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Abstract: The preparation of ultra-thin semi-transparent solar cells with potential applications in
windows or transparent roofs entails several challenges due to the very small thickness of the layers
involved. In particular, problems related to undesired inter-diffusion or inhomogeneities originated
by incomplete coverage of the growing surfaces must be prevented. In this paper, undoped SnO2,
CdS, and CdTe thin films with thickness suitable for use in ultra-thin solar cells were deposited with
a radiofrequency (RF) magnetron sputtering technique onto conductive glass. Preparation conditions
were found for depositing the individual layers with good surface coverage, absence of pin holes and
with a relatively small growth rate adapted for the control of very small thickness. After a careful
growth calibration procedure, heterostructured solar cells devices were fabricated. The influence
of an additional undoped SnO2 buffer layer deposited between the conductive glass and the CdS
window was studied. The incorporation of this layer led to an enhancement of both short circuit
current and open circuit voltage (by 19 and 32%, respectively) without appreciable changes of other
parameters. After the analysis of the cell parameters extracted from the current-voltage (I-V) curves,
possible origins of these effects were found to be: Passivation effects of the SnO2/CdS interface,
blocking of impurities diffusion or improvement of the band alignment.

Keywords: sputtering; semiconductors; thin films; optical materials and properties; solar energy
materials

1. Introduction

With an expected efficiency above 20% [1], conventional, highly absorbing, and non-transparent
CdS/CdTe thin film solar cells are among the most promising photovoltaic devices for terrestrial
purposes. A typical solar cell uses a 10 µm CdTe absorber layer which has a nearly optimal band gap
and a high absorption coefficient [2]; a thin CdS film serves as window and n-type partner. Although

Materials 2018, 11, 1788; doi:10.3390/ma11101788 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
https://orcid.org/0000-0002-0199-5041
https://orcid.org/0000-0003-1692-0787
https://orcid.org/0000-0001-6968-5560
http://www.mdpi.com/1996-1944/11/10/1788?type=check_update&version=1
http://dx.doi.org/10.3390/ma11101788
http://www.mdpi.com/journal/materials


Materials 2018, 11, 1788 2 of 8

the processing of these two materials can be carried out with some different physical or chemical
methods [3,4], the sputtering technique has unique advantages, as for example, allowing sequential
depositions without vacuum breaking, good control of small growth rates (particularly useful for
growing ultra-thin layers) and no wastes generation.

The use of partially transparent CdS/CdTe ultra-thin (UT) solar cells has been the focus of recent
research efforts due to the feasibility of their application in different kinds of windows or roofs [5].
For these applications, UT cells should entail: (i) Efficiencies as high as possible (taking into account that
a significant part of the radiation is obviously not absorbed in the cell); (ii) aesthetics, as to be compatible
with building, sunroofs, etc.; (iii) adequate optical properties in the visible region as demanded by
standard regulations tinted windows; and (iv) comfortable indoor buildings environment. These cells
are fabricated with the absorber layer whose thickness is thinner than the length of optical absorption
and carrier diffusion leading to the desired partial transparency and enhanced carrier collection.

The growth of heterostructures composed by very thin films entails challenges mainly related to
thickness uniformity and uncompleted surface coverage. In this paper, RF sputtering was used for
the growth of ultra-thin SnO2, CdS, and CdTe films with thickness optimized for the requirements
of UT solar cell. Heterostructures combining these materials were prepared as well. To illustrate the
application of these structures, solar cell devices were fabricated onto conductive glass substrates
by adding Au/Cu back contacts. Since the insertion of buffer layers has proven to increase the
efficiency and the reproducibility of thick solar cells [6], we studied the influence of an undoped SnO2

(u-SnO2) buffer layer in the performance of our UT cells. u-SnO2 layers have been previously prepared
by different techniques such as chemical reactive evaporation [7], chemical vapor deposition [8] or
sputtering [9] as per our knowledge, there are no reports on the use of these buffer layers in UT solar
cells. Possible origins of the observed influence of the buffer layer in the photovoltaic performance
of the devices are explored in this work by the analysis of the cell parameters extracted from the
current-voltage curves.

2. Materials and Methods

CdS, u-SnO2, and CdTe UT films were deposited with a sputtering system (model V3,
Intercovamex, Mexico City, Mexico) equipped with three magnetrons and corresponding 3-in diameter
targets (purity of 99.99%). Conductive soda-lime glasses (SLG)/SnO2:F (2 nm) (in what follows, TEC15,
according to the manufacturer nomenclature, Pilkington, St Helens, United Kingdom) were used
as substrates. Before depositing the film, the substrates were ultrasonically cleaned with a warm
neutral detergent solution, rinsed with deionized water and isopropyl alcohol, and dried with nitrogen.
Deposition was carried out in an Ar atmosphere while maintaining a fixed substrate temperature and
RF-power of 250 ◦C and 80 W, respectively. According to previous growth rate calibration (see Figure S1
in the Supplementary Material), deposition times were 50 min for u-SnO2 and CdS and 4 h for CdTe.
With these deposition times, the thicknesses of 35, 70 and 650 nm were obtained for u-SnO2, CdS,
and CdTe, respectively. The thickness of the CdTe layer was selected to balance acceptable optical
transmittance (as required for UT solar cells), good homogeneity, and complete surface coverage.
Using the growth parameter determined for the individual layers, two different heterostructures
were prepared: TEC15/u-SnO2/CdS/CdTe and TEC15/CdS/CdTe. With the aim of illustrating the
application of these heterostructures, solar cell devices were fabricated with both structures by adding
a Cu/Au back contact evaporated onto the CdTe surface.

Optical transmission spectra were measured with a Lambda 35 ultraviolet-visible spectrophotometer
(Perkin-Elmer, Mexico City, Mexico) in the range from 330 to 1100 nm. X-Ray diffractograms were taken
with a X’Pert PRO PANalytical diffractometer (Almelo, Netherlands) in fixed grazing incidence angle
at room temperature and using Cu-Kα radiation (λ = 1.54056 Å). Raman spectra were measured with
a Labram HR800 (Horiba Jobin Yvon, Kyoto, Japan) equipment, with an excitation line of 532 nm.
Scanning electron microscopy (SEM) images and energy dispersed spectroscopy (EDS) were obtained
with a JSM 7800F JEOL system (Kyoto, Japan). For cross-sectional imaging, samples were prepared by
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polishing and plasma erosion of the broken edge of cut samples. The thicknesses of the films were
measured using a profilometer Ambios XP-100 (California, United States). Compositional profiles
were obtained on a “time of flight” secondary ion mass spectrometer (SIMS, ION TOF, New York,
NY, United States); a 150 µA Cs primary beam with energy of 2 KeV; an area of 400 µm2 was used.
The room temperature I-V curves were obtained with an Oriel solar simulator Newport model 91160
whose illumination area is 25 cm2 using an AM1.5G filter and a radiation intensity of 100 mW/cm2.

3. Results and Discussion

3.1. Individual Layers

With the final objective of inserting them in the heterostructures, we proceeded to characterize
the individual layers in terms of their morphology, crystalline structure, and chemical composition.
Figure 1 shows the transmittance spectra of the TEC15 substrate, u-SnO2, CdS, and CdTe films in
the range from 330 to 1100 nm (the sputtered films were measured with the TEC15 substrate as the
baseline). As can be observed, u-SnO2 and CdS films presented an average optical transmission of
96% and 84%, respectively, when evaluated in a transmission range of 400 to 700 nm. The CdTe layer
had an average transmittance of 15%, which is expected to dominate the entire heterostructure device
composed of the different films. This value is comparable the one typically reported in the UT solar
cells industry. (For example, Sun Well Solar Company sells semi-transparent PV modules with a
transmittance of 13.5% in the visible range [10]). No appreciable modifications were observed in the
transmission spectra (see supplementary material) from the full heterostructures with and without
the buffer layer. This was expected due to the transparency of the u-SnO2 layer (see Figure S2 in the
Supplementary Material).
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Figure 1. Transmission spectra for the different layers studied in this paper.

The band gaps of the deposited materials were calculated using the low transmission region
of the UV-VIS spectra, where a clear absorption edge is noted (Figure 2). (αhν)n vs. hν Tauc plots,
where α and hν represent the absoption coefficient and photon energy, respectively, with n = 2
(as corresponds with direct allowed transitions) were used for these calculations. The band gap values
obtained for u-SnO2, CdS, and CdTe were 3.6, 2.4 and 1.57 eV, respectively, which are close to those
reported in the literature [11–13].
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Figure 2. Tauc plots used for band gap calculation of the different materials forming the heterostructure.
The extrapolation of the (αhυ)2 vs. E linear region fitting is also shown.

Diffractograms for the different samples are shown in Figure 3. For SnO2, only peaks
corresponding to the tetragonal phase (identified as T in the diffractogram) are observed. In the
case of CdS, all peaks correspond to the hexagonal phase (PDF 00-041-1049) and are identified as H.
On the other hand, CdTe film reveals the presence of a cubic phase (PDF 00-015-0770) (marked as C in
the diffractogram). All other peaks in the CdS and CdTe diffractograms, highlighted with dashed lines,
correspond to the SnO2:F/soda-lime glass substrate as indicated.
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Figure 3. XRD pattern for SnO2, CdS, and CdTe deposited onto TEC15. T, C and H stand for tetragonal,
cubic, and hexagonal phases.

Raman spectra of the u-SnO2 film and substrate are shown in Figure 4a. Features at 120, 298, 475,
627, 690 and 764 cm−1, corresponding to characteristic SnO2 Raman phonons, are observed [14]. Other
peaks originating in the soda-lime glass [15] substrate were denoted by +.
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Figure 4. Raman spectra for the samples; (a) SnO2 sample and the substrate and (b) CdS and
CdTe samples.

Raman spectra of CdS and CdTe are shown in Figure 4b. For CdS, the peak at 300 cm−1

corresponds with the longitudinal optical (LO) phonon mode, while peaks at 603 and 900 cm−1

can be assigned to the harmonics 2LO and 3LO, respectively [16]. In the case of CdTe, the peaks
located at 138 and 162 cm−1, correspond to the transverse optical (TO) and LO CdTe Γ-phonons modes,
respectively. The peaks in 119 and 264 cm−1 belongs to an undetermined tellurium phase present in
the film [17].

Figure 5 shows representative top view SEM images of u-SnO2, CdS, and CdTe films. It is
remarkable the good surface coverage and the absence of pinholes (as far as the magnification and
focus of the images allow) despite the small thickness of the films. In-plane average grain sizes
measured from this SEM images were 160, 158 and 177 nm for u-SnO2, CdS, and CdTe, respectively
(see Figure S3 in the Supplementary Material).
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3.2. Heterostructures

With the same growth parameters used for the individual layers, the heterostructures were
fabricated. The schematic representation of the structure is shown in Figure 6a. Composition profiles
for a typical heterostructure, determined with EDS linear mapping along the cross-section of the
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samples and SIMS are shown in Figure 6b,c, respectively. The obtained profiles correspond well with
the cross-section SEM micrograph shown in Figure 6d, where relatively abrupt interfaces can be noted.
A columnar growth is evident in the CdTe layer.
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heterostructures; (b) EDS linear map and (c) SIMS; (d) Cross-section SEM image.

To illustrate the application of the heterostructures, a solar cell was fabricated in the superstrate
configuration by depositing Cu/Au back contacts unto the CdTe surface as indicated in Figure 6a.
(The solar cell without buffer layer was very similar; except for the u-SnO2 layer).

Dark and illuminated I-V curves of the two heterostructures (with and without u-SnO2 layer)
are displayed in Figure 7. The device parameters of the solar cell extracted from these curves are
summarized in Table 1. Although the device characteristics were not optimized, a clear photovoltaic
(PV) effect is observed. The cell with the added u-SnO2 layer presents a better PV performance. While
fill factor (FF) values were practically the same for both devices, the short circuit current (Isc) and
open circuit voltage (Voc) increased by 19 and 32%, respectively, for the cell with the added u-SnO2

layer. This presents an efficiency of η = 3.75%, 1.7 times higher than that of cell without the buffer
layer. As expected, the series resistance of the cell increases with the incorporation of the buffer layer
while, remarkably, the shunt resistance is practically not modified. This means that the effect of the
buffer incorporation is not related to the elimination of micro short-circuits or leakage currents which
should be present in this type of UT cell. Rather, the buffer layer impacts the Voc and Isc as noticed
above. The influence of the front contact on the Voc for CdTe cells has been empirically suggested [18]
but the reason of this influence is not completely clear. It is speculated that the contribution of
the u-SnO2 buffer layer is related to the passivation of the SnO2/CdS interface and the consequent
reduction of the recombination in this region. This should favor the increase in both Isc and Voc as
was observed. It cannot be excluded that the u-SnO2 buffer also promotes a better band alignment in
the structure or helps block impurities diffusion from the TEC-15 substrate, as it has been reported in
the literature [19,20].
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(mV)
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η
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Shunt Resistance

(Ω cm2)

Without buffer layer 369 11.3 43.2 2.1 2.9 97.8
With buffer layer 542 13.9 41.1 3.7 5.4 95.7

4. Conclusions

Individual layers of undoped SnO2, CdS, and CdTe with thickness and optical transmission
adapted to operate in UT solar cells were obtained by RF sputtering. These layers were characterized
and successfully incorporated into heterostructures with relatively abrupt interfaces and good surface
coverage. Solar cell devices were fabricated with these heterostructures which shown reasonable
photovoltaic parameters, especially if it is taking into account that many device related parameters
were not properly optimized. For example, thermal treatment in CdCl2 or contact annealing should
be further optimized with the aim of obtaining more efficient devices. In this work, it was clearly
observed that the inclusion of an undoped SnO2 buffer layer led to an appreciable increase of the
open circuit voltage and a moderate increase in the Isc. The increase in series resistance caused by the
introduction of the additional layer is more than compensated by the Voc and Isc increases. Overall,
the efficiency of the cell improved from 2.1% to 3.7%. These changes promoted by the buffer layer are
probably due to passivation effects of the SnO2/CdS interface, blocking of diffusion impurities from
the substrate or to improvement of the band alignment.
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