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Abstract

OBJECTIVE—While there is a long history of interest in measuring brain growth, as of yet there 

is no definitive model for normative human brain volume growth. The goal of this study was to 

analyze a variety of candidate models for such growth and select the model that provides the most 

statistically applicable fit. The authors sought to optimize clinically applicable growth charts that 

would facilitate improved treatment and predictive management for conditions such as 

hydrocephalus.

METHODS—The Weibull, two-term power law, West ontogenic, and Gompertz models were 

chosen as potential models. Normative brain volume data were compiled from the NIH MRI 

repository, and the data were fit using a nonlinear least squares regression algorithm. Appropriate 

statistical measures were analyzed for each model, and the best model was characterized with 

prediction bound curves to provide percentile estimates for clinical use.

RESULTS—Each model curve fit and the corresponding statistics were presented and analyzed. 

The Weibull fit had the best statistical results for both males and females, while the two-term 

power law generated the worst scores. The statistical measures and goodness of fit parameters for 

each model were provided to assure reproducibility.
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CONCLUSIONS—The authors identified the Weibull model as the most effective growth curve 

fit for both males and females. Clinically usable growth charts were developed and provided to 

facilitate further clinical study of brain volume growth in conditions such as hydrocephalus. The 

authors note that the homogenous population from which the normative MRI data were compiled 

limits the study. Gaining a better understanding of the dynamics that underlie childhood brain 

growth would yield more predictive growth curves and improved neurosurgical management of 

hydrocephalus.
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IN the neurosurgical treatment of childhood hydrocephalus, diversion or drainage of 

cerebrospinal fluid is performed. Although the focus is on fluid accumulation, it is brain 

growth that has been shown to importantly correlate with neurocognitive development in the 

treatment of infants with myelomeningocele.19 A randomized clinical trial contrasting 

surgical treatments of postinfectious hydrocephalus is currently underway 

(ClinicalTrials.gov registration number NCT01936272), wherein brain volumes are being 

followed as secondary outcome measures and correlated with neurocognitive development.17 

Although such efforts point to the potential value of tracking brain volume in the 

management of childhood hydrocephalus, as of yet there are no existing clinical brain 

growth charts suitable for the management of such cases. In this study, we seek to create 

such growth curves. Since this is an area of active research, we propose to create such charts 

at this stage to facilitate clinical research trials. Our expectation is that if brain volumes are 

validated as useful in managing hydrocephalus in clinical trials, brain growth charts could 

constitute a useful tool for routine clinical use.

The most commonly used growth metric for children with hydrocephalus is the head 

circumference chart. These standard charts were generated using smoothed growth curves 

that had been fit to a family of mathematical functions using a nonlinear iterative method.24 

While this technique resulted in extremely smooth curves that represent the input data 

respectfully, it bears little biological relevance. Our conjecture is that normative brain 

growth provides a predictive target for managing conditions such as hydrocephalus, and as 

such, it serves as a model of age-dependent brain growth much as a map serves navigation 

targets. If so, then such a model can be incorporated into the sophisticated machinery of 

model-based control in engineering.26 Although empirical models can be very effective in 

such strategies, it is best to seek fundamental models that reflect the underlying biology as 

they may be the most predictive for new out-of-training-sample data and offer a route to 

improve understanding of the pathophysiology.

In previous work, we characterized normative versus hydrocephalic brain volume growth 

curves in mice.21 In that work, normative brain volume growth data from healthy mice were 

fit with a natural log least squares curve over time. This curve could then be compared with 

mice with induced hydrocephalus, and different growth patterns were identified.21

We subsequently compiled normative brain volume growth data for humans using the NIH 

repository of normal pediatric brain MRI.2 The resulting data were fit with a one-term power 
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law based on the common use of the power law in the literature on biological allometric 

growth. The normative volumes were validated using historical imaging and postmortem 

data, and the power law goodness of fit was quantified using a coefficient of determination.
20 Furthermore, the shapes of the curves were contrasted to those of smoothed growth curves 

for human head circumference.24

Seeking a more fundamental basis for creating brain growth curves, we chose to study a 

variety of methods that have shown connection to biological growth, as well as several 

empirical methods that have been used in biological growth studies. Our goal was to select 

clinically usable brain growth curves with confidence limits similar to those of the existing 

clinically applied head circumference curves. We found that at least one of the prominent 

biologically based growth models (West model) may not be as good as an older growth 

model (Weibull) for accounting for early childhood brain growth. Our aim is to prepare 

charts for employing such curves in clinical trials, such as in predictive management of 

patients with hydrocephalus.

Methods

Compilation of Normative Data

With oversight from the Penn State institutional review board (under exemption 27423EM, 

required by the NIH repository image guidelines), normative brain volume data were 

determined using MRI scans from the NIH Pediatric MRI Data Repository assembled by the 

Montreal Neurological Institute (https://pediatricmri.nih.gov/nihpd/info/index.html). This 

database consists of MRI studies of subjects representative of the US population with 

respect to sex, socioeconomic status, and race/ethnicity. Extensive screening and exclusion 

criteria were present to exclude intrauterine risk factors, abnormal neurological 

examinations, family history, behavioral or cognitive abnormalities, and other physical 

abnormalities.8 Mandell et al. calculated 64 brain volumes from this database by employing 

a particle filter–based image segmentation algorithm.20

Candidate Models Fit to the Normative Data

To determine the best curves for representing normative brain growth, we focused on models 

that have been previously successfully applied to biological growth data, comparing a two-

term power law, a Gompertz model, a Weibull model, and the West ontogenic model as 

shown in Table 1.3,18,31

Power Law—A power law is one where two quantities change in proportional amounts, 

regardless of their initial values, but with one of the quantities raised to an exponential 

power. Growth power laws have a long precedence in allometric growth modeling,14 yet in 

this present instance a one-term power law was not deemed applicable. At the initiation of 

the growth curves, the one-term power law implied that the brain volume would be zero, 

which is not true at birth because of brain growth during gestation.10 Therefore, a two-term 

power law fit must be the minimum required for normative brain growth after delivery, 

accounting for brain volume at birth. In addition, volumetric brain size peaks during the 2nd 
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decade, which is not reflected in the endlessly growing power law.20 Therefore, other 

options had to be explored.

Gompertz—The Gompertz distribution was originally described to fit survivals and was 

instrumental in the early development of the insurance industry.3 Its cumulative distribution 

can be parameterized to have an S-shaped curve and fit animal growth. Such parameters 

have been used to compare growth rates between species such as the Tyrannosaurus rex, 

Diomedia exulans (albatross), and Loxodonta africana (African elephant).23 The Gompertz 

distribution can also model the slowing of tumor growth with necrosis such as in gliomas.27 

It has also been successfully used to track the growth of myelinated white matter in the brain 

of young children.25

Weibull—The Weibull function’s cumulative distribution can also be parameterized to 

produce an S-shaped curve. Weibull30 initially designed this function to model chain failure, 

which occurs when any member of the chain links fail. It is thus used in hazard and survival 

analysis, but it can also model growth since an ensemble grows when any member grows or 

divides. Weibull also recognized that his function could be fit to the height distribution of 

boys.30

West—The West et al. model of ontogenic growth31 was introduced as a fundamental 

model of organism (and organ) growth based upon cell division and the energy requirements 

for cellular maintenance and division. It has been shown to fit the growth of a wide variety 

of animal species. Nevertheless, we note that the postnatal human brain does not grow as a 

simple function of neuronal division, since most neurons are present at birth. Furthermore, 

we note that West et al. projected that it is the imbalance of supply (capillaries) and demand 

(number of cells) within an organ or organism that fundamentally limits growth, and that 

growth over time for an organism bears a consistent exponential relationship to final size. 

We therefore anticipate that the human brain might be exceptional in this regard vis-à-vis 

other organ systems due to its exceptional metabolic demand per unit mass.

Curve-Fitting Procedures

Once appropriate models had been established as potential fits for the normative data, it was 

possible to fit the models to the data using a curve-fitting algorithm (cftool, Matlab, The 

MathWorks). We applied nonlinear least squares regression and a trust-region algorithm 

critical to evaluating the curve-fitting fidelity.

Statistical Measurements Used for Analysis

To establish quantitative measures for ranking the models, statistical calculations were 

performed as described in detail in Table 2. All of the statistical measures provided insight 

into the applicability of each model. Note that the Akaike information criterion goes further 

than simply evaluating how well a model accounted for the data by penalizing the fit by the 

complexity (number of variables) in the model.1
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Defining Prediction Bounds and Percentiles

Upon analyzing the statistical measures calculated in this study, we sought the optimal curve 

that best represented the data. To provide clinical applicability, the male and female growth 

models were characterized with percentiles. To develop these percentiles, we defined 

prediction bounds dependent upon confidence limits. We employed the confidence bound 

statistical algorithms in the curve fitting routines from Matlab. In particular, the confidence 

limits were determined by applying the formula

C = b ± t S,

where b represents the initial goodness of fit coefficient, C is the new confidence level 

coefficient, S is the vector of diagonal components from estimated covariance matrix of the 

coefficient estimates (XT X)−1z2, where T represents transpose, z represents the mean 

squared error, and X is the Jacobian matrix of the fitted values with respect to the 

coefficients b. The variable t is reliant on the confidence level and is found using the inverse 

of the cumulative Student t-distribution function. The prediction bound curves are then 

developed by applying

y ± t mSmT ,

where y is the model fit and m is a row vector of the Jacobian determined at a specific 

predictor value, and the percentiles are established by setting the initial model fit as the 

mean of the standard deviation curve.4,6

Results

Curve Fit Models

The various models were fit to the brain growth data from birth to the age of 18 years for 

both males and females. These global fits resulted in the plots for the Weibull models, West 

ontogenic models, Gompertz models, and two-term power law models shown in Fig. 1. The 

insets in these plots are the residual errors that describe the difference between the model 

and the data at each point. For both sexes, all of the models show rapid growth within the 

first 2 years, and then the growth rate rapidly decreases. For the West ontogenic, Weibull, 

and Gompertz models, a stationary asymptote is reached. It is only the two-term power law 

that continues to show slow yet consistent growth up until and beyond age 18 years.

Statistical Analysis

Statistical measures were calculated for each model as shown in Table 3. The Weibull model 

gives the best statistical fits for the male and female data. The two-term power law gives the 

worst fits. Since human brain volume reaches a peak in the 2nd decade of life, a power law 

fit may have limited applicability beyond the early childhood period of rapid brain 

development.20
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Weibull Clinical Curves

To achieve the objectives of this paper, the Weibull fits were plotted as clinically usable 

female and male growth charts displaying the Weibull model with percentiles in Fig. 2. The 

supplementary material for this report (available online) contains high-resolution images of 

the plots in Fig. 2 for printing, as well as a MATLAB algorithm that permits the user to 

change the percentiles or axis limits as desired to customize these growth charts for clinical 

study use.

Model Parameters

For reproducibility purposes, the best-fit model parameters are presented in Table 4.

Discussion

Brain growth has often been studied in relation to whole body growth, and there is a long 

history of comparative but static measurements of brain size.12 In 1897, Eugène Dubois 

discussed the use of a power law relationship between the weight of the mammalian brain 

and the weight of the body.9 In his classic 1917 work On Growth and Form, D’Arcy 

Wentworth Thompson observed: “The changing ratio with increased magnitude is especially 

marked in the case of the brain, which constitutes an eighth of the body-weight at birth, and 

but one fiftieth at twenty-five.”28 Julian Huxley and Georges Teissier used the term 

allometry in 1936 to define the relative changes in body part dimensions corresponding to 

the overall growth of the body.15

Despite this long history of interest, there is still no definitive method for describing 

normative brain volume growth. Moreover, the volumetric growth of the brain over time has 

not received as much attention as has relative growth. And with respect to neurosurgery, the 

dynamics of brain growth have not been a metric that has been used to guide surgical 

management.

Mechanistic Versus Empirical Models

Empirical models, such as the human head circumference curves, have proven to be 

invaluable in characterizing growth and for their clinical utility.

While “All models are wrong,”1 it is important to acknowledge the value of a fundamental 

mechanistic model.26 Although all of the models explored within this study are mechanistic 

in principle, only the West ontogenic model31 has a strong biological basis.

Asymptotic Versus Continuous Growth

It is clear from Fig. 1 that the two-term power law represents a different growth pattern from 

the other models. While the West ontogenic, Weibull, and Gompertz functions all show the 

brain volume growth reaching a maximum value, the two-term power law shows continuous 

growth throughout the entire age range. There are some animals, such as the Nile crocodile, 

that continue to grow throughout life, and in those animals such a simple power law is a 

superb fit to long-term brain growth.22 For the human brain, however, our statistical metrics 
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reveal the worst applicability for the two-term power law, while the best overall statistical fit 

belonged to the Weibull model.

The Weibull Model

Although Huxley’s power law is prominent in the literature as a model for biological 

allometric growth, the Weibull model appears to be a better model for normative human 

brain volume growth. Weibull introduced his model in 1951 as a general statistical 

distribution that represents phenomena such as failure of “weakest links in the chain.”30 This 

chain link failure principle has found much utility in survival analysis, because the 

probability of not dying requires that one not have died of any one of many different causes 

(e.g., tyrannosaur ageing23). Viewed from the reverse standpoint, an ensemble of elements 

grows when any of its elements grow. The distribution follows an S-shaped sigmoidal curve, 

and most growth in plants or animals follows such a qualitative sigmoid curve with an 

inflection point.18 Weibull himself applied this distribution to a distribution of growth as 

measured in heights of boys,30 and the Weibull growth function has found much success in 

modeling growth from certain species (e.g., fast-growing mule ducks29) but less so for 

others (e.g., slow-growing California turkeys7).

We were surprised that the West ontogenic model did not fit brain growth as well as the 

Weibull distribution.31 The West model was designed as a biologically based growth curve 

and has shown great universality for body mass growth dynamics across a wide range of the 

animal kingdom.32 One of the key elements in the West formulation is that the mass of the 

body is a direct function of cell replication and the number of cells. However, neuronal 

replication is largely completed by the time of birth, and postnatal brain growth results more 

from synaptogenesis, axonal and dendritic sprouting, and myelination than from cellular 

proliferation.5 In addition, a key element of the West formulation for the brain is that the 

relative relationship between capillary supply and cellular demand ultimately limits growth 

in mammals. We speculate that the unique relationship between brain metabolic demand and 

supply might further push the mammalian brain away from the basic assumptions of the 

West model.

Study Limitations

The limitations of this study include a relatively small sample number and the fact that the 

sample population consisted of a representative group of children from North America. Our 

brain volumetrics were semiautomated, but we curated the results by hand to ensure that 

each image was accurately segmented.20 Our findings should be followed up with research 

on larger data sets as more automated approaches to brain volume determination render such 

larger-scale studies increasingly feasible.

It would be useful to consider an alternative set of curves for brain volumes of individuals 

who have been born prematurely,13 but to our knowledge there is no existing imaging 

database of growth of such individuals. In addition, the normal growth curves of prematurely 

born infants would need to be developed from uncomplicated clinical courses, without for 

instance hemorrhagic stroke or ischemic damage to the brain. This would be an increasingly 
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difficult task in terms of the most premature infants for whom such curves would be most 

needed.

Another difficult task is how to best handle the congenital malformations associated with 

hydrocephalus, such as spina bifida with myelomeningocele, frequently associated with 

polymicrogyria, or aqueductal stenosis complicated by neuronal migration anomalies.16 

Similarly, one might ask whether the ventriculomegaly associated with skeletal dysplasia, 

such as achondroplasia,11 might be better managed by the effect on normative growth if 

normal growth could be defined for such syndromes. Our conjecture is that studying the 

range of growth of such conditions in relationship to normal growth may be a way forward 

to better define clinical management goals. Correlating such growth with neurocognitive 

outcome17 might be a way to define optimal brain growth in the management of such 

children. It is also of interest to consider whether geographical region-specific brain growth 

curves would be advantageous to develop for applications to different regions of the world.
12,19

Conclusions

Since the Weibull model provided the best fit for male and female normative human brain 

volume growth, we developed curves for clinical and research use (available at high-

resolution for printing, along with source code for further customizing the curves, in the 

supplemental material). These curves provide a new tool for clinicians and researchers to 

measure brain growth in clinical studies, and monitor growth along with treatment for 

conditions such as hydrocephalus. We anticipate that further work will refine these model 

fits, and their percentiles, and may lead to a standard tool for clinical rather than research use 

when consensus curves are established.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIG. 1. 
Normative model curve fits. The open circles represent different brain volumes at different 

ages. The curves fit to these data represent the models described above each plot. A–D 
represent female models, while E–H represent male models. The insets in each plot are the 

residual errors describing the difference between the model and the data at each point.
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FIG. 2. 
Weibull growth charts. The Weibull curve fits for the NIH female and male normative data 

are shown in this figure as growth charts. High-resolution versions are available in the 

supplementary material, along with a modifiable software code.
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TABLE 1

Candidate normative brain growth models

Model Equation Variables

Two-term power law V = atb + c V = volume
t = time
a, b, c = best-fit parameters

Gompertz

V = ae−e bc/a d − t + 1 V = volume
t = time
a, b, c, d = best-fit parameters

Weibull

V = Vm − ae−btc
V = volume
t = time
a, b, c = best-fit parameters
Vm = maximum volume

West ontogenic

V
Vm

1/4
= 1 − 1 −

Vt
Vm

1
4

e
−at/4Vm1/4

V = volume
t = time
a = best-fit parameter
Vm = maximum volume
Vi = initial volume

Each of the 4 models explored in this study, the two-term power law and the Gompertz, Weibull, and West ontogenic models, are described in this 

table. Their respective equations and corresponding parameters and variables are shown. In this paper all volumes, V, are calculated in cm3.
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TABLE 2

Statistical measures for model evaluation

Statistical Measure Equation Variables

Sum of squared errors (SSE)
SSE = ∑ yi − yi

2 yi = sample value
ŷi = predicted sample value

Akaike information criterion (AIC)
AIC = 2S + N ln SSE

N

S = parameter number
N = sample number

Total sum of squares (SST)
SST = ∑ yi − yi

2 yi = sample value
y = sample mean

Coefficient of determination (R2) R2 = 1 – SSE/SST

Adjusted coefficient of determination (R2
adj)

Radj
2 = 1 − N − 1

N − p
SSE
SST

p = total number of explanatory variables
N = sample number

Root mean square error (RMSE)

RMSE = ∑ yi − yi
2/N

yi = sample value
ŷi = predicted sample value
N = sample number

Each statistical measure used is described, as well as the corresponding variables and parameters.
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TABLE 4

Best-fit parameters

Model Parameters a b c d

Gompertz female 1300   11.4 0.342 −305

Gompertz male 1300   13.3 0.338 −305

Two-term power law female 126 0.224   450

Two-term power law male 165 0.209   440

Weibull female 917 0.029       0.595

Weibull male 975 0.014       0.711

West ontogenic female     0.058

West ontogenic male     0.066

The parameters a, b, c, and d are shown, representing the optimally fit coefficients determined for each model fitting the brain volume as in Table 1.

J Neurosurg Pediatr. Author manuscript; available in PMC 2018 November 01.


	Abstract
	Methods
	Compilation of Normative Data
	Candidate Models Fit to the Normative Data
	Power Law
	Gompertz
	Weibull
	West

	Curve-Fitting Procedures
	Statistical Measurements Used for Analysis
	Defining Prediction Bounds and Percentiles

	Results
	Curve Fit Models
	Statistical Analysis
	Weibull Clinical Curves
	Model Parameters

	Discussion
	Mechanistic Versus Empirical Models
	Asymptotic Versus Continuous Growth
	The Weibull Model
	Study Limitations

	Conclusions
	References
	FIG. 1
	FIG. 2
	TABLE 1
	TABLE 2
	TABLE 3
	TABLE 4

