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ABSTRACT

Cell morphological phenotypes, including shape,
size, intensity, and texture of cellular compartments
have been shown to change in response to per-
turbation with small molecule compounds. Image-
based cell profiling or cell morphological profiling
has been used to associate changes of cell morpho-
logical features with alterations in cellular function
and to infer molecular mechanisms of action. Re-
cently, the Library of Integrated Network-based Cel-
lular Signatures (LINCS) Project has measured gene
expression and performed image-based cell profiling
on cell lines treated with 9515 unique compounds.
These data provide an opportunity to study the in-
terdependence between transcription and cell mor-
phology. Previous methods to investigate cell pheno-
types have focused on targeting candidate genes as
components of known pathways, RNAi morphologi-
cal profiling, and cataloging morphological defects;
however, these methods do not provide an explicit
model to link transcriptomic changes with corre-
sponding alterations in morphology. To address this,
we propose a cell morphology enrichment analysis to
assess the association between transcriptomic alter-
ations and changes in cell morphology. Additionally,
for a new transcriptomic query, our approach can be
used to predict associated changes in cellular mor-
phology. We demonstrate the utility of our method by
applying it to cell morphological changes in a human
bone osteosarcoma cell line.

INTRODUCTION

Measurements of the cellular responses to perturbations are
crucial to understanding cellular function. Only by alter-
ing an aspect of the system and measuring the response
can we begin to understand the interdependencies central
to cellular systems. Large-scale compendia of perturbation

experiments, especially those with multiple complementary
readouts, present an opportunity to advance significantly
our understanding of cellular function (1,2). Image-based
cell profiling quantifies changes in cell morphological fea-
tures such as shape, size, intensity, and texture of cellular
compartments (3). As a result of recent advances in high-
throughput cell imaging techniques, comprehensive repos-
itories of morphological and transcriptomic profiles, such
as the LINCS Project, have been developed (4,5). These
data repositories provide a platform for developing com-
putational methods to integrate multiple sources of cellular
information (6).

Several studies have demonstrated that changes in cell
morphology can be used to further our understanding of
the mechanisms of action of small compound perturbations
and to predict the phenotypic impact of novel compounds
(7–9). It has also been shown that one can identify drug tar-
gets using imaging-based signatures (10). High-throughput
image-based profiling has been used to characterize genetic
regulators of particular cellular processes such as mitosis
and membrane-trafficking (11,12). These findings suggest
that it may be possible to classify genes whose expression
changes in response to perturbations based on their associ-
ation with cellular morphological features.

We propose a new approach to identify sets of landmark
genes associated with context-dependent morphology al-
terations from cells exposed to chemical or genetic pertur-
bations, which we term cell morphology enrichment analy-
sis. Specifically, we map a query profile of transcriptomic
changes against a LINCS-based reference repository to find
similar alteration profiles, use these similar profiles to cre-
ate a gene set repository for each image-based feature, iden-
tify the top features associated with alterations in gene ex-
pression, and infer a gene network based on shared asso-
ciation with image-based features. For each query, our ap-
proach generates a specific gene set associated with each
image-based feature. Providing a clear link between gene ex-
pression, cell morphology, and the gene network underlying
these changes has the potential to uncover novel interdepen-
dences crucial to a cellular response.
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Figure 1. Overview of the proposed approach for cell morphology enrich-
ment analysis. The input data, matched transcriptomic and cell morpho-
logical profiles, are obtained from the LINCS database in Step I. In Step
II, we identify reference transcriptomic profiles that are similar to the gene
expression pattern of a query. In Step III, we identify significant associ-
ations between alterations in cell morphology and gene expression. This
results in query-specific cell morphology associated gene sets, which are
used in Step IV to model cell morphology in response to treatment with a
compound. Finally, in Step V, cell morphology associated gene sets can be
used to performance pathway analysis, rank image-based features based
on their predicted change in response to a given perturbation, or infer a
gene association network.

MATERIALS AND METHODS

The main goal of this study is the development of a method
to associate gene expression changes in response to pertur-
bations with alterations in image-based features. The pro-
posed approach for cell morphology enrichment analysis is
composed of five main steps which we briefly describe here,
illustrate in Figure 1, and discuss in detail in the rest of the
Materials and Methods section.

Step I: Organization of the LINCS database. We use data
from the LINCS project to develop a database of transcrip-
tomic and cell morphological profiles for 9515 drugs and
small compound molecules, 978 landmark genes, and 812
image-based features.

Step II: Pattern matching to detect similar gene expres-
sion signatures. We compare the query signature of expres-
sion changes for landmark genes measured by the L1000
assay to the reference transcriptomic profiles from the

database to find drugs and small compound molecules that
produce expression changes similar to the query.

Step III: Cell morphology enrichment analysis. We iden-
tify genes that are associated with each individual image-
based feature within the set of similar profiles from Step II
and use these to generate query-specific gene sets for each
image-based feature.

Step IV: Validation of the method. We test our central as-
sumption that gene expression changes can be used to iden-
tify associated changes in image-based features in two ways.
First, we use a LASSO model to predict cell morphology
changes in response to compound perturbations using ob-
served transcriptomic changes (Step IVa). Second, we as-
sess a simpler model that examines the correlation between
changes of the image-based features for a given sample and
the average image-based feature changes of samples with
similar transcriptomic profiles to the query (Step IVb).

Step V: Applications of the method. A set of query-
specific cell morphological gene sets and related transcrip-
tomic profiles can be used in a variety of applications, such
as pathway analysis, identification of the most significant
morphological changes in response to treatment with a
compound, and gene association network analysis.

LINCS database

The Library of Integrated Network-Based Cellular Signa-
tures (LINCS) is a comprehensive public resource of gene
expression signatures and other cellular processes in re-
sponse to a variety of perturbing agents, including 847 ap-
proved drugs and 30 455 small compound molecules (http:
//www.lincsproject.org/). The LINCS database is divided
into 11 categories on the basis of biological processes and
314 subcategories based on the type of experimental as-
say. The cellular component organization category includes
image-based features extracted from the Cell Painting as-
say, representing changes in shape, texture, and intensity of
major cellular components upon treatment with perturbing
agents (6). The Cell Painting assay is a fluorescence imaging
multiplex cytological profiling assay that uses fluorescent
dyes followed by automatic imaging in order to quantify the
effects that compound treatments have on cells (6). Tran-
scriptomic measurements in the LINCS project were ob-
tained using either L1000 mRNA profiling or RNA-seq and
consist of 1.3 million gene expression profiles. We demon-
strate the application of our approach using transcriptomic
data from the L1000 mRNA profiling assay and image-
based cell-morphology profiling in response to the drugs
or small molecule compounds from the LINCS database
(Figure 1, Step I). The subset of the LINCS data used
in this manuscript can be found at: https://bitbucket.org/
isarnassiri/cmeadata

Each cell morphological profile is a vector of numeri-
cal values representing changes of 812 image-based features
upon treatment with a drug or small compound molecule.
Each of these values represents the effect of a given com-
pound treatment on each image-based feature compared
to the effect of DMSO (6,13). The CellProfiler software
was used to process and transform images into quantitative
information (13,14). Gene expression changes in response
to each compound perturbation were obtained from linc-

http://www.lincsproject.org/
https://bitbucket.org/isarnassiri/cmeadata


PAGE 3 OF 9 Nucleic Acids Research, 2018, Vol. 46, No. 19 e116

scloud.org, and the 20 304 compounds that produced the
largest gene expression changes were selected (13). Com-
pounds with the strongest signatures are often conserved
across contexts, e.g. cell type, dosage, or time point of the
compound treatment (13,15). We selected the 9,515 drugs
and small compound molecules for which both image-based
cell profile and gene expression data were available. This
produced gene expression data for 978 genes and cell mor-
phology data for 812 image-based features on which to de-
velop the proposed methods (Figure 1, Step I). We represent
the transcriptomic data as T and the cell morphology data
as C:

T C⎡
⎢⎣

t1,1 · · · t1,978
...

. . .
...

t9515,1 · · · t9515,978

⎤
⎥⎦ ,

⎡
⎢⎣

C1,1 · · · C1,812
...

. . .
...

C9515,1 · · · C9515,812

⎤
⎥⎦

Mapping a query transcriptomic profile against the reference
repository

Our proposed method begins by mapping a query of tran-
scriptomic changes, produced by a drug or small compound
molecule, to a database of 9515 transcriptomic profiles from
the LINCS data, which form the reference database (Fig-
ure 1, Step II) (6,13,15). A query profile (Q) is a vector of
centered and scaled (as above) expression changes for the
978 landmark genes. First, we convert the query and repos-
itory of the transcriptomic profiles to Boolean expression
by replacing positive changes with one and negative changes
with zero. We generate a confusion matrix for the query with
each of the transcriptomic profiles in the reference reposi-
tory. Next, we use Matthew’s correlation coefficient (MCC)
to assess the similarity between the query and each reference
profile, where MCC is defined as:

MCC = TP × TN − FP × FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN))

,

where TP is the number of true positives, TN is the num-
ber of true negatives, FP is the number of false positives,
and FN is the number of false negatives. Here, true positives
and true negatives are those genes that are over- or under-
expressed in both the reference and query profiles, respec-
tively. Samples with an MCC greater than 0.1 are included
in the set of similar transcriptomic profiles and the corre-
sponding cell morphological subset. Specifically, we select
the compounds (rows of T) such that:

MCC
{
sign(Ti ), sign(Q)

}
> 0.1.

We denote the set of similar transcriptomic profiles as Ts.
In assessing similarity between gene expression changes,

we focus on the direction of changes in expression, rather
than the magnitude to reduce the impact of technical vari-
ability between samples. A similar approach has been suc-
cessfully used as part of the Connectivity Map (15). The
magnitude of gene expression changes can be reintroduced
in downstream analyses to identify more complex biological
interactions.

Similar transcriptomic profiles can be used to reveal
shared mechanism of action and phenotypic impact be-
tween compounds (15–17) because compounds with similar

gene expression signatures tend to interact with similar pro-
tein targets (18). We leverage similarities between a query
gene signature and those in the LINCS data to infer shared
targets in the context of cell morphological phenotypes.

Cell morphology enrichment analysis

We use a stepwise variable selection approach, which we
term cell morphology enrichment analysis, to select land-
mark genes that are associated with a given image-based
feature (Figure 1, Step III). This approach uses the least
absolute shrinkage and selection operator (LASSO), with
cross-validation to select the tuning parameter, and iden-
tifies significant associations between alterations in image-
based features and gene expression. The LASSO fits a
sparse model and consequently focuses on the most signifi-
cant transcriptomic features (20).

Prior to applying the LASSO, we standardized the tran-
scriptomic (Ts) and cell morphological (Cs) profiles via uni-
tization with zero minimum: ( x−min

range ). To assess the associ-
ation between each image-based feature and the 978 land-
mark genes in the subset of samples previously selected (Ts),
we use the LASSO method to model each image-based fea-
ture as a sparse function of the 978 landmark genes. This
produces a set of genes associated with a given image-based
feature in a local similarity neighbor of a transcriptomic
query, which we call a query-specific cell morphological gene
set. Note that a given gene can be assigned to several gene
sets if that gene is associated with several image-based fea-
tures. Each gene set represents a group of genes with similar
expression patterns and shared phenotypic impact. Exam-
ination of these gene sets can lead to an improved under-
standing of the biological response to compound perturba-
tions and identification of genetic variations associated with
context-specific changes in cell morphological features (1).

Validation

We leverage the significant cross correlation between the
image-based and transcriptomic profiles to predict cell mor-
phological states for a transcriptomic profile of interest
(Figure 1, Step IVa) (13). We hypothesize that transcrip-
tomic profiles that are similar to a query gene expression
profile can be used to predict changes in image-based fea-
tures in response to a compound perturbation (15). We ap-
plied leave-one-out cross validation (LOOCV) to assess our
ability to predict changes in image-based features based on
the corresponding transcriptomic alterations (Q). In each
LOOCV iteration, we first mapped the transcriptomic re-
sponse profile of an indicated drug against the reference
repository to identify similar profiles. Next, we used the
transcriptomic and image-based profiles (minus the query)
as training sets for the LASSO. Spearman’s rank correla-
tion coefficient was used to compare the experimental and
predicted values for each image-based feature.

Additionally, we assessed the similarity between the
image-based features corresponding to a query transcrip-
tomic profile and the image-based features corresponding
to transcriptomic profiles that are similar to the query.
Specifically, for a query q, we calculated Spearman’s rank
correlation coefficient between Cq, 812 and the column
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means of Cs, 812. We repeated this procedure for each of
the 9515 compounds in the data repository (Figure 1, Step
IVb).

Applications of the proposed methodology

We envision several potential down-stream applications of
the proposed methodology (Figure 1, Step V). To demon-
strate these applications, we extracted image-based features
from processed images of stained Human Osteosarcoma
Cells (U-2 OS) for the nucleus, endoplasmic reticulum, nu-
cleoli, Golgi apparatus, F-actin, mitochondria, and plasma
membrane. These images were obtained 48 h after exposure
to each of 19 864 compounds (6).

One potential down-stream analysis would be to identify
the most significant morphological changes in response to a
given perturbation. An estimate of the relative magnitude of
image-based feature changes in response to the compound
perturbation compared to DMSO has previously been used
to quantify the significance of morphological changes (6).
By using our proposed method to first identify a query-
specific gene set for each image-based feature, we can esti-
mate the cell morphology changes resulting from perturba-
tion with a given compound. In the Results section, we eval-
uate the ability of this approach to identify the most signif-
icant image-based features for situations in which the true
cell morphological changes were measured. Specifically, we
use the magnitudes of the predicted morphological changes
to rank the cell morphological features. We applied Spear-
man’s rank correlation coefficient to compare the predicted
and observed values for each image-based feature.

Our proposed cell morphology enrichment analysis iden-
tifies a set of associated genes for each image-based feature.
These potentially overlapping sets can be subsequently used
to identify associations between genes based on their shared
association with cell morphology features (22,23). We use
transcriptomic profiles (Ts, 978) to construct a gene-gene in-
teraction network (GN), and weight edges (X⇒Y) based on
the proportion of cell morphological-specific gene sets that
contain X and also contain Y. The edge weights in the net-
work can be used to assess the strength of the association
between two genes and to prune interactions that are not
strongly involved in cell morphology phenotypes. We ap-
plied a standard association mining algorithm to describe
the relationship between genes based on their membership
in cell morphology-specific gene sets. Specifically, let l = {l1,
l2, ..., lk} be a set of k genes, and C = {c1, c2, ..., cn} be
a collection of n subsets of l, with each subset related to
an image-based feature. To define an interaction between
any two genes (X⇒Y) from the complete digraph of inter-
actions, we use the following thresholds for support and lift:

Support (X ⇒ Y) = nXY

n
≥ σ

Lift (X ⇒ Y) = nXY × n
nX × nY

≥ δ

where n is the total number of gene sets in C, nXY is the total
number of gene sets that contain gene X and Y, and nX is the
total number of gene sets that contain gene X. Support is the
proportion of gene sets that contain both gene X and gene

Y. Lift is the deviation of the support of an indicated rule
(X ⇒ Y) from the support expected under independence of
X and the Y (24).

To focus on the strongest associations between genes, we
select gene pairs that are highly co-expressed and that ex-
ceed the Support and Lift thresholds. We identify highly
co-expressed gene pairs within the subset of similar tran-
scriptomic profiles (Ts, 978) using the Context Likelihood of
Relatedness (CLR) algorithm (25). CLR infers the interac-
tions between genes using a scoring function based on the
empirical distribution of mutual information (25).

Finally, one could apply standard pathway analysis meth-
ods to examine whether the cell morphology-specific gene
sets were associated with certain biological pathways. It is
likely that genes associated with a given image-based feature
would be involved in biological pathways relevant to that
morphological phenotype (27). To demonstrate this appli-
cation, we use the Funrich package for functional annota-
tion based on predefined gene sets for biological pathways
(version 2.1.2) (26).

Implementation

The method is implemented as an R package, called CMEA
(Cell Morphology Enrichment Analysis). CMEA is avail-
able at: https://github.com/isarnassiri/CMEA. The qgraph
package is used for visualization of results (28). All analysis
was performed using R (version 3.3.1).

RESULTS

Validation

We began by testing our main assumption that gene expres-
sion changes in response to perturbations can be used to
identify associated changes in image-based feature. As de-
scribed in the Materials and Methods section, we used a
LOOCV procedure to assess the prediction error of our ap-
proach. Specifically, we randomly selected 20 image-based
features and assessed the agreement between the predicted
and experimental values for 9515 transcriptomic queries
(all transcriptomic profiles in the repository). Our approach
identified associated genes for each image-based feature for
9442 of the queries. For the remaining 0.8% of the queries,
changes in these 20 image-based features were not associ-
ated with any gene expression changes. Generally, we ob-
served a significant positive correlation between the pre-
dicted and observed image-based feature values based on
our proposed approach (Figure 2 and Table 1, column 3).

To test whether our subset selection procedure is neces-
sary, we repeated the LOOCV procedure, omitting the se-
lection of similar transcriptomic profiles (Figure 1, Step II).
Omitting the selection of transcriptomic profiles similar to
the query profile resulted in a substantial decrease in per-
formance (Table 1 and Figure 2). When using all transcrip-
tomic profiles to identify relationships between gene expres-
sion and changes in an indicated image-based feature, the
model is dominated by a few extreme gene expression pro-
files. These findings suggest a link between gene expression
and cell morphological changes for a class of compounds
that produce similar gene expression changes. This may in-
dicate a similar mechanism of action and/or a degree of

https://github.com/isarnassiri/CMEA
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Figure 2. Prediction of the image-based feature from transcriptomic data is improved by model learning from similar transcriptomic and image-based
profiles. This scatter plot shows the predicted versus experimental values of the Nuclei Area Shape image-based feature in response to treatment with 9515
drugs or small compound molecules. There is a clear improvement in prediction performance when using our proposed subset selection approach (red)
versus using all profiles (green).

context dependence in the association between cell mor-
phology and gene expression.

To test whether our feature selection procedure is nec-
essary, we repeated the LOOCV procedure, omitting the
LASSO modeling of the association between cell morpho-
logical features and genes (Figure 1, Step III) or replacing
it with Canonical Correlation Analysis (CCA). In the for-
mer case, after identifying similar transcriptomic profiles to
a given query, we simply calculated the arithmetic means of
the corresponding image-based profiles. In the latter case,
we substituted CCA for the LASSO-based feature selection.
The LASSO consistently outperformed CCA and generally
performed better than the simple image-based profile av-
erage; however, for 3 of the 20 image-based features, the
mean actually outperformed the LASSO (Table 1). Scatter-
plots for each of the 20 image-based features and each of the
methods in Table 1 are included as Supplementary Figures
S1–S23.

We assessed the possibility of over-fitting by repeating
the LOOCV procedure after randomly permuting the com-
pound labels for the image-based feature profiles. This label
shuffling was performed on all 9515 profiles, prior to sub-
set selection based on similarity to the query profile. The la-
bel permutation was repeated 100 times, and the correlation
between all observed and predicted values is reported. The
label permutation resulted in correlations of approximately
zero for all image-based features (Table 1).

The 20 image-based features used in the previous assess-
ments are a random sample from the 812 image-based fea-
tures in the repository. We examined the 5th and 95th per-
centiles of the image-based morphological changes in re-
sponse to perturbation with 9515 compounds to assess the
range of responses for each image-based feature (Table 1).
Neither the percentiles nor the range appear to be associ-
ated with prediction performance. To assess whether these
20 image-based features are representative of the full 812
image-based features, we compared the changes for the 20

selected image-based features used above with the distribu-
tion of changes across all image-based features (Supplemen-
tary Figure S24) and found no evidence of bias in our ran-
dom sample.

Cell Morphology enrichment analysis

For a given transcriptomic query, we apply our proposed
enrichment analysis for all 812 image-based features and
create a repository of query-specific cell morphological gene
sets. The modeling procedure to link image-based profiles
and transcriptomic data involves the selection of genes that
are associated with a given image-based feature. We can
use these gene sets to investigate the relationship between
query-specific cell morphological gene sets and different
compound classes. To demonstrate this, we applied our
approach to investigate the cell morphological responses
to treatment with 3 compounds: NOMILIN, ZARDAV-
ERINE and HYDROCOTARNINE. For each of the com-
pounds, we identified 113, 145, and 143 compounds, respec-
tively, that produced similar gene expression signatures. Our
LASSO-based feature selection procedure identified a to-
tal of 421, 333, 123 genes in the cell morphological-specific
genes sets for NOMILIN, ZARDAVERINE, and HYDRO-
COTARNINE, respectively (Supplementary Table S2). We
did not find a significant similarity between cell morpholog-
ical gene sets in response to the three compound treatments;
instead, we found different gene sets associated with an in-
dicated cell morphological change (Supplementary Figure
S25).

Identification of the most significant image-based features in
response to treatment with a compound

We leverage the ability of our method to model the inter-
dependence between image-based features and gene expres-
sion to estimate the changes in cell morphology that are pro-
duced by treatment with a specific compound. To demon-
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Table 1. The results of leave-one-out cross-validation (LOOCV) to compare the performance of different approaches to model the cell morphological
changes based on transcriptomic changes. The correlation coefficient (Spearman’s rho) between the experimental and predicted values was used to assess
performance. The performance of LASSO is compared with Canonical Correlation Analysis (CCA) and simply using the average of the image-based profiles
corresponding to transcriptomic profiles that are similar to the query (MEAN). The All Profiles (AP) column shows the performance using all of the profiles
in the repository (minus the query profile). The Set of Similar Profiles (SS) shows the performance using just the set of similar profiles (minus the query
profile). Our proposed stepwise subset selection approach substantially improves the prediction of cell morphological alterations from transcriptomic
changes. The Set of Similar Permuted Profiles (SSP) shows the performance of LASSO using the image-based profiles with randomly permuted labels.
The percentile column shows the 5- and 95-percentiles for the image-based feature changes in response to the perturbation with compound treatments.
The distribution of image-based feature changes across major percentiles does not appear to be associated with the ability of the LASSO to predict cell
morphological changes based on transcriptomic changes

LASSO CCA MEAN Percentile All Percentile SS

Image-based features AP SS SSP SS SS Q5% Q95% Q5% Q95%

1 Cells Area Shape 0.024 0.672 −0.00235 0.547 0.672 0.666 0.774 0.140 0.792
2 Cells Intensity Edge golgi 0.048 0.879 −0.00003 0.804 0.853 0.502 0.574 0.133 0.853
3 Cells Radial Distribution

Mean Mit
0.051 0.832 −0.00004 0.798 0.863 0.195 0.247 0.059 0.642

4 Cells Radial Distribution
Radial CV Mit

0.015 0.694 0.00123 0.550 0.685 0.310 0.392 0.139 0.774

5 Cells Texture Angular
Second Moment

0.025 0.732 0.00218 0.560 0.693 0.651 0.774 0.215 0.831

6 Cells Texture Gabor
Mitochonderia

0.004 0.876 −0.00032 0.781 0.843 0.055 0.084 0.044 0.744

7 Cells Texture Inverse
Difference Moment

0.002 0.833 0.00162 0.708 0.797 0.802 0.862 0.282 0.916

8 Cytoplasm Intensity
Integrated Intensity

0.006 0.883 −0.00125 0.812 0.869 0.103 0.122 0.039 0.701

9 Cytoplasm Intensity vs.
Intensity Edge ER

0.021 0.812 0.00130 0.685 0.781 0.374 0.435 0.125 0.811

10 Cytoplasm Texture
Contrast golgi

0.004 0.860 −0.00177 0.745 0.827 0.107 0.149 0.056 0.716

11 Cytoplasm Texture Inverse
Difference ER

0.032 0.766 −0.00004 0.686 0.783 0.713 0.796 0.365 0.919

12 Nuclei Area Shape 0.053 0.786 −0.00264 0.659 0.754 0.184 0.284 0.141 0.779
13 Nuclei Texture Contrast 0.034 0.810 0.00136 0.637 0.734 0.190 0.272 0.118 0.812
14 Nuclei Texture Difference

Variance ER
0.053 0.808 0.00018 0.700 0.772 0.104 0.167 0.074 0.708

15 Nuclei Texture Difference
Variance golgi

0.038 0.815 −0.00086 0.634 0.736 0.118 0.183 0.055 0.747

16 Nuclei Texture Entropy 0.006 0.801 −0.00007 0.682 0.770 0.845 0.891 0.210 0.891
17 Nuclei Texture Gabor ER 0.031 0.791 −0.00184 0.614 0.718 0.150 0.247 0.081 0.731
18 Nuclei Texture versus

Mitochonderia
0.038 0.614 −0.00204 0.440 0.585 0.253 0.408 0.145 0.773

19 Nuclei Texture versus
Average golgi

0.085 0.794 −0.00268 0.723 0.801 0.323 0.449 0.252 0.835

20 Nuclei Texture Variance
golgi

0.026 0.749 −0.00093 0.554 0.688 0.077 0.158 0.070 0.703

strate this approach, we investigated cell morphological
changes in response to treatment with NOMILIN, ZAR-
DAVERINE and HYDROCOTARNINE based on the gene
expression alterations those compounds produce. Specifi-
cally, we compared the predicted morphological changes
with the observed changes using Spearman’s rank correla-
tion. The results showed strong agreement between the pre-
dicted and observed morphological changes (Figure 3), and
the largest predicted changes in cell morphology were likely
to appear among top 10 experimentally observed image-
based features (Supplementary Table S1).

Pathway analysis based on cell morphological-specific gene
sets

Stimulation of cells with compound treatment leads to
changes in cell morphology. A variety of regulatory mecha-
nisms connect changes in gene expression and cell morphol-
ogy brought about by perturbations, including extracellular

matrix proteins, trans-membrane receptors, and cytoskele-
tal organization (29). In order to identify the cell signal-
ing events that link cell morphology and gene expression,
we begin with the transcriptomic and cell morphological
changes in response to treatment with NOMILIN, ZAR-
DAVERINE and HYDROCOTARNINE. Next, we con-
struct three repositories of cell morphological gene sets,
one for each compound. Then, we infer edges between
genes, based on co-expression and shared membership in
cell morphological-specific gene sets, as described in the
Materials and Methods. Lastly, we use the inferred net-
works to functionally annotate genes associated with the
response to each treatment (Figure 4 and Supplementary
Table S5).

These functional enrichment analyzes identified genes in-
volved in regulation of cytoskeletal remodeling and growth-
activation as two main biological functions of the in-
ferred networks (Figure 4). Activation of the Sphingosine
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Figure 3. The results of modeling the rank of cell morphological changes
in response to treatment with NOMILIN, ZARDAVERINE and HYDRO-
COTARNINE. For each drug, we identified a group of signature of land-
mark genes that mimic the query gene expression pattern, and applied the
LASSO to model the cell morphological changes upon compound treat-
ment. Spearman’s rank correlation coefficient is used to assess statistical
dependence between the ranking based on the predicted and experimen-
tal values (A–C). Tables D–G show the first 10 top image-based features
based on actual biological effects of drugs, and predicted values based on
the gene expression profiles.

Figure 4. The topology and cellular functions of a gene interaction net-
work (GIN) in response to treatment with NOMILIN (A), HYDROCO-
TARNINE (B), and ZARDAVERINE (C). On the left are graph-based vi-
sualizations of gene interaction networks, including gene-gene interactions
selected based on the cell morphological gene sets and transcriptomic pro-
files in the repository subset (Ts). On the right are bar charts of the top 10
enriched biological pathways in the regulatory networks of osteosarcoma
cells in response of the three treatments. We used functional pathway anal-
ysis to associate genes in the regulatory networks with predefined gene sets
related to biological pathways (26). The sizes of some reference pathways
are identical and they share common genes; therefore, the overlap between
genes in the GIN and some enriched pathways are similar (e.g. S1P1 path-
way and Arf6 downstream pathway).

1-phosphate (S1P) pathway indicates the involvement of
the second messenger system in response to the compound
treatments by controlling actin binding proteins and the
cytoskeleton (30). Enrichment of EGFR receptor (ErbB1)
signaling pathway and ATR signaling pathway suggest that
morphological changes and cell adhesion can regulate the
expression of genes involved in the transformation and
growth-activation of fibroblasts (31). The pathways related
to Arf6 downstream pathway signaling are involved in the
regulation of cytoskeletal remodeling (32). Enrichment of
Beta1 integrin pathways indicate a role of Integrin-ECM
interactions in the regulation of osteosarcoma cell shape
in response to treatment with NOMILIN, ZARDAVER-
INE and HYDROCOTARNINE (Figure 4) (Supplemen-
tary Table S6) (33).

DISCUSSION

In this study, we proposed an approach to link transcrip-
tomic and cell morphological changes in response to per-
turbations and developed a cell morphology enrichment
analysis. We validated the central assumptions of our pro-
posed approach, namely that changes in gene expression
can be used to predict corresponding changes in image-
based profiles (6,34,35). Application of this approach pro-
vides a model to link genes through their shared effect on
cell morphology and a clear method to investigate the mech-
anism of action for therapeutic agents in terms of pheno-
type impact (15).

The association between transcriptomic and cell mor-
phological changes in response to perturbations appears to
exist primarily among compounds that produce similar di-
rectional changes in gene expression. Within this local sim-
ilarity neighborhood, specific changes in image-based fea-
tures are often associated with changes in the expression of
a relatively small number of genes. These associations of-
ten differ between similarity neighborhoods, suggesting that
there is not a strong global association between transcrip-
tomic and cell morphological responses to perturbations.
This could indicate that compounds that produce similar
changes in gene expression share similar mechanisms of ac-
tion which are associated with corresponding morphologi-
cal alterations.

The link between gene expression and cell morphol-
ogy may arise via a signal transduction system scheme
(35). Upon stimulation by a compound treatment, receptor-
mediated activation of adhesion plaques in the cytoskele-
ton may cause the release of transcription regulators and
alter specific gene expression programs (30). Adhesion
plaques include Prostaglandin-stimulated second messen-
gers, growth factors, and structural components such as �-
integrin (31). Alterations in the cytoskeleton, in addition to
its role in determining cell morphology, produce changes in
gene expression (36). This could explain the observed asso-
ciation between gene expression and cell morphology.

Enrichment analyses of cellular processes and biologi-
cal pathways have become a routine part of transcriptomic
data analyses (37). Here, we propose an enrichment anal-
ysis that connects gene expression profiles to cell morpho-
logical phenotypes (3,38). Previous methods to investigate
cell phenotypes have focused on targeting candidate genes
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as components of known pathways, RNAi morphological
profiling, and development of databases of morphological
defects (3,39–41). Our approach furthers our understand-
ing of the interdependence between gene expression and cell
morphology.

The work presented in this manuscript is based on data
from the LINCS Project (6,13). A possible weakness of our
approach is that the definition and selection of some cell
morphological terms reflect technical properties of the im-
age analysis rather than informative biological character-
istics of the cell. Additional, there are some highly similar
image-based features, for which the same sets of associated
genes were identified. This redundancy among morphologi-
cal features is a limitation of morphological profiling in gen-
eral, and advances in morphological feature annotation and
assessments of biological relevance can be readily incorpo-
rated to improve our approach.

We anticipate the results of this study will impact the util-
ity of LINCS L1000 data and provide a blueprint for the
integrative analysis of other multi-omics data, such as mass
spectrometry-based targeted proteomics (LINCS P100) and
epigenomics (NUROLINCS) (42).
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