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Abstract

Introduction—Calpains represent a family of neutral, calcium-dependent proteases, which 

modify the function of their target proteins by partial truncation. These proteases have been 

implicated in numerous cell functions, including cell division, proliferation, migration, and death. 

In the CNS, where calpain-1 and calpain-2 are the main calpain isoforms, their activation has been 

linked to synaptic plasticity as well as to neurodegeneration. This review will focus on the role of 

calpain2 in acute neuronal injury and discuss the possibility of developing selective calpain-2 

inhibitors for therapeutic purposes.

Areas covered—This review covers the literature showing how calpain-2 is implicated in 

neuronal death in a number of pathological conditions. The possibility of developing new selective 

calpain-2 inhibitors for treating these conditions is discussed.

Expert opinion—As evidence accumulates that calpain-2 activation participates in acute 

neuronal injury, there is interest in developing therapeutic approaches using selective calpain-2 

inhibitors. Recent data indicate the potential use of such inhibitors in various pathologies 

associated with acute neuronal death. The possibility of extending the use of such inhibitors to 

more chronic forms of neurodegeneration is discussed.
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1. Introduction

While calcium-activated neutral proteases (CANP) were discovered in 1964 by Guroff [1], 

the terms calpain and calpastatin, its endogenous inhibitor, were introduced in the 1980s [2]. 

Since then, many studies have been directed at understanding the physiological as well as 

the pathological function(s) of this family of proteases in the brain and other organs. We 
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initially proposed in 1984 that calpain played a critical role in synaptic plasticity and 

learning and memory [3], and this hypothesis was recently confirmed by studies performed 

in calpain-1 knock-out (KO) mice [4, 5]. Since the original hypothesis was proposed, studies 

related to the functions of calpain in the brain have mostly focused on the potential critical 

roles of calpain in neuronal death and neurodegeneration [6, 7, 8, 9, 10, 11, 12, 13]. While 

there is strong evidence that calpain plays a role in neurodegeneration, the major issue 

plaguing the literature is that there are only a handful of studies addressing the question of 

which calpain isoform(s) is (are) involved and of the signaling pathways leading to 

neurodegeneration. Since the identification of calcium-dependent neutral proteases by 

Guroff [1], a plethora of calpain isoforms have been identified and we now know that 

calpains constitute a family of enzymes with at least 15 members [14, 15]. Several studies 

have addressed the specific roles each of these proteases play in human diseases [16]. The 

muscle specific calpain-3, as defects in the gene encoding calpain-3 lead to a particular type 

of dystrophy, limb-girdle muscular dystrophy 2A (LGMD-2A) [17, 18]. However, calpain-3 

has a number of unique features, which set it apart from the more typical calpain isoforms 

[19]. There is also good evidence for a link between calpain-10 and diabetes mellitus, based 

on genetic studies [20]. More recently, calpain-14 has been linked to eosinophilic 

esophagitis, due to its abundance in the upper gastro-intestinal tract [21]. In the brain, the 

major calpain isoforms are calpain-1, aka μ-calpain, calpain-2, aka m-calpain, and calpain-5. 

Mutations of calpain-5 have recently been associated with autoimmune uveitis and 

photoreceptor degeneration [22]. We previously reviewed the roles of calpain in synaptic 

plasticity and this topic will not be addressed here [4]. The present review will focus on the 

role calpain-2 is playing in acute neuronal death and on the mechanisms linking calpain-2 

activation to neuronal death. It will also review the evidence indicating that calpain-2 is a 

good target to develop selective inhibitors, which could be developed for the treatment of 

various neurological disorders associated with acute neuronal death. Finally, we will discuss 

the possibility that these inhibitors could also be useful for the treatment of chronic 

neurodegenerative disorders.

2. Calpain properties

Of the 15 isoforms, calpain-1 and −2 are ubiquitously expressed, predominantly in 

mammalian brain and have been the most extensively studied. Calpain-1 and −2 are 

generally soluble and are present in both neurons and glia. For activity, calpain-1 or 

calpain-2 require their association with a small regulatory subunit (calpain-S1, formerly 

known as calpain-4) to form functional heterodimeric proteins. The large catalytic subunit 

for calpain-1 or −2 contains four major domains. Domain I is the N-terminal anchor helix 

region of the large subunit, which can undergo autolysis following calpain activation by 

Ca2+ [23]. Domain II comprises two protease core domains (PC1 and PC2), which fuse to 

form the active cysteine catalytic region upon Ca2+ binding onto each core domain [24]. 

Domain III is involved in binding Ca2+ and phospholipids [25]. Domain IV exhibits a penta-

EF-hand calcium-binding domain and contributes to the heterodimer formation [26].

The intracellular cytosolic calcium concentration is generally estimated to be 50−300 nM 

[27], much lower than its extracellular concentration, approximately 2 mM. In response to 

an extracellular signal, calcium can be either released from intracellular stores, such as the 
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endoplasmic reticulum (ER) and mitochondria, or can cross plasma membranes through 

ionotropic receptors and voltage-gated Ca2+ channels. As a result, intracellular calcium 

concentration is estimated to rise to tens of μM at most, which would be high enough to 

activate calpain-1, but, at least in principle, not high enough to activate calpain-2. As 

calpain-2 activation has been shown to require close to mM calcium concentration, 

alternative in vivo activation mechanisms for calpain-2 have been suggested. The finding 

that calpain-2 could be activated by extracellular signal-regulated kinase (ERK)-mediated 

direct phosphorylation at its serine 50 without increased intracellular Ca2+ concentration 

[28, 29] provided evidence for the existence of such mechanisms. We showed that both EGF 

and BDNF could activate calpain-2 by ERK-mediated phosphorylation in dendritic spines of 

hippocampal neurons [30].

The availability of crystal structures for rat calpain-1, calpain-2 and calpain-9 has provided a 

wealth of information regarding the mechanisms of calpain activation, the mechanism of 

inhibition by the endogenous inhibitor calpastatin, and more generally, the potential 

structural requirements for designing calpain inhibitors [31, 32, 33, 34, 35]. Nevertheless, it 

has been extremely difficult to design selective inhibitors for the various calpain isoforms, 

thereby limiting the understanding of their respective functions [19]. The availability of 

calpain-1 KO mice generated by the laboratory of Dr. Chishti provided an invaluable tool to 

better understand the functions of this particular calpain isoform, and we previously 

reviewed some of the data generated using these KO mice [12]. Unfortunately, calpain-2 

knock-out mice are embryonically lethal, thereby limiting the types of studies that can be 

performed with these mutants. Conditional knock-out of the small regulatory subunit, 

calpain-S1 or calpain-4, has been successfully performed but these mice lacked both 

calpain-1 and calpain-2 activity, thereby limiting the interpretation of the data generated 

with these mutant mice. Nevertheless, it was reported that these mice are impaired in 

synaptic plasticity, but are also resistant to injury produced by excitotoxicity and 

mitochondrial toxicity [36]. To our knowledge there are no data available regarding knock-

out mice for the other calpain isoforms.

3. Calpain-2 and acute neuronal injury

3.1. Mechanisms linking calpain-2 to neuronal injury

As mentioned above, there is an extensive literature linking calpain activation with 

neurodegeneration. However, very few studies have explored the specific contributions of 

calpain-1 and calpain-2 in neurodegeneration. Using primary neuronal cultures, we showed 

that calpain-2, but not calpain-1 activation was responsible for NMDA-induced 

excitotoxicity through the activation of STEP [37]. A similar study indicated that down-

regulation of calpain-2 but not calpain-1 increased neuronal survival following NMDA 

treatment of cultured hippocampal neurons [38]. Calpains have a large number of potential 

target proteins, belonging to many classes, including membrane receptors and ion channels, 

cytoskeletal proteins, protein kinases and phosphatases, transcription factors, as well as 

regulatory proteins [10]. In general, calpain-mediated truncation does not lead to the 

elimination of the target protein, but it alters its function for a duration related to the half-life 

of the protein. Consequently, calpain activation can modify a very large number of cellular 
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functions for significant periods of time. It has been difficult to determine under various 

experimental conditions which of the calpain target(s) is (are) responsible for the alterations 

in cell functions triggered by calpain activation. Figure 1 illustrates various cellular 

functions modified by calpain activation, and when known, by calpain-2 activation, which 

have been associated with neuronal injury.

We discussed elsewhere the notion that calpain-2 is associated with a multi-protein complex, 

which includes extrasynaptic NMDARs, and how activation of extrasynaptic NMDARs 

could result in calpain-2 activation [12, 37]. Briefly, NR2B subunits are enriched in 

extrasynaptic NMDARs [39], and their activation is critical for excitotoxicity [40]. 

Furthermore, NR2B directly binds RasGRF1, which provides a link between NMDAR 

activation and ERK activation [41]. As mentioned above, ERK activation directly 

phosphorylates and activates calpain-2 [30]; thus, this pathway is likely responsible for the 

prolonged activation of calpain-2 following stimulation of extrasynaptic NMDA receptors. 

Numerous studies have shown that calpain cleaves striatal-enriched tyrosine phosphatase 

(STEP), generating inactive fragments, resulting in activation of p38 and downstream cell 

death signaling pathways [42, 43].

Under many conditions, whether a cell survives or dies depends on the relative effectiveness 

of the pro-survival process of autophagy or of the pro-death process of apoptosis [44]. A 

recent study demonstrated that calpain-2 inhibition or knock-down enhanced autophagy and 

reduced cell death after ischemia/reperfusion in liver [45]. Furthermore, the authors showed 

that calpain-2, by cleaving Atg3 and Atg7, suppressed autophagy and enhanced liver 

sensitivity to ischemia/reperfusion injury. Atg5 is also regulated by calpain cleavage [46, 

47]. Non- selective calpain inhibitors promoted mTOR-independent autophagy and rescued 

Huntington’s disease phenotypes in zebrafish [48]. However, the specific roles of calpain-1 

and calpain-2 in these processes are not clear. Other studies have also indicated that calpain 

activation can switch cellular programs from autophagy to apoptosis [49, 50, 51]. On the 

other hand, calpain activation has been repeatedly shown to be involved in stimulating 

apoptosis pathways through multiple mechanisms [52]. Calpains cleave several members of 

the Bcl-2 family of proteins, including Bax, Bid, and Bcl-xL, leading to cytochrome c 

release [53, 54, 55] and caspase-3 activation. Caspase-3 can further activate calpain by 

compromising the membrane permeability to Ca2+ and by degrading calpastatin [56]. 

Calpain also converts pro-caspase-7 to caspase-7 [57]. More recently, mitochondrial 

calpain-2 in rat heart was found to activate the mitochondrial permeability transition pore 

(mPTP) through truncation of ND6 on complex I, which could further contribute to 

apoptosis [58]. Thus, an increasing number of studies indicates that calpain2 activation 

prevents autophagy, while it stimulates apoptosis. The specific roles of calpain-1 in 

autophagy remain to be determined. Considering the multiple cross-talks between these 2 

cellular processes, it is highly likely that calpain-2 activation represents a critical step 

towards cell death.

Over the last 20 years, Dr. Yamashima has developed the calpain-cathepsin hypothesis to 

account for several features of neuronal death in Alzheimer’s disease (AD) [59, 60, 61, 62]. 

A main feature of this hypothesis is the truncation of carbonylated Hsp70.1 by calpain, 

leading to the destabilization of lysosomal membranes and the release of cathepsins in 
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neuronal cytoplasm. Incorporated in this hypothesis is the concept that oxidative stress, 

which has often been associated with AD [63], could stimulate the formation of 

carbonylated Hsp70.1, and calpain activation through disruption of mitochondrial function. 

Reactive oxygen species (ROS), which accumulate as a result of mitochondrial dysfunction, 

have been shown to activate calpain and in particular, calpain-2 in several types of cells and 

under a variety of experimental conditions [64, 65, 66]. There is therefore a link between 

calpain-2 activation, lysosomal dysfunction and potentially neuronal death in AD. However, 

it is worth noting that calpain activation in mouse models of Alzheimer’s disease may be an 

artifact of APP overexpression [67]. Thus, the mouse model should be chosen cautiously 

when studying the roles of calpain in AD.

As autophagy is now recognized to be a key regulator of cell function and in particular in 

neuronal health and disease [68], it is clear that the interactions between calpain-2, 

autophagy, lysosomes and apoptosis represent a key component of the pathways leading 

from calpain-2 activation to neuronal death. It is important to note though that we still do not 

have much information regarding the specific roles of calpain-1 and calpain-2 in these 

processes, and that further work is needed to get this information. Our own work has clearly 

demonstrated a selective role for calpain-2 in acute neuronal death, as discussed below.

We previously identified another mechanism linking calpain activation to neuronal death 

through the truncation of mGluR1α, which is related to NMDA receptor stimulation-

induced calpain activation [69]. Under normal conditions, mGluR1α receptors are coupled 

to PI3K-Akt signaling and their activation is neuroprotective. Although mGluR1α activation 

leads to calcium release from internal stores, the extent of calcium release does not produce 

significant toxic effects. Following NMDA receptor stimulation or onset of ischemia, calpain 

is activated leading to mGluR1α truncation. As a result, the neuroprotective effect of the 

mGluR1α-PI3KAkt signaling cascade is disrupted. In addition, mGluR1α-dependent 

calcium release from intracellular stores further contributes to calcium overload due to 

calcium influx through NMDA receptors and thus enhances neurotoxicity. Together, NMDA 

receptor activation followed by calpain-mediated truncation of mGluR1α constitutes a 

positive feedback loop for excitotoxicity. Table I summarizes the various calpain targets, 

which have been associated with these different mechanisms of neuronal death. It is 

interesting to note that calpain-2, by regulating such a variety of pathways leading to 

neuronal death, plays a central role in linking numerous extracellular stimuli both acute and 

potentially chronic to neuronal death.

3.2. Role of calpain-2 in acute glaucoma

In order to further analyze the role of calpain-2 in acute neurodegeneration in vivo, we used 

a model of acute glaucoma in mice consisting in a brief period of increased intraocular 

pressure (IOP) [70]. Calpain activation had been previously involved in retinal cell death 

induced by NMDAR activation [71, 72], although the contribution of calpain-1 and 

calpain-2 had not been analyzed. The results indicated that, while calpain-1 was briefly 

activated following increased IOP, calpain-2 activation was delayed and prolonged. 

Likewise, injection of a relatively selective calpain-2 inhibitor (C2I), Z-Leu-Abu-CONH-

CH2-C6H3 (3, 5-(OMe)2) [37, 73, 74] (see Fig. 2D for the structure), prevented RGC death 
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and prevented loss of vision when injected 2 h after increased IOP. This inhibitor has a Ki of 

25 nM against purified calpain-2 versus a Ki of 1.3 μM against calpain-1, indicating that it 

has a 50-fold selectivity for calpain-2 over calpain-1 [37]. In addition, the extent of RGC 

death was larger in calpain-1 KO than in WT mice [70]. Several mechanisms have 

previously been involved in RGC death in acute glaucoma [75, 76, 77], including calpain 

activation [78]. Our results clearly indicated that calpain-1 and calpain-2 play opposite 

functions in increased IOP-induced retinal damage, with calpain-1 being neuroprotective, 

since retinal damage was exacerbated in calpain-1 KO mice, as compared to WT mice. 

Calpain-1 activation leads to the stimulation of a survival pathway previously identified in a 

different system [37], consisting in calpain-1 mediated cleavage of PHLPP1 leading to 

activation of the pro-survival Akt pathway [37]. In contrast, calpain-2 is neurodegenerative, 

as evidenced by the significant protection against retinal damage provided by a selective 

calpain-2 inhibitor [70]. Several features could account for the differential roles of calpain-1 

and calpain-2 in acute retinal damage. Firs, these two calpain isoforms exhibit a different 

time-course of activation; calpain-1 is rapidly and briefly activated following increased IOP, 

while calpain-2 activation is delayed and prolonged. Calpain-1 activation is likely due to the 

rapid and transient stimulation of synaptic NMDA receptors, composed NR2A subunits, as 

we previously reported [37, 73]. On the other hand, delayed calpain-2 activation is likely due 

to the stimulation of extrasynaptic NMDA receptors, composed of NR2B subunits, as a 

result of glutamate spill-over or inhibition of glutamate transport known to take place 

following ischemia [79, 80]. As discussed above, calpain-2 triggers the degradation and 

inhibition of the phosphatase STEP, which activates STEP substrate p38, resulting in 

neuronal death [37, 42]. This interpretation is consistent with the differential roles of NR2A- 

and NR2B-containing NMDA receptors in NMDA-induced neurotoxicity in retina [81]. 

Autophagy has also been shown to be activated following increased IOP in the retina [82, 

83], although in this case, it appears that autophagy activation could be related to neuronal 

death and not neuroprotection. On the other hand, a recent study suggests that compromised 

autophagic activation could be involved in retinal damage [84]. Whether this represents a 

protective or a degenerative mechanism is not completely clear, nor is it clear if it takes 

place in neurons or in glial cells. Apoptosis has also been proposed to participate in RGC 

death in various models of retinal damage [85].

3.3. Role of calpain-2 in a mouse model of traumatic brain injury (TBI)

Calpain activation has long been shown to be involved in the pathology of TBI [86, 87, 88]. 

Various spectrin breakdown products (SBDPs) generated by calpain activation have been 

extensively used as biomarkers for TBI in the CSF or in blood [89, 90, 91, 92, 93, 94, 95]. 

However, none of these studies have addressed the respective roles of calpain-1 and 

calpain-2 in the associated neuronal damage. This was due in part to the lack of isoform 

selective calpain inhibitors, as well as the lack of markers for calpain-1 and calpain-2 

activation. These limitations could account for several conflicting results. In particular, the 

calpain inhibitor AK295 and ALLM was reported to protect the cytoskeletal structure of 

injured neurons and to attenuate motor and cognitive deficits after TBI [96, 97]. However, 

these results were not confirmed in more recent studies using different calpain inhibitors. 

Overexpression of the endogenous calpain inhibitor, calpastatin, could reduce calpain 

activation [98], but did not prevent neuronal death [99]. Two other calpain inhibitors, 
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SNJ-1945 and MDL-28170, which were shown to cross the blood brain barrier, did not 

exhibit significant efficacy in a model of control cortical impact [100, 101]. We were able to 

determine the time-course of activation of calpain-1 and calpain-2 following TBI by using 

several tools applied to both WT and calpain-1 KO mice. Changes in SBDP levels represent 

both calpain-1 and calpain-2 activation, as spectrin can be cleaved by both calpain-1 and 

calpain-2 [102]. However, when the analysis is done in calpain-1 KO mice, SBDP represents 

calpain-2 activation only, and the difference between results obtained with both types of 

mice, could be attributed to calpain-1 activation [70, 103]. We previously showed that PTEN 

was selectively cleaved by calpain-2 but not calpain-1 [104] and analysis of the changes in 

PTEN under various experimental conditions provides a marker for calpain-2 activation, 

with the prediction that there should be no difference in these changes between WT and 

calpain-1 KO mice. Using these tools, we found that calpain-1 is also rapidly and transiently 

activated in the cortex surrounding the impact site after TBI. Activation peaked at 6 h after 

TBI but was no longer present by 24 h after TBI. On the other hand, calpain-2 activation was 

delayed, starting between 4 and 8 h after TBI, but was very prolonged and was still present 3 

days after TBI [103]. Moreover, using TUNEL as well as fluoro-Jade staining to identify 

dying cells, we were able to show that the extent of calpain-2 activation was linearly related 

to the extent of cell death, indicating that calpain-2 activation is a critical step in the cascade 

of events triggered by TBI and leading to cell death. Systemic administration of C2I, 1 or 4 

h after TBI, significantly reduced calpain-2 activation and the number of degenerating cells 

in the cortex surrounding the impact site, further demonstrating the neurodegenerative role 

of calpain-2. In addition, while calpain-2 activation following TBI was not different in WT 

and calpain-1 KO mice, the extent of cell death was significantly greater in calpain-1 KO 

mice, further emphasizing the neuroprotective role of calpain-1 activation [103]. Our results 

are therefore not only in complete agreement with previous studies showing that non-

selective calpain inhibitors could inhibit overall calpain activation (without distinguishing 

which calpain isoform was targeted) following TBI, but they also account for the 

observation that they failed to provide neuroprotection. Indeed, it would be difficult to 

predict the effects of non-selective calpain inhibitors, as they will critically depend on the 

time of injection as well as on the relative effects on calpain-1 and calpain-2. In particular, 

we performed a dose-response with C2I administered 1 h after TBI and determined the 

extent of cell death 24 h later (Fig. 2). As reported, a low dose of C2I provided protection, 

but increasing doses failed to produce protection and the highest dose exacerbated neuronal 

death in both ipsilateral and contralateral sides of the lesion. This dose-response curve is 

very similar to what we previously observed with C2I in fear conditioning, with low doses 

facilitating learning and high doses inhibiting learning [105]. We interpreted these results as 

evidence that the low doses of C2I inhibit calpain-2, while higher doses inhibit both 

calpain-1 and calpain-2 These results would suggest that inhibiting both calpain-2 and 

calpain-1 results in more neuronal death than in control.

The role of autophagy in neuronal injury following TBI is also highly controversial. While 

several studies support the notion that autophagy is impaired after TBI, thus limiting its 

neuroprotective function [106, 107, 108], other studies indicate that autophagy activation 

contributes to neuronal damage [109, 110, 111]. More studies are needed to better 
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characterize the contributions of the various pathways described in Figure 1 to neuronal 

death following TBI.

4. Calpain inhibitors and neurodegenerative diseases

Our results strongly support the idea of using selective calpain-2 inhibitors in acute models 

of neuronal death, including TBI, stroke and possibly spinal cord injury, and other forms of 

ischemic neuronal injuries. Neurodegeneration usually refers to more chronic forms of 

neuronal damage and is a hallmark of numerous human disorders. Numerous reviews have 

discussed the role of calpain in neurodegeneration in general [11, 112], and in stroke [113, 

114] and in traumatic brain injury (TBI) [86, 115]. Likewise, numerous studies have 

attempted to use calpain inhibitors to reduce neurodegeneration in both stroke and TBI [114, 

116, 117, 118, 119, 120, 121, 122, 123]. Moreover, many reviews have discussed the 

potential use of calpain inhibitors in more chronic neurodegenerative diseases [112, 124, 

125, 126, 127]. As discussed above, very few studies have addressed the respective roles of 

calpain-1 and calpain-2 in chronic neurodegenerative diseases. Based on our results, we 

would predict that non-selective calpain inhibitors would probably not represent a viable 

therapeutic approach, as by inhibiting calpain-1, they would block the normal 

neuroprotective function and roles in synaptic plasticity of calpain1, which is maintained in 

adult brain. In addition to acute neuronal injury, calpain-2 has also been involved in the 

pathology of chronic neurodegenerative diseases. In particular, calpain-2 but not calpain-1 

activation is concentrated in neurofibrillary tangles and induces degradation of nicotinic 

acetylcholine receptor α4 and causes cholinergic impairments in AD [128, 129, 130]. We 

recently reported that TBI-induced calpain-2 activation triggered rapid oligomerization of 

tau in the brain [131]. We found that following TBI, calpain-2 cleaved and inhibited a 

tyrosine phosphatase named PTPN13, aka FAP-1. PTPN13 inhibition caused the activation 

of the tyrosine kinase c-Abl and enhanced tyrosine phosphorylation of tau, which lead to tau 

oligomerization. Tau oligomers play a critical role in the initiation and spreading of tau 

pathology leading to AD [132, 133, 134, 135]. Thus, we discovered a novel link between 

TBI, calpain-2 and increased risk of AD.

Calpain-2 has also been implicated in Wolfram syndrome, a genetic disorder associated with 

diabetes and neurodegeneration [136]. This disease is due to the loss of function of two 

genes, Wolfram Syndrome 1 (WFS1) and Wolfram Syndrome 2 (WFS2), which encode 

transmembrane proteins of the ER. WFS2 is a negative regulator of calpain-2, which is 

elevated in iPS cells from human Wolfram syndrome patients. Calpain-2 might also been 

involved in the pathogenesis of spino-cerebellar ataxia type 3 (SCA3) [137]. SCA3 is a 

polyglutamine disease in which mutated ataxin is more susceptible to calpain-2-mediated 

truncation. It has been suggested that calpain-2-mediated ataxin fragments trigger the 

formation of aggregates and neurodegeneration. It is thus tempting to suggest that a similar 

process takes place in many forms of neurodegenerative diseases associated with the 

accumulation of protein aggregates. If this were to be the case, a selective calpain-2 inhibitor 

could become a potential therapeutic approach for many neurodegenerative disorders.
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5. Conclusions

Calpain has been proposed to play a critical role in neurodegeneration for a long time. Its 

prolonged activation by calcium, as well as the numerous proteins related to cell death 

cascades calpain could regulate made it a potential target for the development of 

neuroprotective strategies. However, despite many attempts by several pharmaceutical and 

biotech companies to develop calpain inhibitors, none have made it to clinical trials. The 

existence of a large number of calpain isoforms, with many of them without clear functions, 

coupled with the lack of selective inhibitors could account for the difficulties in 

understanding the roles of these calpain isoforms in physiological as well as pathological 

conditions. The situation started to change when we discovered that calpain-1 and calpain-2 

played opposite functions in both synaptic plasticity and neuronal protection/neuronal death 

[12, 37, 73]. As we discussed elsewhere, these opposite functions of calpain-1 and calpain-2 

are due, at least in part, to their interactions with different signaling pathways due to their 

associations with different PDZ binding partners. Calpain-1 has an atypical PDZ binding site 

in its C-terminal domain, while calpain-2 exhibits a typical PDZ binding site in its C-

terminal domain. While calpain-1 is neuroprotective due to the activation of pro-survival 

pathways when activated, calpain-2 is neurodegenerative and the review summarized several 

neurodegenerative pathways regulated by calpain-2 activation. These findings account for 

many of the failure to clearly demonstrate neuroprotective effects of nonselective calpain 

inhibitors, as well as the discrepancies reported in the literature regarding the effects of 

various calpain inhibitors. Our results further emphasize the need to use selective calpain-2 

inhibitors to obtain clear neuroprotective effects, at least in two models of acute neuronal 

injury, acute glaucoma and TBI [70, 103]. Considering that our studies also indicated that 

calpain-2 activation was delayed and prolonged, they provide support for the idea of 

developing such selective calpain-2 inhibitors for the post-treatment of a variety of 

conditions associated with acute neuronal death. It is important to note that a blood 

biomarker related to brain calpain activation has been identified, an N-terminal fragment of 

spectrin generated by calpain-mediated truncation (SNTF), and its blood levels during the 

hours following brain injury have previously been shown to correlate with the severity of 

neurologic outcomes in TBI [94].Application of this blood biomarker could greatly facilitate 

the clinical development of a selective calpain-2 inhibitor, although it remains to be 

determined whether it is generated by calpain-1 or calpain-2 activation.

6. Expert Opinion

In the 80s and 90s, several pharmaceutical and biotech companies initiated drug discovery 

and development programs focusing on calpain. However, all the efforts to bring a calpain 

inhibitor to the clinic failed. Today, a handful of companies continue the search for calpain 

inhibitors and their possible therapeutic indications. As more basic information on the 

properties and functions of the various calpain isoforms has emerged, it is clear now that 

several calpain isoforms could be interesting targets for drug development. The argument 

developed in this review supports the notion that calpain-2 is an attractive candidate for the 

treatment of acute neuronal death associated with several neurological disorders. However, 

we also discussed the large number of downstream effectors leading to neuronal death, 

which could potentially complicate the clinical development of such inhibitors. More studies 
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are needed to determine whether calpain-2 could also be an attractive candidate for more 

chronic forms of neurodegeneration, such as Alzheimer’s, Huntington’s and Parkinson’s 

disease. As mentioned above, the availability of a blood biomarker related to brain calpain 

activation could facilitate the clinical development of selective calpain-2 inhibitors, 

inasmuch as prevention of the appearance of SNTF in the blood could be used as an 

outcome of clinical trials.
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Article Highlights

• Calpain-2 is neurodegenerative and several downstream signaling pathways 

lead to neuronal death.

• Calpain-2 activation is delayed and prolonged in two models of acute 

neuronal injury, acute glaucoma and TBI.

• In TBI, the extent of cell death is directly related to calpain-2 activation.

• A selective calpain-2 inhibitor provides a highly significant degree of 

neuroprotection when administered after the injury in both acute glaucoma 

and TBI.

• A selective calpain-2 inhibitor could be a potential candidate for the treatment 

of severalneurological disorders associated with acute neuronal death.
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Figure 1: Schematic representation of the various pathways regulated by calpain-2 and leading 
to neuronal death.
Various pathways leading to neuronal death are represented in this figure. Calpain-2 

activation is shown downstream of NR2B and its associated RasGRF1, which leads to ERK 

activation and calpain-2 phosphorylation/activation. Several targets of calpain-2 are also 

represented, including the STEP/p38 pathway, which has long been shown to contribute to 

neuronal death. Calpain has often been shown to trigger apoptosis through the degradation/

inactivation of several pro-survival proteins and the degradation/activation of pro-death 

proteins. Several studies have also linked calpain activation to the regulation of autophagy, 

which is generally considered to be a pro-survival mechanism, and a recent report clearly 

showed that calpain-2 activation inhibits autophagy. Similarly, a calpain-cathepsin 

hypothesis for Alzheimer’s disease has been proposed, suggesting that calpain activation 

could elicit the release of lysosomal proteases in the cell cytosol, thus contributing to 

neuronal damage. Importantly, apoptotic pathways, autophagy and lysosomes are interacting 

with each other to provide a balance between cell survival and cell death. We previously 

reported that calpain, by truncating the C-terminal domain of mGluR1a eliminates the pro-

survival effect of this receptor stimulation, while maintaining its pro-degenerating 

component, related to increase intracellular calcium release [69].
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Figure 2: Effects of various doses of a selective calpain-2 inhibitor on cell death following TBI.
(A) TUNEL staining in the ipsilateral or contralateral side of the brain 24 h after control 

cortical impact in adult WT mice. 0, 0.03, 0.3, 3 or 10 mg/kg of a selective calpain-2 

inhibitor Z-LeuAbu-CONH-CH2-C6H3 (3, 5-(OMe)2) was injected intraperitoneally 1 h 

after TBI. The picture at the bottom right is the staining in contralateral side. All other 

pictures are staining in ipsilateral side. Scale bar, 500 μm.

(B) Quantification of number of cells labeled with TUNEL staining following TBI. Total 

numbers of TUNEL-positive cells in 6 coronal sections (Bregma 0.50, −0.58, −1.58, −1.94, 

−2.30, −2.70 mm) of each brain were counted to provide the total numbers of TUNEL-

positive cells for each animal. TUNEL-positive cells in both ipsilateral and contralateral 
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sides of each section were counted. Data are means ± SEM. N = 3 – 5 (animals). * p < 0.05, 

0 vs 0.3. # p < 0.05, 10 vs any other groups.

(C) Quantification of TUNEL staining in brain sections collected 23 h after intraperitoneal 

injection of a selective calpain-2 inhibitor (0 or 10 mg/kg) to naive WT mice. TUNEL-

positive cells in both ipsilateral and contralateral sides of each section were counted. Data 

are means ± SEM. N = 3 (animals). Ns, no significant difference, two-tailed t-test.

(D) Structure of Z-Leu-Abu-CONH-CH2-C6H3 (3, 5-(OMe)2) and of other calpain 

inhibitors. See complete list of calpain inhibitors and their structure here: http://calpain.net/

reagents/inhibitors.html
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Table I:

Selected targets of calpain-2 in various signaling pathways leading to neuronal death.

Signaling pathway Substrate Consequence of cleavage references

Glutamate receptormediated signaling GluA1 mGluR1a
NR2A
NR2B PSD95 p35/p39 STEP

Stimulates internalization Inhibits 
neuroprotection and enhances 
neurodegeneration Decreased excitability 
and Uncoupling from pro-survival pathways
Aberrant activation of Cdk5
Cleavage activates p38

[69, 138, 139, 
140,
141, 142, 143]

Apoptosis Bax
Bcl-xL Bid
Caspase-3
Pro-Caspase-7 ND6 p53

Leads to cytochrome C release from 
mitochondria, and decreases pro-survival 
pathway
Unknown
Activates caspase-7
Stimulates mPTP
Stimulates apoptosis

[53, 54, 57, 144, 
145]

Autophagy Atg3
Atg5
Atg7
PTEN

Inhibits autophagy
Regulates autophagy through
mTORC1

[45, 47]
[104, 146]

Lysosome carbonylated Hsp70.1 [62]
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