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Abstract

Background and Purpose: Myelin water fraction (MWF) mapping permits direct 

visualization of myelination patterns in the developing brain and in disease. MWF is 

conventionally measured through multiexponential T2 analysis which is very sensitive to noise, 

leading to inaccuracies in derived MWF estimates. While noise reduction filters may be applied 

during post-processing, conventional filtering can introduce bias and obscure small structures and 

edges. Advanced non-blurring filters, while effective, exhibit a high level of complexity and the 

requirement for supervised implementation for optimal performance. The purpose of this paper is 

to demonstrate the ability of the recently introduced nonlocal estimation of multispectral 

magnitudes (NESMA) filter to greatly improve determination of MWF parameter estimates from 

gradient and spin echo (GRASE) imaging data.

Methods: We evaluated the performance of the NESMA filter for MWF mapping from clinical 

GRASE imaging data of human brain, and compared the results to those calculated from unfiltered 

images. Numerical and in vivo analyses of the brains of three subjects, representing different ages, 

were conducted.

Results: Our results demonstrate the potential of the NESMA filter to permit high quality in vivo 

MWF mapping. Indeed, NESMA permits substantial reduction of random variation in derived 

MWF estimates while preserving detail.

Conclusions: In vivo estimation of MWF in the human brain from GRASE imaging data was 

markedly improved through use of the NESMA filter. The use of NESMA may contribute to the 

goal of high quality MWF mapping in clinically feasible imaging times.

Keywords

Multispectral nonlocal filtering; Myelin water fraction; GRASE; Brain

*Address correspondence: Mustapha Bouhrara, National Institutes of Health (NIH), National Institute on Aging (NIA), Intramural 
Research Program, BRC 04B-017, 251 Bayview Boulevard, Baltimore, MD 21224, USA. Tel: 410-558-8541, 
bouhraram@mail.nih.gov. 

Disclosures: There are no conflicts of interest for any of the authors.

HHS Public Access
Author manuscript
J Neuroimaging. Author manuscript; available in PMC 2019 November 01.

Published in final edited form as:
J Neuroimaging. 2018 November ; 28(6): 640–649. doi:10.1111/jon.12537.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



INTRODUCTION

Myelin is an electrical insulator essential for action potential conduction and for transporting 

trophic support to the neuronal axons of the central nervous system (CNS).1 Patterns of 

myelination represent an important biomarker for CNS diseases and neurodevelopment.2,3 In 

1994, Mackay and colleagues demonstrated the possibility of in vivo mapping of the myelin 

water fraction (MWF), a surrogate for myelin content, in human brain using magnetic 

resonance imaging (MRI).4 Since then, several methods have been introduced to either 

accelerate image acquisition or to improve data analysis.2,5–7 Among them, multi-spin-echo 

(MSE)-based MRI sequences, namely the Carr-Purcell-Meiboom-Gill sequence (CPMG) or 

its accelerated version, the gradient and spin echo (GRASE) sequence,8,9 remain the 

reference methods.2,5 This is likely due to the availability of these imaging sequences on 

most pre-clinical and clinical MRI systems, the simplicity of the signal model, and the 

extensive histological validation conducted over the last two decades.2,10,11

MWF can be measured from MSE imaging data through multicomponent T2 analysis using 

the nonnegative least-squares algorithm (NNLS)4,9,12,13 which does not require any a priori 

assumptions about the number of distinct underlying relaxation components. However, a 

well-known difficulty in MWF estimation is the sensitivity and instability of 

multiexponential decay analysis to noise,14 whether using NNLS or other analytic methods, 

leading to inaccuracies in derived MWF estimates.5,15,16 Increased accuracy may be 

achieved though application of noise reduction filters during post-processing.16–19 However, 

conventional linear filtering can introduce bias, leading to inaccurate parameter estimation, 

and can obscure small-scale structures by partial volume effect.20 While attempts have been 

made to improve MWF mapping using more advanced filtering methods,15–18,21–24 

performance was limited, especially at moderate signal-to-noise ratio (SNR); in addition, 

these applications required several user-defined parameters, adding substantially to difficulty 

in implementation.

In previous work, we introduced a new denoising image filter that is nonlocal (NL), that is, 

incorporates information from non-adjacent voxels, and multispectral (MS), that is, 

incorporates image intensities from different acquisition modalities or experimental 

parameter values, based on maximum likelihood (ML) estimation of voxel intensities using 

the intensities of M selected similar voxels. In the case of multiecho data sets, the selected 

voxels are defined as those that exhibit signal intensities over the full range of echo times 

(TEs) that are similar to the signal intensities of the index voxel, according to a specified 

metric.20 In our most recent implementation, we replaced the maximum likelihood 

estimation (MLE) by the simple average of the amplitudes of these similar voxels. This 

markedly decreases both computational time and implementation complexity while 

maintaining nearly equivalent filtering performance. This filter outperforms currently 

available advanced filters, including nonlocal and multispectral filters, in term of noise 

reduction and detail preservation20,25 and has been denoted nonlocal estimation of multi-

spectral magnitudes (NESMA).25 In addition to its improved performance as compared to 

other state-of-the-art filters, NESMA i) is straightforward to implement, ii) is very fast, 

rendering it suitable for routine use and analysis of large datasets, and iii) requires minimal 

user-defined parameters.20,25
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The main purpose of this study is to evaluate the performance of the NESMA filter for 

clinical MWF determination from in vivo human brain GRASE imaging data, and to 

compare the results to those calculated from unfiltered images. In vivo studies and numerical 

simulations were conducted to evaluate the performance of the filter in the clinical setting.

MATERIALS & METHODS

The NESMA filter

We consider perfectly registered multispectral images defined on a discrete grid I, which 

describes the bounded 3D spatial domain spanned by the image, given by S = {S(i) | i ∈ I, 

S(i) ∈ RK}, where K is the total number of frames of the multispectral dataset. In this work, 

we define a frame k as an image within the multispectral dataset obtained with a particular 

value of TE. The underlying idea of quantitative filters is to reduce noise by replacing the 

noisy intensity of a given voxel by an unbiased estimation of its underlying amplitude. This 

requires selection of voxels that are likely to come from similar tissue. The NESMA filter 

restores the amplitude, A, of an index voxel, i, based on M preselected voxels with similar 

multispectral signal patterns through:

Ak(i) = 1
M ∑

j

M
Sk(j ). [1]

The number M of similar voxels is conventionally held constant in the construction of 

nonlocal MLE filters, including in our previous implementations.20,26 However, the optimal 

value may in fact vary among different image regions. We therefore implemented a spatially 

adaptive selection of M using the relative Manhattan distance (RMD), defined as25

RMD (i, j) = 100 ×
∑k=1

K Sk(i)‐Sk(j)

∑k=1
K Sk(i)

. [2]

In this work, the RMD was calculated between the index voxel and all voxels belonging to a 

relatively large search window of size R, centered around the index voxel i, in which 

emission and reception B1 fields and noise standard deviation (SD) were assumed to be 

approximately constant.13,27,28 The size of the search window, R, was fixed to to 21 mm x 

21 mm x 21 mm, corresponding, in this work, to 21 voxels x 21 voxels x 7 voxels. Voxels 

with RMD < 5% were considered similar to the index voxel. Preliminary comparisons of 

NESMA with advanced filters in terms of noise reduction, small structure preservation, 

speed, and simplicity in implementation have been presented elsewhere.20,25 All analyses 

were performed with MATLAB (MathWorks, Natick, MA, USA) using a 2.4 GHz computer.

MWF mapping

In each voxel, MWF was calculated via the inverse Laplace transform (ILT) using a 

regularized NNLS algorithm.4,5,12 The regularization factor, λ, was defined based on the 
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discrepancy principle such that 1.02χ mim
2 ≤ χreg

2 ≤ 1.025 ⋅ χmin
2 , where χ2

min and χ2
reg are 

the calculated misfit between the data and the model obtained from the nonregularized and 

regularized solution, respectively.4,12,27 The input kernel matrix was created using 60 

possible T2 values, logarithmically spaced from 8 to 2000 ms, and 32 TE values 

corresponding to the experimental values indicated below. For each T2 and TE combination, 

we used the extended phase graph (EPG) algorithm to correct for stimulated echoes.13,27 

The input normalized B1 value was first obtained by fitting the experimental signal to a 

single component decay using the EPG; this allows fast and accurate determination of B1.
29 

Finally, the MWF was calculated as the integral of the T2 distribution between 8 and 40 ms, 

normalized by the total area under the distribution.4,9,12,27,30

In vivo analysis

3D GRASE images were acquired from the brains of three healthy subjects (males, ages 24 

and 85, and female, age 43). For each participant, 32 echoes were acquired with TEn = n * 

ΔTE, where ΔTE = 11.3 ms, TR = 1000 ms, EPI factor = 3, field-of-view = 278 mm x 200 

mm x 30 mm, acquisition matrix size = 185 × 133 × 10, acquisition voxel size = 1.5 mm x 

1.5 mm x 3 mm, reconstructed to 1 mm x 1 mm x 3 mm using zero-filling in k-space. The 

total acquisition time was ~10 min. All experiments were performed on a 3T whole body 

Philips MRI system (Achieva, Best, The Netherlands) using the internal quadrature body 

coil for transmission and an eight-channel phased-array head coil for reception. The 

approximate SNRs, defined as the mean signal at the first TE divided by the signal SD at the 

last TE calculated over large white matter regions, were ∼190, ~180, and ~165, for the 24, 

43, and 85 year old participants, respectively. The nature of the experimental procedures was 

fully explained to the subjects, from whom written informed consent was obtained prior to 

participation. All examinations were performed in compliance with the standards established 

by our local Institutional Review Board.

The first analysis consisted of illustrating the sensitivity of NNLS to noise, and the spatial 

variation of the regularization factor, λ, before and after NESMA-filtering. The optimal 

value of λ, as determined by the χ2 criterion described above, is itself highly nosie-

dependent. Thus, for each participant, we compared signal decay curves and corresponding 

T2-distributions from four different voxels before and after image NESMA-filtering. In 

addition, we constructed maps of λ for corresponding unfiltered and filtered images for a 

representative slice. This provides a quantitative visual representation of the values of λ 
required for regularization as defined above; in general, larger values of λ, with potential 

masking of fine structure in the T2 histogram, are required for worse SNR.

The second analysis consisted of comparing MWF maps derived from unfiltered and 

NESMA-filtered datasets obtained from the brains of the three participants. For each 

participant, results were displayed for three representative slices. Moreover, the mean and 

SD of MWF values were calculated in five different regions-of-interest (ROI). The first ROI 

lay within the centrum semiovale (CS), the second within the genu of the corpus callosum 

(GCC), the third within splenium of the corpus callosum (SCC), the fourth within the limbs 

of the internal capsule (LIC), and the last region encompasses all previous regions. Results 
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for this last ROI are presented as smoothed Gaussian histograms using the MATLAB 

command histfit.

Numerical analysis

Numerical simulations were conducted to further assess the performance of NESMA for 

MWF determination from GRASE imaging data. Noise-free 3D GRASE brain images were 

generated at 32 TEs, linearly spaced between 11 ms and 352 ms, assuming a biexponential 

signal model that incorporates myelin and intra/extra cellular water peaks. MWF maps and 

relaxation times derived from NESMA-filtered images of the brain of the 43-year-old 

participant were used as input parameters since that participant showed the greatest range of 

MWF values. Input relaxation time maps were calculated by defining the T2 of myelin as the 

short component peak ranging from 8 ms to 40 ms, while the T2 of the intra/extra cellular 

water as the component peak ranging from 40.1 ms to 200 ms. For each voxel, these MWF 

and relaxation time values were used to generate a distribution of relaxation times rather 

than two distinct components, following the method described by Dula et al.31 Gaussian 

noise was then added to produce images with SNR of 200, corresponding to in vivo values.
27,29 MWF images were derived as outlined above from unfiltered or NESMA-filtered 

images. For each slice, mean and SD MWF values were calculated in a large white matter 

region defined by manual segmentation. In addition to visual inspection, MWF absolute 

error (AE) maps were calculated as a quantitative measure of filtering performance, with 

maps derived from infinite SNR taken as the reference. In each voxel, AE was defined as the 

absolute difference between the estimated and reference MWF values. These MWF and AE 

maps were displayed for three different slices. AE histograms and the mean and SD of AE 

values were calculated from white matter voxels over the entire imaged volume.

RESULTS

Figure 1 shows an illustration of the sensitivity of the NNLS algorithm to noise and and the 

spatial variation of the regularization factor, λ, required in the NNLS algorithm before and 

after NESMA-filtering. Signal decay curves from four different voxels (left panel) as a 

function of TE from unfiltered and NESMA-filtered images and corresponding T2-

distributions obtained using NNLS (middle panel) are displayed for each participant. There 

is clearly a large variation in the morphology of the derived T2-distributions from the 

unfiltered voxels, with much less variation seen after filtering. Two distinct peaks, 

corresponding to MWF and intra/extra cellular water, are clearly visible in the T2-

distribution obtained from the filtered signal. This analysis illustrates the high degree of 

sensitivity of the NNLS analysis of transverse relaxation to noise, and the substantial 

improvement obtained through NESMA filtering. This is further illustrated by λ-maps 

calculated from unfiltered and filtered images (right panel). The substantial decrease in the 

required degree of regularization after filtering is evident. Indeed, the values of λ were 

approximately a factor of 2 to 4 lower in parenchymal regions after filtering. Finally, the λ-

maps derived from unfiltered images showed a much greater degree of random variation 

than the NESMA-filtered images.
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Figure 2 shows a comparison of derived MWF maps from the brains of three subjects of 

different ages. Maps calculated from unfiltered and NESMA-filtered images are displayed 

for three different slices. As is readily seen, there is substantial random variation in MWF 

maps derived from unfiltered images, as well as “voids”,16 that is, voxels with very low 

MWF values, as indicated by the white arrows. However, MWF maps calculated from 

NESMA-filtered images exhibited preservation of edges and small structures, as well as 

greatly reduced random variation and nearly complete absence of voids as compared to 

unfiltered images. Further, the mean MWF values obtained from the unfiltered images were, 

overall, lower than those obtained from the filtered images (Fig. 3). We attribute this to 

underestimation of MWF due to the presence of artefactual voids as defined above. In 

addition, the SD of MWF values derived from unfiltered images was substantially larger 

than the SD derived from filtered images. This is likely due to the presence of voids as well 

as the direct effect of noise. The computation times required to filter the entire dataset using 

NESMA was ∼130 s.

Figure 4 shows examples of MWF maps, AE maps, and AE histograms derived from 

simulated GRASE images obtained from three slices of the brain of the 43-year old 

participant. Results are shown from NNLS analysis of unfiltered and NESMA-filtered 

images. As is readily seen, MWF maps derived from the NESMA-filtered images exhibited 

preservation of edges and small structures, as well as greatly reduced random variation as 

compared to those derived from unfiltered images. Furthermore, the mean and SD of MWF 

values derived from NESMA-filtered images were very close to reference values derived 

from infinite SNR data. In contrast, mean MWF values derived from unfiltered images 

exhibited systematic underestimates, as well as larger SD. These results are in good 

agreement with our in vivo results (Figs. 2–3). Moreover, quantitative analysis of the filtered 

images showed negligible AE in the brain parenchyma, in contrast to the significant AE 

obtained from unfiltered images.

DISCUSSION

Regional alterations in myelin content have been found to be associated with a number of 

CNS diseases, including multiple sclerosis,2,10,30,32–39 neuromyelitis optica,40 epilepsy,41 

Parkinson’s disease,42 mild cognitive impairment,43 Alzheimer’s disease,44–46 

phenylketonuria,47 stroke,48 schizophrenia,49 and autism.50 However, high-quality, high-

resolution MR imaging of MWF is challenging, especially in the clinical setting,
15,24,29,51–58 in which scan times are necessarily limited. In the present work, we 

investigated the ability of our recently introduced NESMA filter20,25 to enhance the quality 

of derived MWF maps from clinical GRASE imaging data. Our in vivo analysis showed that 

estimation of MWF was markedly improved through use of the NESMA filter (Figs. 1–4). 

Indeed, our results indicate that NESMA filtering results in MWF maps with increased 

anatomic detail and delineation of local myelin patterns as compared to results obtained 

from unfiltered images. Further, our numerical analysis showed markedly reduced AE in 

MWF maps calculated from NESMA-filtered as compared to unfiltered images (Fig. 4).

It is well-known that the ILT is an ill-posed problem;59–61 this renders the result of the ILT 

highly sensitive to noise and of potentially limited accuracy. While regularization may 
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reduce these limitations,62 derived MWF values are highly sensitive to the degree of 

regularization, λ,63 especially at clinical SNR. Our results showed that as expected, larger 

values of λ were required to regularize the signal decays from the unfiltered images. The 

histogram blurring resulting from this greater degree of regularization led to the inability to 

resolve underlying signal components of the T2-distribution in a substantial number of 

voxels in these images (Fig. 1).9,12,13,16,27 In contrast, the dominant components of the T2-

distributions were well-resolved in all voxels in the filtered images, demonstrating the ability 

of NESMA to reduce the impact of regularization on MWF determination. We note that 

several slices showed myelin content extending to the brain periphery, especially in the 

brains of relatively young participants (Fig. 2). This is in accorda with previous data.27,64 In 

addition, we note that this pattern is visible in MWF maps derived both with and without 

filtering (Fig. 2), and so is not attributable to a filtering artifact. Similarly, it is seen 

independently of the use of, or degree of, regularization (data not shown).

Most of the post-processing approaches for improved determination of MWF15,21–24 require 

ad hoc adjustment of tuning parameters, adding further complexicity to their 

implementation. While a detailed comparison of these methods is beyond the scope of the 

present description of the effect of the NESMA filter on MWF measurement accuracy using 

GRASE, Fig. 5 shows a simulation-based comparision of MWF determination from 

unfiltered images and from images filtered using the NESMA and the multispectral nonlocal 

means (MS-NLM) filters.21 At high SNR, both filters performed well. However, it is readly 

seen that at low-to-moderate SNR, the NESMA filter exhibits greater preservation of detail 

than the MS-NLM filter. MS-NLM is based on a weighted mean of signal intensities 

calculated between the voxel being filtered and each of the other voxels in a large search 

window. In the case of low contrast between tissues or low SNR, these calculated weights 

are likely to be inaccurate.20 This translates directly into inappropriate weighting of voxels 

in the calculation of the estimated intensity of the index voxel, leading to, in effect, partial 

volume effects. In contrast, NESMA uses only similar voxels to restore the amplitude of the 

index voxel.20,25 Detailed comparison analysis can be found in our previous studies.20,25

An additional advantage to the high-resolution methodology we have introduced is the 

reduction of the partial volume effects that can lead to substantial errors in quantitative brain 

mapping. A related effect is the potential heterogeneity of tissue microstructure within an 

ROI selected for analysis; this has been recently addressed in the related context of myelin 

fiber mapping,65 including in the investigation of dementia.66 In fact, this approach to tract-

specific structural measures represents an advance over what is currently possible with 

MWF mapping. On the other hand, MWF mapping has the potential to reflect underlying 

myelin content in a quantitative manner, while diffusivity, magnetization transfer, and 

relaxation times are less readily interpretable as quantitative measures of myelination.

Our results are consistent with recent studies indicating larger MWF values in the brain of 

middle aged subjects as compared to younger or old subjects.45,67 This may be attributed to 

the process of myelination in the young-middle age, followed by demyelination in later 

years.45,67 Further, our calculated MWF mean values were overall in good agreement with 

those previously reported using other techniques.45,67. In contrast, both numerical and in 

vivo analyses revealed a systematic underestimation of mean MWF values and a larger SD 
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of MWF values derived from unfiltered images. We believe that the presence of MWF voids,
16 representing voxels in which the MWF is not resolvable from the larger non-bound water 

pool, is the major contributor to these effects, with additional variation deriving from the 

highly noise-sensitive determination of MWF from the unfiltered images, characteristic of 

ill-posed problems (Figs. 2–4). However, an important limitation of our study is the limited 

sample size in this initial study, so that no statistical conclusions can be drawn regarding 

disease status. However, our goal here was to establish the applicability of NESMA to 

improve MWF determination. and to indicate the potential of this approach for 

investigations of age and disease status.

In the present study, we showed that the NESMA filter permits substantial improvement in 

the quality of MWF maps derived from GRASE imaging datasets. However, NESMA is 

readily applicable to other multispectral imaging modalities to improve the quality of 

parameter estimates. This includes MWF mapping from multi-gradient echo imaging 

datasets,68–71 relaxation time mapping,72–74 diffusion imaging,75–77 diffusion tensor 

imaging,78–81 quantitative magnetization transfer,82,83 quantitative susceptibility mapping,
84,85 perfusion mapping,86,87 dynamic contrast enhanced measurements,88 and other 

quantitative modalities in which successive images are obtained leading to multispectral 

characterization of individual voxels.81,89 Moreover, the increase in SNR without loss of 

resolution in the filtered images may lead to enhanced clinical applicability of advanced 

signal models known to exhibit high sensitivity to noise.90–92

Advantages of NESMA filtering include speed, with denoising of a whole brain volume 

requiring only few minutes, ease of implementation, quality of denoising while preserving 

resolution, and reliance on only a single user-defined parameter, the similarity threshold, 

RMD.25 In fact, RMD must be carefully selected. Large values of RMD degrade the quality 

of noise reduction by including voxels that are progressively less similar to the index voxel. 

This translates directly into incorporation of inappropriate voxels into the calculation of the 

estimated intensity of the index voxel, leading to, in effect, inaccuracy in estimated signal 

intensity. To avoid this, we suggest the use of a small value of RMD, as it is the case in the 

present work. While this may penalize homogenous regions where large values of RMD 

would provide further increase in SNR, our analysis showed that use of small values still 

leads to excellent filtering performance, while preserving small structures and edges (Figs. 

1, 2, 4). We note that an optimal value of RMD can also be estimated using numerical 

simulations with representative conditions, although this additional complexity may not lead 

to substantive improvements in filtering quality. Further, we have recently introduced a 

method for automatically selecting RMD25 that permits variation of this parameter across 

the image, as appropriate for each index voxel. This requires a priori knowledge of the noise 

SD, which, while available in many cases, may be difficult to estimate in multichannel 

acquisitions due to potential correlation between coils and SENSE reconstruction.93,94

In this work, we defined the MWF as the integrated area of the T2 distribution over the range 

of 8 to 40 ms, divided by the total area of the distribution. While this corresponds to the 

conventional definition adopted in several studies,9,10,12,13,27,47,95 several other studies used 

50 ms as an upper integration limit.16,30,33,96 Levesque and colleagues have shown 

substantially different derived MWF values from the two ranges in several brain structures;
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97 this is in accordance with our own observations (data not shown). We found that 

implementing their proposed method for adaptive selection of the T2-range of MWF led to 

results similar to the ones we have presented. Indeed, in our NESMA-filtered images, ~40 

ms appears to be an optimal upper limit; one example is seen in Fig. 1. However, using the 

same algorithm, derived MWF from unfiltered images showed substantial random variation; 

this is in agreement with Levesque’s et al. results.97 Other factors may affect MWF 

estimation from MSE-based sequences such as CPMG and GRASE; this represents 

limitations of the present work as well as literature results. Indeed, the MSE signal model 

analyzed by ourselves and others neglects several factors including, i) exchange between 

water pools,98–100 ii) magnetization transfer between free water protons and 

macromolecules, iii) T1 effects resulting from the short TRs usually used, iv) off-resonance 

effects,101–103 iv) J-coupling,98,104 v) spin locking,105,106 and vi) internal gradients.107 

Finally, as with any MRI sequence, the spatial gradients modulate the degree of signal 

attenuation due to water diffusion in underlying compartments, which is not modeled in the 

MSE formalism.

We note that the details of the T2-distribution may be variable, with two or three relatively 

prominent histogram components. Because of this variation, assessment of MWF relies upon 

measurement of the total amplitude within a certain T2 range, as described above, without 

direct consideration of the details of the underlying distribution.5,10,11,30,67,97 The precise 

interpretation of these components is a topic of current interest, but beyond the scope of the 

present manuscript, which centers on the improvement in MWF determination through use 

of the NESMA filter. In general, in all voxels examined, there were two dominant histogram 

components, attributable to relatively unbound water and to myelin water.

In conclusion, in vivo estimation of MWF in the human brain from GRASE imaging data 

was markedly improved through use of the NESMA filter. The use of NESMA may 

contribute significantly to the goal of high quality MWF mapping in clinically feasible 

imaging times, and is readily extendable to other quantitative modalities that use 

multispectral imaging datasets.
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Figure 1. 
Illustration of the sensitivity of nonnegative least squares (NNLS) to noise and the spatial 

variation of the regularization factor, λ, required in the NNLS algorithm before and after 

NESMA-filtering. Left panel: representative signal decay as a function of TE from four 

different voxels before and after filtering. Middle panel: corresponding T2-distributions 

obtained using NNLS. Each voxel is described by a T2 distribution with two dominant 

components corresponding to myelin or intra/extra cellular water. There is clearly a large 

variation in the morphology of the T2-distributions derived from the unfiltered voxels; in 

fact, the two underlying signal components are not resolved in several voxels, especially 

those with large values of λ. This result was found to be typical for white-matter voxels. In 

contrast, markedly decreased variation is seen in the T2 distributions obtained after filtering. 

This illustrates the sensitivity of the NNLS analysis to noise, and the significant 

improvement obtained through NESMA filtering. Right panel: maps of the λ values used for 

regularization, calculated by the optimization procedure described in the text, for unfiltered 

and filtered myelin water fraction (MWF) maps derived from GRASE imaging data. The 

random variation evident in the λ-maps derived from unfiltered images is virtually absent in 

the λ-maps derived from NESMA-filtered images. Furthermore, the values of λ are 

substantially reduced after NESMA filtering, especially in parenchymal regions, indicating 

greatly improved data quality and reduced distortion of the T2 histogram derived from the 

NNLS analysis.
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Figure 2. 
Myelin water fraction (MWF) maps derived using GRASE acquisition with non-negative 

least squares analysis from unfiltered or NESMA-filtered images. Results are shown for 

three different slices obtained from the brains of three subjects of different ages. As is 

readily seen, MWF maps derived from NESMA-filtered images exhibited more consistency 

and less variation than those derived from unfiltered images. Moreover, maps derived from 

unfiltered images shows substantial voids, that is, voxels with very low MWF values, as 

indicated by the white arrows. Further, the brain of the middle-aged subject exhibits greater 

MWF values than seen in the younger or the older subjects in several regions; this is in good 

agreement with the results of Arshad et al.67.
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Figure 3. 
a) Mean and standard deviation myelin water fraction (MWF) values calculated in five 

different regions-of-interest (ROI). The first ROI lay within the centrum semiovale (CS), the 

second within the genu of the corpus callosum (GCC), the third within splenium of the 

corpus callosum (SCC), the fourth within the limbs of the internal capsule (LIC), and the last 

encompasses all previous regions. b) Smoothed Gaussian histograms showing the 

distribution of MWF within the composite ROI, using unfiltered and filtered images for each 

participant.
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Figure 4. 
Myelin water fraction (MWF) maps, absolute error (AE) maps, and AE histograms derived 

from unfiltered and NESMA-filtered simulated GRASE images. Mean and standard 

deviation (SD) MWF values were calculated over a large region laying within white matter 

and are reported above each slice. AE histograms and mean and SD AE values were 

obtained from large white matter regions over the entire imaged volume. As is readily seen, 

derived MWF maps from NESMA-filtered images exhibited more consistency and less 

variation with lower AE than those derived from unfiltered images. Further, mean and SD 

MWF values derived from NESMA-filtered images were very close to the reference values 

derived from noiseless images. In contrast, mean MWF values derived from unfiltered 

images were systematically underestimated and exhibited larger SD. These results are in 

good agreement with the in vivo results (Figs. 1, 2 and 4). Finally, as expected, AE 

histograms indicate that MWF estimates from unfiltered images exhibit larger dispersion 

than those derived from NESMA-filtered images.
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Figure 5. 
Left-hand panel: myelin water fraction (MWF), T2s, and T2l reference images used as inputs 

to evaluate filter performance. These reference images were derived from a simulated 

sequence of noise-free 3D T2-weighted images generated at 32 TEs, linearly spaced between 

10 ms and 320 ms, assuming a biexponential signal model that incorporates myelin and 

intra/extra-cellular water peaks. Gaussian noise was added to produce images with signal-to-

noise ratio (SNR) of 200, corresponding to an in vivo value,27,29 as well as 100 and 50, as 

may result from implementation of high-resolution fast imaging. Right-hand panel: 

Estimated MWF maps derived from unfiltered images or from images filtered using multi-

spectral nonlocal means (MS-NLM) and NESMA, obtained as described in the text. Black 

arrows indicate example of regions where NESMA shows higher performance than MS-

NLM.
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