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Texas, United States

Abstract KCNQ2/3 channels, ubiquitously expressed neuronal potassium channels, have

emerged as indispensable regulators of brain network activity. Despite their critical role in brain

homeostasis, the mechanisms by which KCNQ2/3 dysfunction lead to hypersychrony are not fully

known. Here, we show that deletion of KCNQ2/3 channels changed PV+ interneurons’, but not

SST+ interneurons’, firing properties. We also find that deletion of either KCNQ2/3 or KCNQ2

channels from PV+ interneurons led to elevated homeostatic potentiation of fast excitatory

transmission in pyramidal neurons. Pvalb-Kcnq2 null-mice showed increased seizure susceptibility,

suggesting that decreases in interneuron KCNQ2/3 activity remodels excitatory networks,

providing a new function for these channels.

DOI: https://doi.org/10.7554/eLife.38617.001

Introduction
Genetic studies have established that potassium channel dysfunction is responsible for multiple pedi-

atric epilepsy disorders (Brenner and Wilcox, 2012; Geisheker et al., 2017; Niday and Tzingounis,

2018; Oyrer et al., 2018). KCNQ2 and KCNQ3 channels, in particular, have emerged as fundamen-

tal regulators of normal brain activity (Brenner and Wilcox, 2012; Geisheker et al., 2017). Patho-

genic variants of these channels are strongly associated with early-onset neonatal epileptic

encephalopathy and developmental disorders (Millichap et al., 2017; Mulkey et al., 2017;

Oyrer et al., 2018). However, the network mechanisms by which KCNQ2/3 variants lead to hyperex-

citability are not fully understood.

KCNQ2/3 channels are expressed in both pyramidal neurons and interneurons (Cooper et al.,

2001). In pyramidal neurons, KCNQ2/3 channels primarily control spike frequency adaptation, a qui-

escence period neurons enter following a brief train of activity (Peters et al., 2005; Soh et al.,

2014). However, our knowledge of KCNQ2/3 function in interneurons is limited. This gap in knowl-

edge is partly because KCNQ2/3 function is most easily observed in neurons that undergo pro-

nounced spike frequency adaptation, a characteristic not traditionally found in interneurons

(Pelkey et al., 2017).

It is currently unknown whether loss of KCNQ2/3 function in interneurons would have effects on

overall network activity, and if it does, whether it would lead to a dampening or an increase in excit-

ability. Previous work suggests that loss of KCNQ2/3 function in interneurons would likely elevate

their excitability (Lawrence et al., 2006; Pelkey et al., 2017), which in turn would increase GABAer-

gic inhibition and decrease network excitability. However, at early times in development GABA is
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depolarizing due to shifted chloride equilibrium potential (Le Magueresse and Monyer, 2013). Pre-

vious work found that neonatal administration of bumetanide, which changes GABA receptor activity

from depolarizating to hyperpolarizing, prevents seizures in mice with a global loss of KCNQ2 chan-

nels (Marguet et al., 2015). This may be evidence that loss of KCNQ2/3 function at this time

increases network excitability through changes in interneuron GABA signaling, but the authors did

not directly examine synaptic activity. Further, it is entirely unknown what effects KCNQ2/3 dysfunc-

tion in interneurons has on network excitability in juvenile and mature mice.

In this work, we developed mice lacking KCNQ2 and KCNQ3 specifically in interneurons to

address their possible role at the cellular and network activity. We found that KCNQ2/3 channels

regulate interneuron properties in a cell type-specific manner. Deletion of KCNQ2/3 channels pri-

marily impacts the firing properties of PV+ interneurons, but not SST+ interneurons. We also find

that interneuronal loss of KCNQ2/3 or KCNQ2 channels increases excitatory transmission between

pyramidal neurons, perhaps as homeostatic compensation for the increased GABAergic signaling we

observe.

Results and discussion
To investigate the role of KCNQ2/3 channels in interneurons, we developed mouse lines that lack

KCNQ2/3 channels specifically in parvalbumin-positive (PV+) and somatostatin-positive (SST+) inter-

neurons, cell types known to express KCNQ2/3 channels (Cooper et al., 2001; Lawrence et al.,

2006). We crossed Kcnq2 or Kcnq3 floxed mice (Kcnq2f/f and Kcnq3f/f) to Nkx2-1cre mice (Xu et al.,

2008). The Nkx2-1cre driver is expressed starting early in development (~embryonic day 10.5) in

SST+ and PV+ interneurons, allowing us to study the impact of KCNQ2/3 channel ablation in young

and juvenile neurons. In order to identify the Cre-expressing PV+ and SST+ interneurons, we crossed

these mice to a reporter line (Ai9) that expresses the fluorescent protein tdTomato in cells in which

Cre recombinase has been active. We designated these mice as IN:Kcnq2/3 null (Nkx2-1cre;Kcnq2f/f;

Kcnq3f/f;Ai9).

We first examined whether ablation of KCNQ2/3 channels from interneurons led to changes in

the excitatory and inhibitory drive of CA1 pyramidal neurons. Based on previous work (Pelkey et al.,

2017), we predicted that loss of KCNQ2/3 channels from PV+/SST+ interneurons would lead to

increased inhibitory but not excitatory transmission. We recorded spontaneous inhibitory postsynap-

tic currents (sIPSCs) and excitatory postsynaptic currents (sEPSCs) from CA1 pyramidal neurons of

IN:Kcnq2/3 null mice. These measurements are commonly used to detect synaptic input. We first

focused our analysis on the second week of life, as KCNQ2/3 dysfunction is primarily associated with

neonatal epilepsy (Oyrer et al., 2018). Consistent with KCNQ2/3 channel expression in PV+/SST+

interneurons (Pelkey et al., 2017), the loss of these channels increased sIPSC frequency (Figure 1a;

mean frequency: control 6.4 ± 0.5 Hz, n = 15; IN:Kcnq2/3 null 8.8 ± 1.1 Hz, n = 10; df = 23 t = �2.22

p=0.036 two-tailed Student’s t-test). Importantly, ablation of Kcnq2/3 from PV+/SST+ also increased

sEPSC frequency in CA1 pyramidal neurons (Figure 1a; mean frequency: control 2.01 ± 0.16 Hz,

n = 14; IN:Kcnq2/3 null 3.01 ± 0.35 Hz, n = 8; df = 20 t = �2.92 p=0.0085 Student’s t-test). This fre-

quency increase was accompanied by a three-fold change in the miniature EPSC (mEPSC) frequency

(Figure 1b; mean frequency: control 0.71 ± 0.11 Hz, n = 9; IN:Kcnq2/3 null 2.2 ± 0.4 Hz, n = 6;

p=0.002 df = 13 t = �3.86 Student’s t-test), suggesting that elevating interneuron excitability led to

secondary changes in excitatory synaptic drive. We did not find any changes in the miniature IPSC

(mIPSC) frequency (Figure 1b; mean frequency: control 5.25 ± 0.48 Hz, n = 12; IN:Kcnq2/3 null

5.8 ± 0.6 Hz, n = 9; df = 19 t = �0.81 p=0.43 Student’s t-test), suggesting that the effect on sIPSCs

was due to elevated interneuron excitability. The effects on the mEPSC frequency were likely a result

of synaptic homeostasis in an effort to maintain a constant excitation and inhibition ratio. This is

because an increase in mEPSCs, and consequently sEPSCs, would counteract the increases in the

sIPSC frequency. Indeed, the sEPSC/sIPSC ratio (mean ratio: control 0.34 ± 0.03, n = 14; IN:Kcnq2/3

null 0.36 ± 0.04, n = 8), unlike the mEPSC/mIPSC ratio (mean ratio control 0.17 ± 0.04, n = 9; IN:

Kcnq2/3 null 0.38 ± 0.05, n = 5; df = 12 t = �3.51 p=0.004 unpaired Student’s t-test), remained the

same in neurons with or without PV+/SST+ KCNQ2/3 channels. Importantly, the effects on the

mEPSCs were specific to changes in interneuron excitability, as we did not find any significant

changes in the mEPSC frequency in CA1 pyramidal neurons from Kcnq2 pyramidal neuron knockout

mice (Emx1Cre;Kcnq2f/f, designated as PYR:Kcnq2 null) (Figure 1). Rather, in PYR:Kcnq2 null neurons
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Figure 1. Ablation of Kcnq2/3 channels from PV+/SST+interneurons leads to increased excitatory transmission. (a) Top, representative sEPSC and sIPSC

traces recorded from mouse CA1 pyramidal neurons (P15–P19) in acute hippocampal slices from control (number of animals = 8) and either Kcnq2/3

interneuron (IN:Kcnq2/3 null; number of animals = 4) or Kcnq2 pyramidal neuron conditional knockout (PYR:Kcnq2 null; number of animals = 3) mice.

Bottom, cumulative distribution plots of sIPSC and sEPSC inter-event intervals recorded in pyramidal neurons of IN:Kcnq2/3 null and PYR:Kcnq2 null

Figure 1 continued on next page
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only the spontaneous frequency was elevated (Figure 1; mean frequency: control 2.01 ± 0.16 Hz,

n = 14; PYR:Kcnq2 null 3.3 ± 0.46 Hz, n = 10; df = 22 t = �2.99 p=0.0067 Student’s t-test), consis-

tent with the role of KCNQ2/3 channels in controlling pyramidal neurons’ axonal excitability

(Battefeld et al., 2014).

Are the synaptic changes due to loss of KCNQ2/3 from PV+, SST+, or both types of interneurons?

To address this question, we tested whether ablation of KCNQ2/3 channels alters the excitability of

PV+ and SST+ cells in mouse CA1. We distinguished these neurons based on their intrinsic excitabil-

ity and firing properties (Figure 2). We found that ablation of Kcnq2/3 from PV+-like interneurons

led to an increase in the number of action potentials following suprathreshold depolarizing current

pulses (Figure 2a). In contrast, ablation of Kcnq2/3 from SST+-like interneurons did not change their

firing properties (Figure 2a). We obtained similar results for L2/3 interneurons, suggesting that

KCNQ2/3 function is critical for PV+ interneuron properties across multiple forebrain regions

(Figure 2a). To confirm our finding that KCNQ2/3 alters PV+ interneuron excitability, we tested the

effect of ablating Kcnq2 and Kcnq3 from PV+ interneurons by developing Pvalbcre;Kcnq2f/f/Kcnq3f/f;

Ai9 (designated as PV:Kcnq2/3 null) mice. Indeed, ablation of Kcnq2 and Kcnq3 increased the firing

rate of PV+ neurons in the CA1 region (Figure 2b). The increased excitability in PV+ interneurons

might have been due to their increased input resistance of Kcnq2/3 null neurons (Figure 2b; mean

RIN: control 166 ± 16 MW, n = 15; PV:Kcnq2/3 null 257 ± 33 MW, n = 14; df = 27 t = �2.54 p=0.017

unpaired Student’s t-test). However, as application of the pan-KCNQ blocker XE-991 did not change

the input resistance in control PV+ interneurons (Figure 2—figure supplement 3; RIN: control

169 ± 20 MW,+XE-991 143 ± 20 MW, n = 6; t = 1.355 df = 5 p=0.233), it’s unclear whether the

change in input resistance in Kcnq2/3 null neurons is due to direct loss of KCNQ2/3 activity or an

indirect effect. Next, we repeated our experiments in SSTcre;Kcnq2f/f/Kcnq3f/f;Ai9 neurons

(Figure 2b; refer to as SST:Kcnq2/3 null). Consistent with our earlier finding, ablation of Kcnq2/3

from SST+ interneurons did not change their firing properties or input resistance (mean RIN: control

360.28 ± 34 MW, n = 6; SST:Kcnq2/3 null 327 ± 64 MW, n = 8; df = 12 t=�0.42 p=0.68 unpaired Stu-

dent’s t-test).

Our data suggest that ablation of KCNQ2/3 channel activity from PV+ interneurons results in ele-

vated interneuron excitability, which in turn could lead to remodeling of fast excitatory synaptic

activity. As KCNQ2 pathogenic variants are much more frequent than KCNQ3 variants (Brenner and

Wilcox, 2012), we also examined whether ablation of Kcnq2 alone could lead to similar effects.

Indeed, we found that loss of KCNQ2 channels from PV+ interneurons increased their intrinsic excit-

ability (Figure 3a) and the frequency of sEPSCs in pyramidal neurons (Figure 3c; Pvalb-Cre;Kcnq2+/

+;Ai9 1.165 ± 0.12 Hz, n = 13; Pvalb-Cre;Kcnq2f/f;Ai9: 2.108 ± 0.22 Hz, n = 19; p=0.0098 Mann-Whit-

ney test). The observed changes in the sEPSC frequency were not due to changes in the intrinsic

excitability of pyramidal neurons (Figure 3b). To determine whether ablation of Kcnq2 from PV+-

expressing interneurons affected the excitatory drive in vivo, we administered picrotoxin, a GABAA

receptor antagonist. We implanted mice with bilateral frontal and parietal electrodes and validated

generalized epileptiform activity coinciding with Racine scale Stage five seizures induced by intraper-

itoneal injection of picrotoxin (10 mg/kg) (Figure 4a). Thereafter, we video-recorded the latency to

Figure 1 continued

mice. Insets: summary graphs of average inter-event frequency. Statistical comparisons were performed with a one-way analysis of variance (ANOVA;

p<0.05) followed by a Fisher LSD post-hoc test (*: p<0.05, **: p<0.001). For comparing sEPSC frequency: ANOVA F(2,29) =5.168, p=0.012; for control vs.

PYR:Kcnq2 null p=0.0051; for control vs. IN:Kcnq2/3 null p=0.038. (b) Top, representative mEPSC and mIPSC traces recorded from mouse CA1

pyramidal neurons from control (number of animals = 6), IN:Kcnq2/3 null (number of animals = 3) or PYR:Kcnq2 null (number of animals = 4) mice,

respectively. Bottom, cumulative distribution plots of mIPSCs and mEPSCs inter-event intervals recorded in pyramidal neurons of IN:Kcnq2/3 null and

PYR:Kcnq2 null mice. Insets: summary graphs of average inter-event frequency. Statistical comparisons were performed with one-way ANOVA followed

by Fisher LSD post-hoc test (*: p<0.05, **: p<0.001). For comparing sEPSC frequency ANOVA F(2,22) =10.74, p=0.0006; for control vs. PYR:Kcnq2 null

p=0.3764; for control vs. IN:Kcnq2/3 null p=0.0002. Each data point represents recording from one pyramidal neuron. Data in summary graphs are

represented as mean and s.e.m.

DOI: https://doi.org/10.7554/eLife.38617.002

The following source data is available for figure 1:

Source data 1. Source data for Figure 1.

DOI: https://doi.org/10.7554/eLife.38617.003
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Figure 2. Loss of KCNQ2/3 activity leads to increased excitability of PV+interneurons. (a) Top, representative voltage responses from a +150 pA current

injection step (1 s) in PV- and SST-like interneurons in either the CA1 region of the hippocampus (P12–P17) or L2/3 of the somatosensory cortex (P8–

P11). For L2/3 recordings, cells were also confirmed by immunoreactivity against SST antibodies. Bottom, summary graphs showing the effect of

deleting KCNQ2 and KCNQ3 channels on action potential number from CA1 PV-like (control n = 8/6; IN:Kcnq2/3 null n = 8/5), SST-like (control n = 19/

Figure 2 continued on next page
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seizure onset without implantation. All of the mice lacking Kcnq2, including Pvalb;Kcnq2 heterozy-

gous mice, reached Stage five seizure activity within 30 min, with a significantly reduced latency to

seizure onset when compared to Pvalb;Kcnq2+/+ mice (Figure 4b). These data confirm that loss of

KCNQ2 channel activity from interneurons can lead to excitatory network hyperexcitability in vivo.

In summary, our ex vivo and in vivo work reveals that changes in interneuron excitability induced

by loss of KCNQ2/3 channel activity in PV+ interneurons could change the course of excitatory net-

work development. Multiple studies have shown that early in development GABA-mediated trans-

mission partly drives excitatory synapse maturation and formation in pyramidal neurons. This is

because early in development pyramidal neurons have a depolarized GABA equilibrium potential

(Le Magueresse and Monyer, 2013; Wang and Kriegstein, 2011), allowing GABA to provide a

much-needed depolarizing signal to relieve magnesium block from NMDA receptors and in turn pro-

mote AMPA receptor unsilencing and synaptic input maturation. Indeed, recent work showed that

pharmacologically blocking potassium channels with 4-AP to drive GABA release on newborn neu-

rons led to robust formation of excitatory synaptic inputs, allowing for the integration of newborn

cells to excitatory synaptic networks (Chancey et al., 2013). We thus speculate a similar mechanism

might in play in our mice. Future work is needed to directly test this hypothesis.

Importantly, our work suggests a unique mechanism compared to earlier work showing that loss

of potassium channel activity critical for interneuron firing behavior leads only to depolarization

block (Lau et al., 2000) and hyperexcitability through disinhibition. Therefore, our work raises the

possibility that potassium channel dysfunction that elevates GABAergic transmission could also lead

to remodeling of excitatory transmission in the cortex. Such changes might contribute to the severe

neurodevelopmental effects seen in patients with potassium channel epileptic encephalopathy.

Figure 2 continued

8; IN:Kcnq2/3 null n = 8/4), and L2/3 (PV-like: control n = 10/7; IN:Kcnq2/3 null n = 8/4; SST-like: control n = 10/6; IN:Kcnq2/3 null n = 5/4) interneurons

(Vh=-75 to �77 mV). For CA1 PV-like cells (P16–P25), F(9,126)=2.849, p=0.0043; for L2/3 PV-like cells, F(9,144)=3.845, p=0.0002); for CA1 SST-like cells (P15–

P19), F(9,225)=0.601, p=0.7955; and for L2/3 SST-like cells, F(9,117)=0.326, p=0.965. Significance was determined using a two-factor mixed ANOVA. See

Figure 2—figure supplement 1 showing that indeed SST cells express KCNQ2 and KCNQ3 mRNA. (b) Top, representative voltage responses to a

series of current injection steps (1 s) in PV+ and SST+ interneurons in the CA1 region of the hippocampus (Vh=-75 to �77 mV). Bottom left, summary

graph showing the effect of deleting KCNQ2 and KCNQ3 channels on action potential number from CA1 PV+ cells (control n = 15/8; PV:Kcnq2/3 null

n = 14/7; F(9,243)=3.558 with p=0.0004). Middle left, summary graph showing that loss of KCNQ2/3 channels decreases PV+ input resistance (control,

n = 15/8; PV:Kcnq2/3 null, n = 14/7; df = 27 t=�2.54 p=0.017 unpaired Student’s t-test). See also Figure 2—figure supplement 2 regarding PV+

Kcnq2/3 null neurons diversity of intrinsic properties. Middle right, summary graph showing the effect of deleting KCNQ2 and KCNQ3 channels on

action potential number from CA1 SST+ cells (control n = 6/2; SST:Kcnq2/3 null n = 8/4; F(9,108)=0.729 with p=0.6814). Bottom right, summary graph

showing loss of KCNQ2/3 channels did not decrease SST+ input resistance (control n = 6/2; SST:Kcnq2/3 null, n = 8/4; df = 12 t=�0.42 p=0.68 unpaired

Student’s t-test). ‘n’ designates number of cells followed by number of animals. Each data point represents recording from one neuron. Data in

summary graphs are represented as mean and s.e.m.

DOI: https://doi.org/10.7554/eLife.38617.004

The following source data and figure supplements are available for figure 2:

Source data 1. Source data for Figure 2.

DOI: https://doi.org/10.7554/eLife.38617.010

Figure supplement 1. FISH shows presence of KCNQ2 and KCNQ3 in SST+interneurons.

DOI: https://doi.org/10.7554/eLife.38617.005

Figure supplement 2. PV:Kcnq2/3 null interneurons could differ in their intrinsic excitability properties.

DOI: https://doi.org/10.7554/eLife.38617.006

Figure supplement 2—source data 1. Source data for Figure 2—figure supplement 2.

DOI: https://doi.org/10.7554/eLife.38617.007

Figure supplement 3. The pan-KCNQ blocker XE991 increases PV+interneuron excitability.

DOI: https://doi.org/10.7554/eLife.38617.008

Figure supplement 3—source data 1. Source data for Figure 2—figure supplement 3.

DOI: https://doi.org/10.7554/eLife.38617.009
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Figure 3. Ablation of Kcnq2 from PV+ interneurons leads to increased excitatory transmission in pyramidal neurons. For simplicity we refer Pvalb-Cre;

Kcnq2;Ai9 mice in the figure as Pvalb-Cre;Kcnq2f/f or Pvalb-Cre;Kcnq2+/+. (a) Left, representative voltage responses from a + 200 pA current injection

step (1 s; Vh= �75 to �77 mV) in PV+ interneurons from the CA1 region of the hippocampus (P23–P25). Right, summary graph showing the effect of

deleting Kcnq2 on action potential number from PV+ interneurons (Pvalb-Cre;Kcnq2+/+;Ai9 n = 15/4; Pvalb-Cre;Kcnq2f/f;Ai9 n = 14/3; F(9,243)=3.558,

p=0.0004). Significance was determined using a two-factor mixed ANOVA. (b) Left, representative voltage responses from a + 200 pA current injection

step (1 s; Vh=-75mV) in pyramidal neurons from the CA1 region of the hippocampus (P30–P32). Right, summary graph showing the effect of deleting

Kcnq2 from pyramidal neurons in action potential number (Pvalb-Cre;Kcnq2+/+;Ai9 n = 15/3; Pvalb-Cre;Kcnq2f/f;Ai9 n = 12/2; F(9,225)=0.4891, p=0.88).

Significance was determined using a two-factor mixed ANOVA. (c) Left, representative sEPSC traces recorded from CA1 pyramidal neurons (P32–P35) in

acute hippocampal slices from control and Kcnq2 null PV+ interneurons. Right, summary bar graphs of sEPSC frequency (Pvalb-Cre;Kcnq2+/+;Ai9

1.165 ± 0.12 Hz, n = 13/4; Pvalb-Cre;Kcnq2f/f;Ai9: 2.108 ± 0.22 Hz, n = 19/3; p=0.0098 Mann-Whitney test) and amplitude (Pvalb-Cre;Kcnq2+/+;Ai9

15.9 ± 0.86 pA, n = 13/4; Pvalb-Cre;Kcnq2f/f;Ai9: 15.3 ± 0.68 pA, n = 19/3; DF = 30 t = 0.62 p=0.5394). Statistical comparisons were performed with two-

Figure 3 continued on next page
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Figure 3 continued

tailed unpaired Student’s t-test or Mann-Whitney when the variance between the two groups was significantly different. ‘n’ designates number of cells

followed by number of animals. Each data point represents recording from one neuron. Data in summary graphs are represented as mean and s.e.m.

DOI: https://doi.org/10.7554/eLife.38617.011

The following source data is available for figure 3:

Source data 1. Source data for Figure 3.

DOI: https://doi.org/10.7554/eLife.38617.012
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Figure 4. In vivo hyperexcitability with loss of Kcnq2 in PV-expressing interneurons. (a) Using simultaneous video-

EEG monitoring, Stage five onset was defined as the latency to rearing and falling with forelimb clonus, associated

with bilateral epileptiform activity on EEG. (b) Loss of one or both Kcnq2 alleles in PV-expressing interneurons led

to significantly reduced latency to seizure-onset (p=0.0370 and p=0.0047, respectively, Log-rank (Mantel-Cox) test;

Pvalb-cre;Kcnq2+/+ n = 14; Pvalb-cre;Kcnq2f/+ n = 13; Pvalb-cre;Kcnq2f/f n = 12). ‘n’ designates number of animals.

Bar = 1 min, inset, 5 s.

DOI: https://doi.org/10.7554/eLife.38617.013

The following source data is available for figure 4:

Source data 1. Source data for Figure 4.

DOI: https://doi.org/10.7554/eLife.38617.014
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Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Gene (Mus musculus) Kcnq2 NA NCBI_Gene:16536;
MGI:1309503

Gene (Mus musculus) Kcnq3 NA NCBI_Gene:110862;
MGI:1336181

Strain, strain
background (M. musculus,
Emx1IRESCre, C57BL/6J
background)

B6.129S2-Emx1tm1(cre)Krj /J PMID: 12151506 RRID:IMSR_JAX:005628

Strain, strain
background (M. musculus,
Nkx2.1-Cre,
C57BL/6J background)

C57BL/6J-Tg
(Nkx2-1-cre)2Sand/J

PMID: 17990269 RRID:IMSR_JAX:008661

Strain, strain
background (M. musculus,
Sst-IRES-Cre, C57BL/6J
background)

Ssttm2.1(cre)Zjh/J PMID: 21943598 RRID:IMSR_JAX:013044

Strain, strain
background (M. musculus,
Pvalb-Cre, C57BL/6J
background)

B6;129P2-Pvalbtm1(cre)Arbr/J PMID: 15836427 RRID:IMSR_JAX:008069

Strain, strain
background (M. musculus,
tdTomato reporter Ai9,
C57BL/6J background)

B6.Cg-Gt(ROSA)
26Sortm9(CAG-tdTomato)Hze/J

PMID: 20023653 RRID:IMSR_JAX:007909

Strain, strain
background (M. musculus,
Kcnq2f/f, C57BL/6J
background)

Kcnq2f/f PMID: 24719109 N-A

Strain, strain
background (M. musculus,
Kcnq3f/f, C57BL/6J
background)

Kcnq3f/f PMID: 24719109 N-A

Antibody Alexa fluor 488
streptavidin

Invitrogen Invitrogen:S32354;
RRID:AB_2315383

(1:500)

Antibody anti-Lucifer yellow
(rabbit polyclonal)

Invitrogen Invitrogen:A5750;
RRID:AB_2536190

(1:500)

Antibody anti-Somatostatin
(rat monoclonal)

Millipore Millipore:MAB354;
RRID:AB_2255365

(1:250)

Antibody Alexa fluor 488
anti-rabbit secondary
(goat polyclonal)

Invitrogen Invitrogen:A11034;
RRID:AB_2576217

(1:500)

Antibody Alexa fluor 647
anti-rat secondary
(goat polyclonal)

Invitrogen Invitrogen:A21247;
RRID:AB_141778

(1:500)

Sequence-based
reagent

somatostatin mRNA
probe (mouse); Mm-Sst-C1

ACDBio Cat#:404631 (1:50)

Sequence-based
reagent

parvalbumin mRNA
probe (mouse);
Mm-Pvalb-C1

ACDBio Cat#:421931 (1:50)

Sequence-based
reagent

tdTomato mRNA probe
(mouse); Mm-tdTomato-C3

ACDBio Cat#:317041-C3 (1:50)

Sequence-based
reagent

Kcnq2 mRNA probe
(mouse); Mm-Kcnq2-O1

ACDBio; this paper Cat#:300031-C2 (1:50); custom made
probe that targets exons
2–5 of Kcnq2

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Sequence-based
reagent

Kcnq3 mRNA probe
(mouse); Mm-Kcnq3-O1

ACDBio; this paper Cat#:300031-C3 (1:50); custom made
probe that targets exons
2–5 of Kcnq2

Commercial
assay or kit

RNAscope Fresh Frozen
Multiplex Fluorescent kit

ACDBio Cat#:320851

Chemical
compound, drug

CNQX Abcam ab120017

Chemical
compound, drug

D-AP5 Abcam ab120003

Chemical
compound, drug

Picrotoxin Abcam ab120315

Chemical
compound, drug

Tetrodotoxin; TTX Abcam ab120054

Chemical
compound, drug

XE-991 Abcam ab120089

Chemical
compound, drug

Lucifer Yellow Sigma Cat#:B4261 (0.1%)

Chemical
compound, drug

Biocytin Molecular Probes Cat#:L1177 (0.05%)

Software, algorithm Prism 7 GraphPad RRID:SCR_002798 Version 7.03

Software, algorithm Clampfit 10 Molecular Devices RRID:SCR_011323

Software, algorithm Minianalysis Synaptosoft RRID:SCR_002184

Software, algorithm Origin 8 Pro OriginLab RRID:SCR_014212 Version 8.0951

Software, algorithm ImageJ NIH RRID:SCR_003070 Version 2.0.0

Ethics statement
All experiments were performed according to the guidelines described in the National Institutes of

Health Guide for the Care and Use of Laboratory Animals and were approved by the Institutional

Animal Care and Use Committee of the University of Connecticut, Storrs (Protocol: A16-031) and of

Baylor College of Medicine (Protocol: AN-6600).

Animals
For our experiments, we used both male and female mice. To generate interneuron or pyramidal

neuron specific Kcnq2 and Kcnq3 conditional knockout mice, we crossed our previously generated

Kcnq2f/f, Kcnq3f/f, or Kcnq2f/f/Kcnq3f/f mice with the following Cre driver lines obtained from Jack-

son laboratories. For pyramidal neuron Kcnq2 ablation we used B6.129S2-Emx1tm1(cre)Krj/J (Jax stock

# 005628), whereas for interneuron Kcnq2 and Kcnq3 cell type-specific knockout mice we used

C57BL/6J-Tg(Nkx2-1-cre)2Sand/J (Jax stock #008661), Ssttm2.1(cre)Zjh/J (Jax stock #013044), or

B6;129P2-Pvalbtm1(cre)Arbr/J (Jax stock #008069). To visualize cells that underwent recombination we

also crossed the interneuron specific mouse lines with tdTomato (Ai9) reporter mice B6.Cg-Gt

(ROSA)26Sortm9(CAG-tdTomato)Hze/J (Jax stock #007909). The Pvalb and Kcnq3 are on chromosome 15

too close to each other (~7 centi-morgan separation) for rare recombination events to occur making

it difficult to generate Pvalb-Cre;Kcnq3f/f mice. However, we were successful in generating a Pvalb-

Cre;Kcnq3f/f mouse which we then crossed to Kcnq2f/f mice to generate a Pvalb-Cre;Kcnq3f/f;

Kcnq2f/+. Constitutive Kcnq3-/-mice were described previously (Kim et al., 2016). Mice were geno-

typed by PCR using the protocol described on the Jax.org website. Data collection and analysis of

the in vivo seizure experiments were performed blind.

Slice electrophysiology
Mice (P8-P35) were anesthetized with isoflurane and rapidly decapitated. The brain was quickly

removed and placed in ice-cold sucrose based cutting solution consisting of the following: 25 mM

NaHCO3, 200 mM sucrose, 10 mM glucose, 2.5 mM KCl, 1.3 mM NaH2PO4, 0.5 mM CaCl2, and 7
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mM MgCl2. Coronal or Transverse hippocampus slices including surrounding structures were cut at

300 mm using a vibrating microtome (Microm HM 650V-Thermo Fisher Scientific; or Leica VT1200S).

Slices were then transferred in artificial cerebrospinal fluid (ACSF) consisting of the following (in

mM): 125 NaCl, 26 NaHCO3, 2.5 KCl, 1 NaH2PO4, 1.3 MgCl2, 2.5 CaCl2, and 12 glucose and equili-

brated at 35˚C for 30 min, and then maintained at room temperature for at least 1 hr before electro-

physiological recordings. Cutting solution and ACSF were saturated with 95% O2 and 5% CO2. All

experiments were performed at room temperature. Whole-cell recordings were obtained using

borosilicate glass electrodes having resistances of 2 to 4 MW. For current clamp whole cell record-

ings we used an internal consisted of the following (in mM): 130 potassium methylsulfate (or potas-

sium gluconate), 10 KCl, 5 Tris-phosphocreatine, 10 HEPES, 4 NaCl, 4 Mg2ATP, and 0.4 Na4GTP.

The pH was adjusted to 7.2 to 7.3 with KOH. CNQX (4 mM), D-AP5 (10 mM), and picrotoxin (100 mM)

(Abcam) were added in all current clamp experiments (Figure 2 and Figure 3a) to block AMPA-

mediated, NMDA-mediated, and GABA-mediated synaptic transmission, respectively. For synaptic

activity recordings in voltage-clamp configuration we used an internal solution consisting of the fol-

lowing (in mM): 135 Cs-MeSO3, 8 NaCl, 10 HEPES, 0.3 EGTA, 5 QX-314, 0.4 Na4GTP, and 4

Mg2ATP. The pH was adjusted to 7.2 with CsOH. To measure mEPSC and mIPSC, 1 mM TTX

(Abcam) was present after recording spontaneous synaptic activity. We recorded s/mEPSCs in volt-

age-clamp mode at �70 mV, which is the reversal potential for GABAA-mediated chloride currents

when using a low internal chloride concentration. For s/mIPSCs were recorded at 0 mV the reversal

of AMPA-mediated currents. For mEPSCs, we performed all recordings in the presence of 1 mM TTX

to block action potentials. Recordings were performed using a Multiclamp 700B amplifier (Molecular

Devices), low pass-filtered at 2 kHz, sampled at 10 kHz, and analyzed offline using either Prism 7

(Graphpad), Clampfit 10 (PCLAMP; Molecular Devices), Mini analysis program (Synaptosoft), or Ori-

gin eight pro (OriginLab).

In vivo recordings
We implanted mice between the ages P30-45. For all mice we gave 48 hr post-operative recovery

time before chemoconvulsive testing. Mice were implanted as previously described

(Maheshwari et al., 2017). Briefly, mice were anesthetized with isoflurane (2–4% in O2) anesthesia

and surgically implanted with silver wire electrodes (0.005 inch diameter) inserted into the epidural

space over the somatosensory cortex (1 mm posterior and 3 mm lateral to bregma) and frontal cor-

tex (1 mm anterior and 1 mm lateral to bregma) bilaterally through cranial burr holes and attached

to a microminiature connector cemented to the skull. The reference electrode was placed over the

right cerebellum (1 mm posterior and 1 mm lateral to lambda) and the ground electrode was placed

over the left cerebellum (1 mm posterior and 1 mm lateral to lambda).

Post-hoc immuno staining
For L2/3 recordings in Nxk2.1IREScreKcnq2f/f;Kcnq3f/f mice, we verified SST positive cells by including

in the recording solution either biocytin (0.05%; Sigma, cat# B4261) or lucifer yellow (0.1%, molecular

probes, cat# L1177). Slices were subsequently fixed overnight in 4% paraformaldehyde in phosphate

buffer (PB; pH 7.4) at 4˚C and rinsed with PBS. Using standard immunofluorescence approach slices

were incubated with 0.1% Triton X-100 and 10% normal goat serum to block non-specific binding.

Slices were then incubated with Alexa Fluor 488 streptavidin (Invitrogen; cat# S32354) or rabbit anti-

Lucifer yellow (Invitrogen; cat# A5750) along with rat anti-somatostatin (Millipore; cat# MAB354).

We used Alexa Fluor 488 anti-rabbit (Invitrogen; cat# A11034) and Alexa 647 anti-rat (Invitrogen;

cat# A21247) as secondary antibodies.

Fluorescence In Situ Hybridization (FISH)
To prepare brain sections for FISH, mice were anesthetized with isoflurane and rapidly decapitated.

Mouse brains (P19-22) were flash frozen embedded in OCT compound and coronal slices cryosec-

tioned at a thickness of 14 mm and mounted on SuperFrost Plus Gold slides (Fisher Scientific). Sec-

tions were fixed in 4% paraformaldehyde for 15 min at 4˚C, dehydrated in 50, 70, and 100% ethanol,

and air-dried at room temperature. Fluorescent RNAscope in situ hybridization (ISH) was performed

using an RNAscope Fresh Frozen Multiplex Fluorescent kit according to the manufacturer’s protocol

to perform target probe hybridization and signal amplification (Advanced Cell Diagnostics). Probes
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were purchased from Advanced Cell Diagnostics: somatostatin mRNA, Mm-Sst-C1 (catalog

#404631), parvalbumin mRNA, Mm-Pvalb-C1 (catalog #421931), tdTomato mRNA, Mm-tdTomato-

C3 (catalog # 317041-C3), Kcnq2 mRNA, Mm-Kcnq2-O1 (catalog #300031-C2) and Kcnq3 mRNA,

Mm-Kcnq3-O1 (catalog #300031-C3). Probes for Kcnq2 and Kcnq3 were custom made targeting

exons 2–5 and exons 2–4, respectively. Confocal images of FISH experiments were obtained using a

Leica TSC Sp8 and confocal image files (lif) containing image stacks were loaded into ImageJ (ver-

sion 2.0.0, NIH, RRID: SCR_003070).

Analysis and quantification
Analytical tests were performed in Origin Pro (v8.0951) or GraphPad Prism (7.03) to calculate t tests,

Mann-Whitney U, Log-rank (Mantel-Cox), or ANOVA with post hoc tests. All t-tests were two-tailed.

Outliers were determined by Grubb’s test (http://graphpad.com/ quickcalcs/Grubbs1.cfm). No sta-

tistical methods were used to predetermine sample sizes, but our sample sizes are similar to those

reported in our previous publications.
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