mind

that our data also strongly suggested the CTC exists in both binary and ternary versions, these

simulations may not exactly reflect the whole scenario taking place at a cellular level. Since a

reliable structural model for TbCIA1 could not be generated, we did not attempt to dock a ter-

nary TbCIA2B-TbCIA1-TbMMS19 complex, or predict binary interactions of that protein. It

is also important to recognise the caveats associated with this method, as homology-based

structural models may not accurately reflect the minutia of biologically relevant conformations

of proteins or complexes. Nevertheless, a similar approach has been successfully used to study

the specificity of binding of the trans-acting acyltransferase to acyl-carrier proteins [84] and to

design inhibitors of the human tumour necrosis factor [85]. Altogether, we believe our model

provides a valuable snapshot of the TbMMS19-TbCIA2B interaction. The comprehensive anal-

ysis of protein-protein interactions for the CTC presented herein sheds light on the flexibility,

as well as on the level of conservation of this ubiquitous eukaryotic pathway.
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Materials and methods

Parasite cultivation and transfection

T. brucei PCF 29–13 [21], and SmOxP927 [86] cell lines co-expressing T7 RNA polymerase

(T7RNAP) and the Tet repressor (TetR) are referred to as wild-type in this study. The condi-

tions for cultivation have been described elsewhere [87,88]. BSF cells used throughout were

the single marker strain that constitutively expresses T7RNAP and TetR [21], and were grown

Fig 8. Functional model of the CIA targeting complex of T. brucei. TbNAR1 receives a Fe-S cluster from the early-acting CIA machinery and interacts with members

of the CIA targeting complex (CTC). TbCIA2B binds tightly to the C-terminal domain of TbMMS19 in and interaction possibly stabilised by TbCIA1 (as indicated by

the dotted lines), forming the canonical ternary CTC, although binary complexes also exist. The function of the complex formed by TbCIA1 and TbCIA2A is unknown.

The targeting complex directly interacts with cytosolic and nuclear Fe-S proteins. TbPOLD1 was found in association with TbCIA1 and TbMMS19, and TbXPD with

TbCIA2B. TbFHc interacts with TbMMS19 at its N-terminal domain and also co-purifies with TbCIA1. TbACO interacts with TbCIA2B but also requires TbCIA1 for

maturation. Other potential Fe-S proteins also interact with the complex, but their status as bona fide Fe-S proteins is unknown.

https://doi.org/10.1371/journal.ppat.1007326.g008
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in Hirumi modified Iscove’s medium 11 (HMI-11) [89] supplemented with G418 (2.5 μg mL-

1). BSF were grown at 37˚C with 5% (v/v) CO2 in humidified atmosphere and kept at cell den-

sities of 1 x 105 to 2 x 106 cells mL-1 and diluted with fresh HMI-11 media as required.

For transfections, 10 μg of linearised constructs (see below) were electroporated into 1 x 107

to 2 x 107 cells using an Amaxa Nucleofector 2b device or BTX electroporator, as previously

described [87,88]. Stable transformants were selected by clonal dilution in media containing

the appropriate selection drugs.

RNAi constructs

The sequences for all primers used in this study can be found in online supplementary mate-

rial. RNAi constructs were prepared by amplifying fragments of TbCIA2A, TbCIA2B, and

TbMMS19 flanked by BamHI and XhoI restriction sites and cloning into the p2T7-177 RNAi

vectors [90]. TbMMS19 and TbCIA2A RNAi in PCF were obtained by Gibson assembly using

the pTrypSon vector [91]. Double RNAi constructs were generated by ligating a second gene

fragment in previously generated single RNAi constructs upon digestion with BamHI and SpeI
as described before [25]. Constructs were linearized with NotI to allow integration into the

silent 177 repeats of the T. brucei minichromosome prior to transfection into PCF 29–13,

SmOx or BSF single marker cells. Selection was carried out with 1.25 to 5 μg mL-1 phleomycin,

or 4 μg mL-1 hygromycin B (for the BSF TbMMS19 RNAi cell line).

Constructs for epitope tagging

C-terminal in situ V5 tagging of the TbCIA proteins was performed as described [92]. PCR

tagging was performed using a modified version of the pPOTv4 vector in which eYFP was

replaced by the sequence of a triple V5 tag. PCR products were electroporated into PCF

SmOxP927 cell line and selection was performed with 50 μg mL-1 hygromycin B. For C-termi-

nal HA- or PTP-tagging, ~400–1,000 bp upstream of the termination codon of the genes of

interest were inserted into the vectors pC-HA-BLA [93] or pC-PTP-PURO [94] using the

KpnI and AflII restriction sites. N-terminal PTP-tagging constructs were generated by ligating

pN-PTP-PURO [94] with ~400–1,200 bp downstream of the start codon of the respective CIA

gene using NotI and KpnI restriction sites. The resulting plasmids were linearised at restriction

sites within the inserts and transfected into PCF 29–13 or BSF single marker cells then selected

with 20 μg mL-1 blasticidin or 2 μg mL-1 puromycin. The vector for conditional ectopic overex-

pression of N-terminally tagged proteins was constructed by amplifying the PTP-tag sequence

from pN-PTP-PURO and ligating into to the plasmid pLEW82v4 [21] using 5’ PacI and 3’

HindIII restriction sites and adding a KpnI recognition sequence downstream of PacI to allow

the introduction of the TbMMS19 ORF or sequences corresponding to its N- or C-terminal

domain in frame with the PTP tag. pLEW82-PTP constructs were linearised with NotI for inte-

gration at the rRNA locus, transfected into TbCIA2B-HA PCF cells and selected with 5 μg mL-

1 puromycin.

Western blot analyses

Proteins were resolved by SDS-PAGE, transferred to PVDF or nitrocellulose membranes and

blocked in phosphate-buffered saline (PBS) with 5% milk for 1 hr at room temperature (RT).

Blots were incubated with primary antibodies (see below) overnight at 4 oC, washed three

times in PBS-T (PBS supplemented with 0.1% Tween 20), and incubated with the correspond-

ing secondary antibodies for 1 hr at RT before further washes in PBS-T. Fluorescent signals

were captured using the Odyssey CLx digital Imaging system (Li-Cor Biosciences) or chemilu-

minescent signals developed using the Clarity ECL substrate (BioRad). Data for semi-
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quantitative Western blots were obtained by densitometry using the FIJI package for ImageJ

[95]. The following primary antibodies were used in this study: mouse monoclonal α-V5

(1:1.000; Invitrogen), α-tubulin (1:10000), α-TAO (1:100) [31], and α-Strep-Tag (1:500; IBA

Life Sciences), mouse polyclonal α-TbPLA1 (1:1000) [30], rabbit polyclonal α-TbENO (1:2000;

a gift from Paul A.M. Michels), α-mtHSP70 (1:1000), α-protein A (PAP antibody; 1:500;

Sigma-Aldrich), and rat monoclonal 3F10 α-HA (1:1000; Sigma-Aldrich). In some experi-

ments TbCIA2A and TbCIA2B were detected with specific antibodies (both at 1:200) raised in

rabbit using protocols described elsewhere [70–73]. Fluorescent secondary antibodies were

goat IgG α-rabbit, α-mouse, or α-rat conjugated to IRDye680 or IRDye800 (Li-Cor Biosci-

ences). HRP-conjugated reagents were from Sigma-Aldrich.

Confocal imaging

Preparation of C-terminal in situ-tagged TbCIA1-V5, TbCIA2A-V5, TcCIA2B-V5 and

TbMMS19-V5 for confocal imaging was performed as described elsewhere, with minor modi-

fications [88]. Cells were fixed with 4% (w/v) paraformaldehyde in phosphate buffered saline

(PBS), permeabilised with 0.2% (v/v) Triton X-100 in PBS on microscopy slides and then

probed with primary antibodies in PBS/gelatin. Monoclonal α-V5 (Life Technologies) and

polyclonal anti-TbENO antibodies were used at 1:1000 and 1:2000 dilution, respectively. As

secondary antibodies, Alexa Fluor 488 anti-mouse and Alexa Fluor 555 anti-rabbit (Life Tech-

nologies) were used. DNA was visualized using ProLong Gold antifade reagent with DAPI

(Life Technologies). Confocal microscopy was performed using an inverted IX81 motorized

FluoView FV1000 confocal (Olympus) microscope and detection was carried out with FV1000

software (Olympus). Image analysis was performed using Magic Montage plugin for ImageJ

[96] and FIJI [95].

Homology modelling of protein structures

For generation of structural homology models, amino acid sequences of proteins were submit-

ted to Protein Homology/analogy Recognition Engine v. 2.0 (Phyre2) [53], available at http://

www.sbg.bio.ic.ac.uk/phyre2/, using either the normal or intensive modelling modes. The

resulting PDB files with the 3D structure of proteins were visualised with MacPyMOL

(Schrodinger).

In silico protein-protein docking and interaction hot-spots

PDB files with the 3D structures of proteins were used as input to the ClusPro docking server

[59,97], available at https://cluspro.bu.edu/home.php. TbMMS19 was defined as the receptor

and TbCIA2B as ligand and all settings were kept as default. Output PBD files containing the

top highest scoring models according to the balanced method were downloaded and visualised

with MacPyMOL (Schrodinger). PDB files with protein complexes were uploaded to the

PredHS server [61], available at http://www.predhs.org/. The predicted interaction hot-spots

on the surface of proteins were identified by the SVM algorithm and superimposed on the 3D

structure of the complex using MacPyMOL (Schrödinger).

Recombinant protein expression and purification

PCR amplified sequences corresponding to the N- or C-terminal domains of TbMMS19, or

fragments of the latter were cloned into using pGEX-6P-1 (GE Healthcare), using the BamHI

and NotI restriction sites. The sequence for a Strep-Tag II was included in the antisense prim-

ers to generate a C-terminal Strep-Tag II fusion in addition to the N-terminal GST tag
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encoded in the expression vector. TbCIA2B was cloned into pASK-IBA7plus (IBA Life Sci-

ences) using EcoRI and EcoRV restriction sites and the sequence for a hexahistidine tag was

included in the antisense primer to generate a C-terminal 6XHIS fusion in addition to the N-

terminal Strep-Tag II present in the vector. Recombinant proteins were expressed in C43

(DE3) pLysS E. coli [98] carrying the pRARE plasmid for rare codons, grown in terrific broth.

rTbCIA2B was purified by immobilised metal affinity chromatography with Ni-NTA agarose

(Qiagen) and eluted in EB1 (50 mM Tris.HCl, pH 9, 250 mM NaCl, 0.1% Triton X-100, 1 mM

EDTA, 1 mM DTT, 400 mM imidazole, 10% glycerol). Fragments and domains of TbMMS19

were batch purified with Glutathione Sepharose 4B beads (GE Healthcare), followed by Strep-

Tactin (IBA Life Sciences) affinity purification and eluted in EB2 (50 mM Tris.HCl, pH 9, 250

mM NaCl, 1% Triton X-100, 0.5% sarkosyl, 1 mM EDTA, 1 mM DTT, 5 mM desthiobiotin,

and 10% [v/v] glycerol).

TAP/MS

Tandem affinity purifications were performed following a standard protocol as described [99],

with minor modifications. Briefly, 2.5 litres of PCF expressing PTP tagged proteins were

grown to late log phase, centrifuged and washed in ice-cold PBS. Cell pellets were suspended

in TLB buffer (20 mM Hepes KOH pH 7.7, 150 mM potassium glutamate, 150 mM sucrose, 3

mM MgCl2, 2 mM DTT, 1% [v/v] Triton X-100, Roche cOmplete EDTA-free protease inhibi-

tor cocktail) and lysed on ice with a Dounce homogenizer. Lysates were cleared by centrifuga-

tion, filtered into a 10 mL Poly-Prep column (Bio-Rad) and incubated with pre-equilibrated

IgG Sepharose 6 Fast Flow resin (GE Healthcare). The resin was washed with PA-150, equili-

brated with TEV buffer and incubated overnight with 400U of AcTEV protease (Invitrogen).

TEV eluates were collected, added to buffer PC-150 supplemented with 1 mM CaCl2 and pro-

tease inhibitors, then bound to a pre-equilibrated Anti-Protein C affinity matrix (Sigma-

Aldrich) in another Poly-Prep. After extensive washes, proteins were eluted in 1.8 mL of

EDTA/EGTA buffer and concentrated with StrataClean resin (Agilent). The resin was pelleted,

resuspended in NuPAGE LDS sample buffer (Invitrogen), boiled at 95˚C for 10 minutes, and

the proteins were resolved in NuPage 4–12% Bis-Tris gels (Invitrogen) before staining with

SYPRO Ruby (Molecular Probes). Images were captured in a Typhoon FLA 7000 laser scanner

(GE Healthcare). Trypsin digests of excised gel sections were analysed by LC/MS in an

ABSciex TripleTOF 5600+ mass spectrometer and the spectra were searched against a T. brucei
protein database [46] using MASCOT. Proteins hits with less than 2 unique peptides were

disregarded.

Co-immunoprecipitation

PCF parasites were washed with ice cold PBS, resuspended in TLB buffer and quickly dis-

rupted with glass beads in a FastPrep machine (MP Biomedicals). Lysates were cleared by cen-

trifugation (16,000 g, 30 minutes, 4˚C) and transferred to 1.5 mL tubes containing 25 μL of

pre-equilibrated IgG Sepharose 6 Fast Flow resin (GE Healthcare) (for assays with double-

tagged cell lines) or 200 pmoles of TbMMS19 GST-fusion proteins immobilised to 25 μL of

Glutathione Sepharose 4B, and incubated with rotation for two hours at 4˚C. Alternatively,

immobilised proteins were incubated with 400 pmoles of purified rTbCIA2B. The resins were

washed 4 times with 1 mL of TLB, resuspended in 25 μL of 2 X SDS-PAGE sample buffer and

subsequently boiled at 95˚C for 10 min. For Strep Tag pull-downs, 400 pmoles of rTbCIA2B

were immobilised in 25 μL of Strep-Tactin resin and everything else performed as described

above. Interactions were analysed by Western blot after SDS-PAGE.
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For V5 co-IP/MS, pellets of 3 x 109 PCF or BSF cells were suspended in PBS, snap-frozen in

liquid nitrogen and grinded using a CryoGrinder (OPS Diagnostic) [51]. The cell powder was

suspended in 500 μL of lysis buffer (20 mM HEPES, pH 7.4, 150 mM Na-Citrate, 1 mM

MgCl2, 0.2 mM CaCl2, 0.1% [v/v] Triton X-100, and Roche cOmplete EDTA-free protease

inhibitor cocktail). Cleared lysates were added to 12 μL of DynaBeads pre-cross-linked with

anti-V5 antibody and incubated for two hours at 4˚C. Beads were further washed with lysis

buffer and proteins were eluted in 100 μL of elution buffer (25 mM Tris.HCl, pH 7.5, 2% [v/v]

SDS) at 72˚C for 10 minutes. Proteins were precipitated with ethanol, resolved by SDS-PAGE,

visualised by silver staining and analysed by Western blot or mass spectrometry.

Selective permeabilization with digitonin

Cell fractionation using a digitonin gradient was performed as described elsewhere [100]. For

co-localisation, 1 x 107 cells were suspended in 100 μL of FB (20 mM Tris-HCl, 0.6 M sorbitol,

1 mM DTT, Roche cOmplete protease inhibitor cocktail; pH 7.5) containing concentrations of

0.01 to 1 mg mL-1 of digitonin. Cells were incubated on ice for 5 min and centrifuged at 16,000

g for 5 min at 4˚C. The supernatant was transferred to a clean 1.5 mL tube and evaporated in a

SpeedVac until almost dry. The pellet was suspended in 20 μL of 2 X SDS-PAGE sample buffer,

boiled for 10 min at 95˚C and resolved by SDS-PAGE. Protein release in each fraction was

detected by a semi-quantitative Western blot. Cytosolic and organellar fractions for other

assays were prepared by suspending 1 x 108 cells in 1 mL FB containing 0.15 mg mL-1 digito-

nin. The soluble supernatant was considered the cytosolic fraction. The pellet was washed

once with 1 mL of FB, incubated for 10 min on ice with 1 mL FB with 0.5% (v/v) Triton X-100

and centrifuged at 16,000 g for 5 min at 4˚C. The resulting supernatant was considered the

organellar fraction.

Crude cell fractionation analysis

The cytosol was separated from the organellar fraction as described elsewhere [101]. Mid-log

cells expressing the V5-tagged proteins were harvested at 1000 g for 10 min at 4˚C, washed

with ice cold SHE buffer (25 mM HEPES, pH 7.4, 250 mM sucrose, 1 mM EDTA), resus-

pended in fresh SHE buffer to a final concentration of 5 x 109 cells mL-1, and the protein con-

centration was determined according to Bradford. One milligram protein aliquots were

suspended in Hanks’ balanced salt solution (HBSS) (1.26 mM CaCl2, 5.33 mM KCl, 0.44 mM

KH2PO4, 0.81 mM MgSO4, 138 mM NaCl, 4 mM NaHCO3, 0.3 mM Na2HPO4, 5.6 mM glu-

cose, pH 7.3) and digitonin was added to the final concentration of 0.4 μg μL-1. After vortexing,

the suspension was incubated at RT for 5 min, and followed by centrifugation at 14000 g at RT

for 2 min. The supernatant represented the cytosolic fraction, while the pellet was washed once

with HBSS and then resuspended in HBSS containing 0.1% (v/v) Triton X-100 and incubated

on ice for 5 min. After centrifugation, the supernatant was collected as the organellar fraction.

The pellet was washed once more with HBSS and then resuspended in a volume equal to the

previous two fractions and analyzed by Western blotting. This final pellet fraction contains

proteins that are insoluble or strongly associated to membranes.

Aconitase activity measurement

Aconitase activity was measured as previously described by monitoring the increase of the

absorbance at 240 nm due to the conversion of isocitrate into cis-aconitate [102]. Two hundred

microliters of lysates were added to 1.3 mL of aconitase buffer (50 mM Tris.HCl, 1 mM DTT,

20 mM DL-isocitric acid or sodium citrate; pH 7.4) and incubated at 25˚C. The rate of increase

of the absorbance at 240 nm per min (ΔA240 nm/min) was monitored for 30 min in a Varian
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Cary 50 UV/Vis spectrophotometer. A blank reaction without cell lysate was run in parallel.

Specific activity was obtained by dividing the measured aconitase activity (mU mL-1) by pro-

tein concentration in the sample. Uninduced controls were considered as 100% of activity.

Measurement of protein-bound iron

Cellular fractions from digitonin fractionation were concentrated in a SpeedVac (Thermo)

and the iron content measured by the Ferene method, as described by [103],. The pellets were

thoroughly suspended in 100 μL of milliQ water, mixed with 100 μL of 1% HCl, incubated for

10 min at 100˚C, quickly cooled down on ice and centrifuged (12,000 g, 5 min). Subsequently,

500 μL of 7.5% ammonium acetate, 100 μL 4% ascorbic acid and 100 μL of 2.5% SDS were

added to the samples and vortexed. The samples were centrifuged again (12,000 g, 10 min) and

855 μL of the supernatant was transferred to a semi-micro cuvette to which 95 μL of 6.2 mM

Ferene (Sigma) were added. The absorbance of the ferrous-ferene complex at 593 nm was cor-

rected for turbidity by subtraction of the absorbance at 800 nm and measured in a Varian Cary

50 UV/Vis spectrophotometer. Iron content was estimated by interpolation from a standard

curve of ferrous sulphate (2,000–12.5 ng) using least squares linear regression.

Resazurin cell viability assay

The Alamar Blue assay was used to assess viability of cells exposed to DNA damaging agents or

DFO. In this assay, the resazurin salt is reduced to resorufin, which emits a fluorescent signal

proportional to the number of viable cells [104]. Cell densities of exponentially growing cells

were adjusted to 1 x 106 or 5 x 104 cells mL-1 for PCF and BSF trypanosomes, respectively, to

generate a 2x working cell suspension. One hundred microliters of cell suspension were added

in quadruplicate to 96-well plates containing 100 μL per well of 2-fold serial dilutions of drugs.

Wells without drugs or without cells served as maximum growth control and blank, respec-

tively. PCF cells were grown for 48 hrs at 28˚C, while BSF were incubated for 72 hrs at 37˚C,

after which 10 μL of a 1.1 mg mL-1 solution of resazurin (Sigma) were dispensed to each well

and the plates were incubated for another 6 hrs. The fluorescent signal was measured in a

FLx800TM Microplate reader (BioTek) with excitation wavelength set at λ530 and emission at

λ590. All EC50s (concentration of a compound that reduces cell growth by 50%) were calculated

by nonlinear regression using the software Prism 7.0 (GraphPad Inc.). DFX, methyl methane

sulfonate (MMS), 4-nitroquinoline 1-oxide (4NQO), hydroxyurea, and camptothecin were

purchased from Sigma-Aldrich, and phleomycin (Zeocin) was purchased from Thermo

Fisher.

Yeast complementation

Complementation experiments were carried out in Saccharomyces cerevisiae strain W303-1A

as WT (MATa, ura3-1, ade2-1, trp1-1, his3-11,15, leu2-3,112). The galactose-regulatable

mutants used were GalL-MMS19 and Gal-CIA2 [14,43]. The latter mutant strain was con-

structed by homologous recombination in which the upstream promoter region of CIA2 was

replaced by a PCR product containing the NatNT2 resistance marker gene and the GAL pro-

moter. PCR analysis of chromosomal DNA confirmed correct insertion of the promoter. Yeast

cells were grown in minimal (SC) media, containing galactose or glucose at a concentration of

2% (m/v) [105]. The yeast MMS19-encoding gene was cloned into the SmaI and XhoI sites of

the pRS424-TDH3 vector [106]. For control of the rescue by yeast Cia2, the Cia2-encoding

sequence with 500 bp natural promoter (NP) sequence was amplified from yeast DNA and

cloned into the SacI and XhoI sites of pRS416-MET25. TbCIA2A and TbCIA2B genes were

amplified from T. brucei DNA and cloned into the BamHI and SalI sites of pRS416-MET25.
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TbMMS19 (Tb927.8.3920) was cloned into pRS424-TDH3 in two steps. SpeI-BamHI and

BamHI-ClaI fragments were consecutively PCR-amplified and cloned. The BamHI site, which

is lacking in the TbMMS19 gene, introduces silent mutations at amino acids 514–515 (Gly-

Ser). After transformation of plasmids into GalL-MMS19 or Gal-CIA2 cells, growth in liquid

minimal media supplemented with 2% galactose was carried out for 16 h. Then cells were

shifted to the same medium, but with 2% glucose for 16 h (Gal-CIA2) or 16 and 24 h

(GalL-MMS19). Cell suspensions were diluted to an optical density of 0.5 at 600 nm and 5 μl

aliquots, including four consecutive 10-fold serial dilutions, were spotted on agar plates. Plates

containing minimal media supplemented with 2% galactose or glucose were incubated at 30˚C

for 48 h and photographed.

In vivo infectivity

Mice had food and fresh water ad libitum. The experiment was approved by our institution’s

Animal Ethics Committee. To determine the infectivity of trypanosomes depleted for

TbCIA2B or TbMMS19, six groups of BALB/C mice (uninduced and RNAi-induced

TbCIA2B, uninduced and RNAi-induced TbMMS19, wild type single marker [WT SM] cells

with and without doxycycline). Each group consisted of 5 females (8 to 9 weeks old) which

were infected intraperitoneally with 10,000 BSF cells. In their drinking water, the induced

groups received 1 mg/ml doxycycline sweetened with 50 mg/ml sucrose, starting 2 days before

the infection. The survival was recorded twice a day. Survival data was plotted using Prism 7.

Supporting information

S1 Fig. Double knockdowns of the CIA targeting complex cause a defect in cell growth in

both PCF and BSF trypanosomes. Growth curves of double RNAi cells lines for TbCIA1-

TbCIA2B and TbCIA2A-TbCIA2B in PCF (A and B) and BSF (C and D) cells were grown in

presence (Tet+) and absence (Tet-) of tetracycline for 10 and 8 days, respectively.

(TIF)

S2 Fig. Survival curves upon infection with CTC RNAi cell lines. Survival of mice infected

with BSF TbMMS19 (A) and TbCIA2B (B) RNAi cell lines, uninduced (-) and induced (+)

with doxycycline. Wild type (SM) was used as controls, also in the absence (-) and presence

(+) of doxycycline. Five mice per group were used. Induced (+) cell lines are nudged in the

graph for easier visualisation of the overlapping curves.

(TIF)

S3 Fig. Homology model of the TbMMS19 tertiary structure and HEAT repeat detection.

(A) Primary sequence of TbMMS19 with the centres of the HEAT repeats highlighted in a

scale of red according to the probability of the respective residue to be in the centre of a HEAT

repeat unit, as calculated by Ard2 [55].(B) Predicted 3D structure of TbMMS19 with HEAT

repeats highlighted in red. The homology model for TbMMS19 was created using Phyre2 [53].

(C) The N-and C-terminal domains of TbMMS19 are represented in blue and red, respectively.

The boundaries of the domains were defined by alignment with human MMS19. Letters A-C

represent functional domains of the human protein. Grey boxes correspond to HEAT repeats

annotated in the Uniprot database for MMS19 (accession number Q9T76), or identified as

described in (B) for TbMMS19.

(PNG)

S4 Fig. N- and C-termini of TbMMS19 interact with TbCIA1. Tandem affinity purifications

of PTP-TbMMS19 (3), PTP-TbMMS19-NTD (4), and PTP-TbMMS19-CTD (5), mock (1) and
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(2) empty plasmid, observed in a SYPRO Ruby-stained SDS-PAGE gel.

(PNG)

S5 Fig. Additional models for the complex TbMMS19-TbCIA2B. Three-dimensional models

for the proteins were created using Phyre2 [53] and the best predictions were used for docking

with ClusPro [59]. The five highest-scoring complexes (balanced score), were analysed with

PredHS [61] to identify the key residues for interaction with TbCIA2B at the binding surface

of TbMMS19. TbCIA2B is depicted as blue mesh in (A) and the N and C-terminal domains of

TbMMS19 are shown in (A) and (B) as grey and green surfaces, respectively. TbCIA2B was

omitted in (B) to uncover the residues at the contact surface, which are shown in a scale of red

according to their associated SVM hot-spot score. Except in model 5, the residues more likely

to be hot-spots of interaction are predicted to be in the C-terminal domain of TbMMS19. Mac-

PyMOL (Schrödinger, LLC) was used to generate the figures based on the output of PredHS,

ClusPro and Phyre2.

(PNG)
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52. Tsaousis AD, Nývltová E, Sutak R, Hrdy I, Tachezy J. A nonmitochondrial hydrogen production in

Naegleria gruberi. Genome Biol Evol. 2014; 6:792–799. https://doi.org/10.1093/gbe/evu065 PMID:

24682152

53. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. The Phyre2 web portal for protein model-

ing, prediction and analysis. Nat Protoc. 2015; 10:845–858. https://doi.org/10.1038/nprot.2015.053

PMID: 25950237

54. Kelley LA, Sternberg MJE. Protein structure prediction on the Web: a case study using the Phyre

server. Nat Protoc. 2009; 4: 363–371. https://doi.org/10.1038/nprot.2009.2 PMID: 19247286

55. Fournier D, Palidwor GA, Shcherbinin S, Szengel A, Schaefer MH, Perez-Iratxeta C, et al. Functional

and genomic analyses of alpha-solenoid proteins. PLoS ONE. 2013; 8:e79894. https://doi.org/10.

1371/journal.pone.0079894 PMID: 24278209

56. Groves MR, Barford D. Topological characteristics of helical repeat protein. Curr Opin Struct Biol.

1999; 9:383–389. https://doi.org/10.1016/S0959-440X(99)80052-9 PMID: 10361086

57. Queimado L. Cloning the human and mouse MMS19 genes and functional complementation of a

yeast mms19 deletion mutant. Nucleic Acids Res. 2001; 29:1884–1891. https://doi.org/10.1093/nar/

29.9.1884 PMID: 11328871

58. Odermatt DC, Gari K. The CIA targeting complex is highly regulated and provides two distinct binding

sites for client iron-sulfur proteins. Cell Rep. 2017; 18:1434–1443. https://doi.org/10.1016/j.celrep.

2017.01.037 PMID: 28178521

59. Kozakov D, Hall DR, Xia B, Porter KA, Padhorny D, Yueh C, et al. The ClusPro web server for protein–

protein docking. Nat Protoc. 2017; 12:255–278. https://doi.org/10.1038/nprot.2016.169 PMID:

28079879

60. Deng L, Guan J, Wei X, Yi Y, Zhang QC, Zhou S. Boosting prediction performance of protein–protein

interaction hot spots by using structural neighborhood properties. J Comput Biol 2013; 20: 878–891.

https://doi.org/10.1089/cmb.2013.0083 PMID: 24134392

61. Deng L, Zhang QC, Chen Z, Meng Y, Guan J, Zhou S. PredHS: a web server for predicting protein–

protein interaction hot spots by using structural neighborhood properties. Nucleic Acids Res. 2014;

42:W290–W295. https://doi.org/10.1093/nar/gku437 PMID: 24852252

Trypanosoma brucei CIA pathway

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007326 October 22, 2018 28 / 31

https://doi.org/10.1111/j.1742-4658.2006.05321.x
https://doi.org/10.1111/j.1742-4658.2006.05321.x
http://www.ncbi.nlm.nih.gov/pubmed/16762036
https://doi.org/10.2165/00003495-197611010-00004
https://doi.org/10.2165/00003495-197611010-00004
https://doi.org/10.1038/nprot.2009.39
http://www.ncbi.nlm.nih.gov/pubmed/19528951
https://doi.org/10.1074/jbc.R117.789537
https://doi.org/10.1074/jbc.R117.789537
http://www.ncbi.nlm.nih.gov/pubmed/28615439
https://doi.org/10.1111/mmi.13487
http://www.ncbi.nlm.nih.gov/pubmed/27582265
https://doi.org/10.1093/nar/gkp851
https://doi.org/10.1093/nar/gkp851
http://www.ncbi.nlm.nih.gov/pubmed/19843604
https://doi.org/10.1126/science.1112642
https://doi.org/10.1126/science.1112642
http://www.ncbi.nlm.nih.gov/pubmed/16020726
https://doi.org/10.1093/bioinformatics/btw238
https://doi.org/10.1093/bioinformatics/btw238
http://www.ncbi.nlm.nih.gov/pubmed/27273670
https://doi.org/10.1038/nchembio.1843
https://doi.org/10.1038/nchembio.1843
http://www.ncbi.nlm.nih.gov/pubmed/26083061
https://doi.org/10.1128/EC.4.11.1942-1950.2005
https://doi.org/10.1128/EC.4.11.1942-1950.2005
http://www.ncbi.nlm.nih.gov/pubmed/16278461
https://doi.org/10.1017/S0031182011002125
http://www.ncbi.nlm.nih.gov/pubmed/22309600
https://doi.org/10.1093/gbe/evu065
http://www.ncbi.nlm.nih.gov/pubmed/24682152
https://doi.org/10.1038/nprot.2015.053
http://www.ncbi.nlm.nih.gov/pubmed/25950237
https://doi.org/10.1038/nprot.2009.2
http://www.ncbi.nlm.nih.gov/pubmed/19247286
https://doi.org/10.1371/journal.pone.0079894
https://doi.org/10.1371/journal.pone.0079894
http://www.ncbi.nlm.nih.gov/pubmed/24278209
https://doi.org/10.1016/S0959-440X(99)80052-9
http://www.ncbi.nlm.nih.gov/pubmed/10361086
https://doi.org/10.1093/nar/29.9.1884
https://doi.org/10.1093/nar/29.9.1884
http://www.ncbi.nlm.nih.gov/pubmed/11328871
https://doi.org/10.1016/j.celrep.2017.01.037
https://doi.org/10.1016/j.celrep.2017.01.037
http://www.ncbi.nlm.nih.gov/pubmed/28178521
https://doi.org/10.1038/nprot.2016.169
http://www.ncbi.nlm.nih.gov/pubmed/28079879
https://doi.org/10.1089/cmb.2013.0083
http://www.ncbi.nlm.nih.gov/pubmed/24134392
https://doi.org/10.1093/nar/gku437
http://www.ncbi.nlm.nih.gov/pubmed/24852252
https://doi.org/10.1371/journal.ppat.1007326


62. Ali V, Nozaki T. Iron-sulphur clusters, their biosynthesis, and biological functions in protozoan para-

sites. Advances in Parasitology. 2013. pp. 1–92. https://doi.org/10.1016/B978-0-12-407705-8.00001-

X PMID: 23876871

63. Anwar S, Dikhit MR, Singh KP, Kar RK, Zaidi A, Sahoo GC, et al. Interaction between Nbp35 and Cfd1

proteins of cytosolic fe-s cluster assembly reveals a stable complex formation in Entamoeba histoly-

tica. PLoS ONE. 2014; 9:e108971–13. https://doi.org/10.1371/journal.pone.0108971 PMID:

25271645

64. Duan C-G, Wang X, Tang K, Zhang H, Mangrauthia SK, Lei M, et al. MET18 connects the cytosolic

iron-sulfur cluster assembly pathway to active dna demethylation in Arabidopsis. PLoS Genet. 2015;

11:e1005559. https://doi.org/10.1371/journal.pgen.1005559 PMID: 26492035

65. Freibert SA, Goldberg AV, Hacker C, Molik S, Dean P, Williams TA, et al. Evolutionary conservation

and in vitro reconstitution of microsporidian iron-sulfur cluster biosynthesis. Nat Commun. 2016; 8:1–

12. https://doi.org/10.1038/ncomms13932 PMID: 28051091

66. Han Y-F, Huang H-W, Li L, Cai T, Chen S, He X-J. The cytosolic iron-sulfur cluster assembly protein

MMS19 regulates transcriptional gene silencing, DNA repair, and flowering time in Arabidopsis. PLoS

ONE. 2015; 10:e0129137. https://doi.org/10.1371/journal.pone.0129137 PMID: 26053632

67. van Wietmarschen N, Moradian A, Morin GB, Lansdorp PM, Uringa EJ. The mammalian proteins

MMS19, MIP18, and ANT2 are involved in cytoplasmic iron-sulfur cluster protein assembly. J Biol

Chem. 2012; 287:43351–43358. https://doi.org/10.1074/jbc.M112.431270 PMID: 23150669

68. Li F, Martienssen R, Cande WZ. Coordination of DNA replication and histone modification by the

Rik1–Dos2 complex. Nature. 2011; 475:244–248. https://doi.org/10.1038/nature10161 PMID:

21725325

69. Fast B, Kremp K, Boshart M, Steverding D. Iron-dependent regulation of transferrin receptor expres-

sion in Trypanosoma brucei. Biochem J. 1999; 342:691–696. https://doi.org/10.1042/bj3420691

PMID: 10477281
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