Skip to main content
. 2018 Oct 26;9:2551. doi: 10.3389/fmicb.2018.02551

Table 2.

The performance of diatom composition based models developed using different machine learning techniques.

Machine learning techniques (parameters) Main dataset
Validation dataset
Sen Spc Acc MCC AUROC Sen Spc Acc MCC AUROC
SVM (g = 0.05, c = 15, j = 2) 89.71 86.85 88.29 0.77 0.93 90.53 81.72 86.17 0.73 0.92
Random Forest (Ntree = 150) 94.20 85.23 89.75 0.80 0.96 92.11 82.80 87.50 0.75 0.93
SMO (g = 0.1, c = 5) 88.79 87.92 88.36 0.77 0.88 88.95 83.33 86.17 0.72 0.86
J48 (c = 0.25, m = 1) 89.71 83.22 86.49 0.73 0.88 86.84 83.87 85.37 0.71 0.86
Naive Bayes (Default) 87.86 63.09 75.58 0.53 0.74 87.37 62.37 75.00 0.51 0.74

Sen, Sensitivity; Spc, Specificity; Acc, Accuracy; MCC, Matthew’s Correlation Coefficient; AUROC, Area Under the Receiver Operating Characteristic curve.