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Abstract

Primers having suboptimal amplification efficiencies were shown to falsely represent fold change expression of the N-methyl-
transferases gene family involved in caffeine biosynthesis in Coffea canephora. To study this phenomenon, the role of stability
of the internal reference gene, as well as the amplification efficiency correction of the primers was investigated. GAPDH and
Ubiquitin exhibited a good stability for studying the ontogeny of endosperm tissue, as well as the leaf transcriptome during
stress from salicylic acid, methyl jasmonate, PEG-mediated drought and sudden exposure to light. Ubiquitin manifested low
variation in Cq under all these stress regimes and in endosperm ontogeny with 30.1-30.9 in the best dataset and 28.8-30.9
in the most deviating dataset. It was observed that problems arising due to improper amplification efficiency of the target or
reference genes or both could lead to misinterpretation of gene expression levels. Quantitative RT-PCR performed at a sub-
optimal efficiency of GAPDH reference gene at 1.68 led to the faulty interpretation of 2.007 folds upregulation by the 2744t
method and 1.705 folds upregulation by Efficiency method for the first NMT (Xanthosine methyltransferase), which actually
is repressed during dark acclimatization of coffee plants. Efficiency correction improved the reliability of the expression data
and also indicated a downregulation of this gene by 0.485 folds and 0.474 folds using 2722 and E method, respectively,
in concordance to earlier reports. Hence, efficiency correction of the primers having suboptimal efficiencies is an absolute
prerequisite for the accurate calculation of fold change using quantitative RT-PCR.
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Introduction

Caffeine is the most researched molecule from coffee and is
designated to a functional role under the ‘Chemical Defense
Theory’ (Frischknecht et al. 1985). Nevertheless, there has
been much debate about the actual role and the evolution of
caffeine in different plant systems. Caffeine accounts for the
major purine alkaloid in coffee and is synthesized from the
ubiquitous committed precursor, xanthosine, by the Salicylic
Acid Benzoic Acid THeobromine Synthase, (SABATH)
superfamily of methyltransferases (Kato and Mizuno 2004).
With the availability of large EST database and complete
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sequencing of C. canephora genome (Denouend et al. 2014)
much research needs to now focus on transcriptomics and
functional characterization of the coffee genome. Caffeine
biosynthetic N- methyltransferases are upregulated under
influence from light (Kumar et al. 2015a), developmental
stage and genotype (Perrios et al. 2015), salicylic acid and
methyl jasmonate (Kumar et al. 2015b, 2017). In addition,
salinity and drought negatively regulate caffeine content
(Kumar et al. 2015c¢). Future studies on the regulation of
caffeine biosynthesis require the assignment of a suitable
reference gene for normalization of quantitative PCR.
Quantitative RT-PCR remains a popular tool for tran-
scriptomics due to its ease of application and economic
feasibility. Search for appropriate reference gene is indis-
pensable for normalization of qPCR quantification (Kozera
and Rapacz 2013). Housekeeping genes like actin, tubulin,
GAPDH, ubiquitin, rpl39, and rRNA are routinely used as
internal reference genes in different systems (Joseph et al.
2018). However, the reference genes itself vary in their
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stability and expression level under certain biological con-
ditions. Minimum Information for publication of Quantita-
tive real-time PCR Experiments (MIQE) guidelines (Bustin
2009) recommends the use of most stable reference gene or
their combinations for the quantitative analysis of the experi-
mental sets. Technically, it is not feasible to identify a single
reference control that can be used for all the experimen-
tal sets. Nevertheless, using the statistical programs most
suitable combination of reference genes can be selected for
each biological experiment sets. The most popular algo-
rithms used for identifying stability of the reference genes
include GeNorm (Vandesompele et al. 2002), NormFinder
(Andersen et al. 2004), BestKeeper (Pfaffl et al. 2004) and
comparative delta-CT (Silver et al. 2006) method, all of
which provide a value of stability or normalization factor
based on expression of the reference gene in different test
and control samples.

Conceptually, relative gene expression by qPCR is cal-
culated by the efficiency method (E method) (Pfaffl 2001),
which account for the differences in PCR efficiency of the
internal reference gene and target gene and 272" method
that assumes 100% efficiency for both target and reference
(Livak 2001). PCR efficiency between samples varies due to
dissimilarities in the quantity and quality of cDNA, primer
quality, the copy number of transcripts and annealing tem-
peratures. Suboptimal quality of template and primer con-
tribute to errors in calculated fold change due to an appear-
ance of non-stochastic Cq values in the standard curve
(Ruijter et al. 2012). PCR efficiency is a critical indicator
for the performance of qPCR analysis of multigene families
especially involved in secondary metabolism (Arunraj and
Samuel 2018). Specificities of primers are not always guar-
anteed while working with multigene families and the qual-
ity of template may vary between samples depending on the
impurities in prepared template due to changes in secondary
metabolism. Hence, neither 2~22€T method nor Pfaff’s E
method are necessarily the most accurate description of the
actual fold change until efficiencies are optimally corrected.
Large-scale qPCR analysis of multigene families requires
proper optimization considering all these factors for the gen-
eration of reliable data. The present study establishes such
errors arising in the quantitation of caffeine biosynthetic
NMT gene family in Coffee under light stress and the effect
of efficiency correction on the reliability of expression data.

Materials and methods

Plant materials and sample preparation

Total RNA was isolated from Coffea canephora Pierre ex.
Froehner var. robusta cv. S274 leaves of stress treatments

(Kumar et al. 2015a, b, 2017) and developing endosperms
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(Giridhar et al. 2012) and all the primers were adopted from
the same studies. Only plant samples from 50 pM salicylic
acid, 10 ul methyl jasmonate, 200 mM sodium chloride and
15% (w/v) polyethylene glycol treatments were considered
for the present study. Light and endosperm sampling was
exactly similar to the method used previously (Kumar et al.
2015a, b). First-strand cDNA synthesis with 1 ug of total
RNA was carried out using iScript cDNA synthesis kit
(BioRad) with pre-mixed cocktail of Oligo-dT and random
hexamer primers. The cDNA preparations from circadian
undisturbed and dark acclimatized samples alone were used
for the study of fold change.

Test of stability of internal reference

Stability of the reference genes, GAPDH and Ubiquitin,
were carried out by comparing Cq values in control and
treated samples of stressed plants and in the ten different
growth phases of endosperms. Twofold dilutions of control
leaf and endosperm cDNA (1, 1:2, 1:4, 1:8, 1:16, 1:32 and
1:64 dilutions) was used to generate standard plots of the
reference genes and the Cq was corrected using the formula
c2=cl*log(al)/log(a2) where c2 is the corrected Cq value,
if the sample would have amplified with the efficiency equal-
ing a2. For leaf samples, the Cq of Ubiquitin was corrected
according to the efficiency of GAPDH and in ontogeny the
Cq of GAPDH was corrected according to that of Ubigquitin.
Amplification curves obtained for the experimental setup
using 1:15 diluted cDNA as a template was analyzed using
RefFinder program (http://leonxie.esy.es/RefFinder/). gPCR
was performed in Applied Biosystems QuantstudioS instru-
ment using Ssofast Evagreen master mix (BioRad) supple-
mented with ROXII (Takara biosciences) with following
parameters: initial denaturation of 95 °C for 30 s, followed
by 40 cycles of denaturation at 95 °C for 5 s and annealing/
extension at (58 °C) for 30 s.

Standard curve for efficiency calculation

Standard plot was made from a dilution series of 1:5, 1:10,
1:20 and 1:40 dilutions of mixed cDNA pooled from all the
stress samples. Reactions were repeated in three different
annealing temperatures (55 °C, 57 °C and 59 °C). qPCR
reactions were carried out in Applied Biosystems Quantstu-
dio 5 instrument with Ssofast Evagreen master mix (BioRad)
supplemented with ROXII (Takara biosciences). The cycle
parameters included initial denaturation of 95 °C for 30 s,
cycle denaturation at 95 °C for 5 s and annealing/extension
at (55-59 °C) for 30 s (40 cycle). Efficiency of reaction was
calculated from the slope using the formula E= 1071/sop,
Fold change between cDNA of circadian undisturbed and
dark acclimatized plant samples for XMT and MXMT genes
was calculated using the method of Pfaffl (2001),
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ACPyyrget (control—target)
(E target ) =

ratio = and 2722€ method (Livak

ACP, ¢ (control—target)
E ref 4
( ref )

2001).

Results and discussion

Stability of Glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) and Ubiquitin internal
reference genes

Most suitable internal reference gene for gPCR by SYBR
chemistry has been identified for coffee to study rust infec-
tion (Vieira et al. 2011), coffee berry disease (Figueiredo
et al. 2013), embryogenic tissue (Freitas et al. 2017), water
stress (Fernandes-Brum et al. 2017) and chilling stress (Gou-
lao et al. 2011). GAPDH and Ubiquitin are considered as
the most stable internal reference genes combination for
qPCR expression studies during water stress and GAPDH
for studies on fruit ontogeny (Barsalobres-Cavallari et al.
2009; Cruz et al. 2009). In the present study, the stability of
both the internal reference gene was tested under conditions
of light exposure, salicylic acid, methyl jasmonate, salin-
ity and drought stress on leaf cDNA and during develop-
ment in endosperm tissues. A box plot graph indicates the
higher power of Ubiquitin as a reference gene in the analysis
between control and stress treated samples from leaves of
salicylic acid, methyl jasmonate, PEG-mediated drought and
light exposed plants as well as in developing endosperms
(Fig. 1a, b). Neither GAPDH nor Ubiquitin were suitable
for studying salinity stress. Strictly essential genes like EF1
and EFla were predicted to be suitable reference genes for
salinity stress in another study on C. arabica (Carvalho et al.
2013). The frequencies of Cq values for control and treated
samples of leaf and for developing endosperms distributed
normally (Fig. 1c, d). Standard curves also indicated that
Ubiquitin has more power in studying the difference in gene
expression between leaf and endosperm tissues (Fig. le, f).
The amplification curves could be most suitably used at dilu-
tions of 1:4 to 1:32 for both GAPDH and Ubiquitin.
Stability values were obtained for GAPDH and Ubiquitin
in intra and inter-group comparisons using comparative delta
CT, Bestkeeper, NormFinder and GeNorm encompassed
in the RefFinder package. The data described in Table 1
indicated that stability values improve by use of efficiency
corrected Cq. This difference in efficiency could affect the
range of fold change while using these two reference genes
or while comparing a reference with the target. M-value of
the stress subset was 0.760 in GeNorm analysis of the uncor-
rected Cq values. However, the M-value improved to 0.039
after efficiency correction of Cq indicating GAPDH and
Ubiquitin to be a stable combination of reference for fold

change calculation involving stress experiments. Addition of
the endosperm dataset to the consolidated data, disrupted the
stability value (M =0.856 for uncorrected and M =3.240 for
corrected). Stability values for GAPDH and Ubiquitin using
NormFinder was lowest for salicylic acid treatment (0.009)
and highest for endosperm ontogeny (0.053). RefFinder
analysis also indicated that the average standard deviation
with delta CT method reduced upon Cq correction in indi-
vidual subsets as well as ‘treatment alone’ consolidated data,
whereas, an opposite was observed on the total combined
stress and endosperm dataset. Moreover, the uncorrected
Cq values for certain subsets varied at > 1.0 values. Hence,
27AACT would not be an appropriate method to calculate
fold change using these reference genes. Also, correcting
Cq for reference genes reduced the standard deviations of
ACt observed for different datasets.

Effect of efficiency correction on data analysis
of fold change

Quantitative RT-PCR analysis of transcripts of multigene
families, especially genes involved in secondary metabolism,
suffer due to issues relating to the specificity of primer and
purity of isolated RNA. C. canephora NMTs share greater
than 80% similarity (Denoued et al. 2014), an example of
which is depicted in Fig. 2a. The primers used in this study
were designed based on EST sequences prior to the pub-
lication of the coffee genome (Fig. 2b). Though the prim-
ers amplified specific genes, the CcMXMT1 forward and
CcDXMT reverse primer has a base substitution at 10th
/24 and 18th /24 nucleotide position from the 5°end of the
primer, respectively. Also, the MXMT reverse primer shows
cross specificity to CcMTLI and the CcDXMT reverse primer
to CcMTL and CcMXMT—both of which could effectively
alter their PCR efficiencies and its dynamics under different
experimental datasets. Additionally, the primer binding site
on the genome are slightly prone to contain SNPs and hence
may have single mismatches depending of genotypes. Also,
the primer pairs had varying amplification efficiencies at
different temperatures. For GAPDH, efficiencies are 1.68
(55 °C), 2.01 (57 °C) and 1.84 (59 °C). Ubiquitin ampli-
fied with more consistent efficiencies of 2.01, 1.98, 1.98,
respectively at these temperatures. XMT primers amplified
at efficiencies of 1.93 (55 °C) and 2.10 (57 °C) whereas,
MXMT primers at 1.68 and 1.97 and DXMT primers at
1.96 and 2.39, respectively. MXMT1 primers worked only
at 55 °C with 1.67 efficiency. It was noted that primers that
had optimal design according to Coffee genomic sequence,
for example, XMT and Ubiquitin, did not vary much in
efficiency at different annealing temperatures. However,
the sub-optimally designed GAPDH and MXMT exhibited
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Fig. 1 Variation in internal reference genes and their standard curves.
Box plot depicting the variation of Cq of (a) GAPDH and (b) Ubig-
uitin under different experimental conditions of abiotic stress and
ontogeny in Coffea canephora; Cq values showing normal distribu-

higher difference in efficiency at a slight change of anneal-
ing temperature.

A minute repression of caffeine and NMT expression is
observed in the leaves of dark acclimatized plants of cof-
fee when compared to circadian undisturbed plants (Kumar
et al. 2015a). Hence, these samples were used to study the
effect of amplification efficiencies on fold change calcula-
tion. The calibrator DNA was prepared from pooled samples
of a larger dataset as mentioned in material and methods.
The fold change was calculated by the 27*2 method (Livak
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tion for (¢) GAPDH and (d) Ubiquitin; standard curve plotted from
different dilutions of leaf and endosperm cDNA for (e) GAPDH and
(f) Ubiquitin

2001) and the E method (Pfaffl 2001), with consideration
of correction under optimal PCR annealing temperatures.
XMT and Ubiquitin genes amplify with good efficiency at
both 55 °C and 57 °C. Fold change in XMT using Ubiqui-
tin reference gave comparable results using 2724 method
(0.915 fold) and E method (0.913 fold) at 55 °C and efficien-
cies of 1.89 and 1.99. Fold change calculation by efficiency
correction using standard plot at annealing temperature of
57 °C was also comparable between 272 method (0.680
fold) and E method (0.668 fold). However, at suboptimal
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Table 1 Stability of Glyceraldehyde 3-phosphate dehydrogenase and Ubiquitin reference genes in different experimental datasets

Group Gene RefFinder com- Delta Ct BestKeeper NormFinder GeNorm
prehensive
SD+Cq CV + [%]
Efficiency corrected Cq
SA UBI 1.00 0.02 0.47 1.66 0.009 -
GAPDH 1.68 0.02 0.48 1.66 0.009 -
GAPDH/UBI - - - - - 0.018
MEJ UBI 1.00 0.02 0.62 2.19 0.012 -
GAPDH 1.68 0.02 0.65 2.19 0.012 -
GAPDH/UBI - - - - - 0.025
NaCl UBI 1.00 0.06 1.27 4.34 0.029 -
GAPDH 1.68 0.06 1.31 434 0.029 -
GAPDH/UBI - - - - - 0.059
PEG UBI 1.00 0.04 0.84 2.82 0.019 -
GAPDH 1.68 0.04 0.87 2.82 0.019 -
GAPDH/UBI - - - - - 0.037
Light UBI 1.00 0.03 0.83 2.90 0.017 -
GAPDH 1.68 0.03 0.86 2.90 0.017 -
GAPDH/UBI - - - - - 0.034
Ontogeny UBI 1.19 0.11 0.41 1.38 0.053 -
GAPDH 1.41 0.11 0.33 1.38 0.053 -
GAPDH/UBI - - - - - 0.106
Consolidated UBI 1.00 3.24 0.83 2.86 1.620 -
GAPDH 1.68 3.24 2.69 9.64 1.620 -
GAPDH/UBI - - - - - 3.240
Consolidated minus ontogeny UBI 1.00 0.04 0.92 3.19 0.019 -
GAPDH 1.68 0.04 0.95 3.19 0.019 -
GAPDH/UBI - - - - - 0.039
Efficiency Un-corrected Cq
SA UBI 1.00 0.40 0.35 1.15 0.201 -
GAPDH 1.68 0.40 0.48 1.66 0.201 -
GAPDH/UBI - - - - - 0.401
ME] UBI 1.00 0.44 0.34 1.13 0.219 -
GAPDH 1.68 0.44 0.64 2.15 0.219 -
GAPDH/UBI - - - - - 0.437
NaCl UBI 1.19 0.77 1.35 4.39 0.386 -
GAPDH 1.41 0.77 1.31 4.34 0.386 -
GAPDH/UBI - - - - - 0.772
PEG UBI 1.00 0.95 0.33 1.09 0.475 -
GAPDH 1.68 0.95 0.87 2.82 0.475 -
GAPDH/UBI - - - - - 0.950
Light UBI 1.00 0.72 0.41 1.35 0.359 -
GAPDH 1.68 0.72 0.86 2.90 0.359 -
GAPDH/UBI - - - - - 0.719
Ontogeny UBI 1.00 0.71 0.41 1.38 0.353 -
GAPDH 1.68 0.71 0.65 2.13 0.353 -
GAPDH/UBI - - - - - 0.706
Consolidated UBI 1.00 0.86 0.55 1.83 0.428 -
GAPDH 1.68 0.86 0.88 2.95 0.428 -
GAPDH/UBI - - - - - 0.856
ﬁf&ﬁmﬁﬁw @ Springer
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Table 1 (continued)

Group Gene RefFinder com- Delta Ct BestKeeper NormFinder GeNorm
prehensive
SD+Cq CV + [%]
Consolidated minus ontogeny UBI 1.00 0.74 0.57 1.87 0.368 -
GAPDH 1.68 0.74 0.95 3.19 0.368 -
GAPDH/UBI - - - - - 0.736
a CcNMT1 CcNMT2 CcNMT3 CcMXMT CcMTL CcXMT CcDXMT CcNMT15
CcNMT1 1.000 0.579 0.579 0.585 0.571 0.577 0.569 0.562
CcNMT2 1.000 0.807 0.807 0.811 0.831 0.806 0.557
CcNMT3 1.000 0.914 0.922 0.904 0.918 0.561
CcMXMT 1.000 0.892 0.914 0.899 0.558
CcMTL 1.000 0.893 0.908 0.555
CcXMT 1.000 0.896 0.560
CcDXMT 1.000 0.546
CcNMT15 1.000
b
A Max. PCR
26 Max. AG AmpliconSize  Annealing  Amolification
Gene Name Primer Sequence % GC Homo. _ Hakpin AG Hetero- (bp) Tom P
dime Efficiency
dimer
F:5' ACG ATA GGT TTG GCATTG T 3 Q21% 361 062 55°C 170
GAPDH -537 139
R:5 GTG CTACTG GGAATAATG TT 3 0% 31 0.75 57°C 200
F:5' GGG TGG AGG AGA AAG AAG GAAT 3’ 50% 147 a1 55°C 201
Ul 1261 144
R: §' CTC CACCTC TCA GAG CAAGAA C Y 545% A7 0.07 57°C 198
F:5' TGT AAA GGA GTT GAA TTA GAC GCC 3’ 1% 536 054 55°C 193
CXMT -6.53 250
R: 5 CTG CTT TAA TAT GTT CAT CGT CAAT 3' 0% A8 095 57°C 210
F:5' ATA GTT TCAATATTC CATTCT TTAC ' 2% 78 052 55°C 168
CaMXMT 683 209
R:5' GGG TTCGTAAACTGA TCT AATTAAT 3/ 2% 78 102 57°C 197*
F:5' ACC CAG TAA GAT CCCATG AACA ' 455% 538 057 55°C 167
CMXMIT-1 343 201
R: 5" GAG AGA AAT GAT AAG ATT ATT ATA GC 3 69% 438 097 57°C NA
F:5' ACG TGG CCG AAT GCT CCTTAC3' 571% 928 -156 55°C 196
CeDXMT 113 3%
R: 5’ GGT TCG AAA ATT GAT CTAACGACA Y’ 375% 1065 057 57°C 239
c , d y
Fold change XMT Fold change MXMT
25 08 B MXMT 55
BXMT55 MXMT 57
o 2 XMT 57 o 06
: :
1.5
o) g o4
T 1 T
2 G
™ 05 I w02 I
0 0
GAP UBI GAP UBI GAP uBl GAP UBl
2-AACt method E method 2-AACt method E method
Fig. 2 Effects of primers quality and specificity on fold change of the using 2722 method and E method with consistent and inconsistent

homologous caffeine biosynthetic genes. a Sequence similarity in C.
canephora NMTs; b properties of primers; fold change calculated
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temperature for GAPDH at 55 °C, the calculated fold
change was different between 272 method (2.007 fold)
and E method (1.705 fold). Furthermore, it is known that
the XMTs are downregulated when circadian undisturbed
plants are subjected to dark conditions (Kumar et al. 2015a).
It is interpreted that at suboptimal efficiencies of reference
gene, neither the 2~8ACt method nor E method were able to
correct an erroneous upregulation plotted for XMT target
gene. However, the efficiency of GAPDH and XMT cor-
rected by standard curve plot at 57 °C, markedly reduced
the fold change to 0.485 folds and 0.474 folds by 2744
and E method, respectively. Upon correction of efficiency,
the fold change calculated for XMT with GAPDH became
comparable to the fold change calculated using Ubiquitin.

MXMT amplification is prone to relaxed specificity from
the reverse primer and also the primer set work at low effi-
ciency at 55 °C as similar to GAPDH. Performing efficiency
corrections at 57 °C led to more consistency in fold change
comparisons using the different methods of 2724 and E
method as for XMT. However, the dynamics of fold change
were different when comparing between different reference
genes.

Conclusions

GAPDH and Ubigquitin genes have low variability between
control samples and treatments involving salicylic acid,
methyl jasmonate, light exposure, PEG and ontogeny of
endosperms with correction of their efficiencies. Primer
efficiency is crucial for reduction of errors in fold change
calculations of caffeine biosynthetic NMTs. Efficiency cor-
rection by qPCR standardization overcomes the errors in the
range of fold changes. Hence, we reiterate the importance
of efficiency calculations of individual primers as inevitable
prior to expression studies. In addition, this could reduce
the chances of falsely interpreting overexpression for genes
that may actually be repressed or to prevent exaggeration of
fold changes.
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