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Introduction

The lipoxygenase (LOX) family contains enzymes cat-
alyzing dioxygenation or, for epidermis-type lipoxy
genase 3 (eLOX-3), hydroperoxide isomerization of 
polyunsaturated fatty acids (for a review see Brash1). 
Five LOX mRNAs are known to be expressed in human 
epidermal cells: eLOX-3, 12R–lipoxygenase (12R-
LOX), 12S-lipoxygenase (12S-LOX), 15-lipoxygenase 
1 (15-LOX-1), and 15-lipoxygenase 2 (15-LOX-2).2–6 In 
the last few years, a lot of attention has been given to 
12R-LOX and eLOX-3 as mutations in their genes 
were found to be a frequent cause of nonsyndromic 
autosomal recessive congenital ichthyosis (ARCI)7–9: a 

rare human skin disease encompassing a broad spec-
trum of clinical manifestations including notably the 
“collodion baby.”10 A role for these LOXs in skin barrier 
function was confirmed in various models. In mice as 
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Summary
Lipoxygenases (LOXs) are enzymes likely to be involved in corneocyte lipid envelope formation and skin barrier function. 
In humans, mutations in epidermis-type lipoxygenase 3 (eLOX-3) and 12R–lipoxygenase (12R-LOX) genes are associated 
with autosomal recessive congenital ichthyosis (ARCI), whereas deletion of these genes in mice causes epidermal defects. 
LOXs also represent a matter of interest in psoriasis as well as in cancer research. However, their expression as well 
as the exact role of these enzymes in normal human skin have not been fully described. Our goal was to characterize 
the expression of epidermal LOXs in both normal human skin and Tissue-Engineered Skin Substitutes (TESS) and to 
consider TESS as a potential model for LOX functional studies. Staining for epidermal differentiation markers and LOXs 
was performed, in parallel, on normal human skin and TESS. Our results showed similar expression profiles in TESS when 
compared with native skin for e-LOX3, 12R-LOX, 12S-lipoxygenase (12S-LOX), and 15-lipoxygenase 2 (15-LOX-2) but 
not for 15-lipoxygenase 1 (15-LOX-1). Because of their appropriate epidermal differentiation and LOX expression, TESS 
represent an alternative model for future studies on LOX function. (J Histochem Cytochem 66:813–824, 2018)
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well as in human reconstructed skin, the depletion of 
eLOX-3 or 12R-LOX increased skin permeability.11–15 
In 12R-LOX-deficient mice, the recruitment of cova-
lently bound ceramides into the corneocyte lipid enve-
lope (CLE), a crucial structure involved in skin barrier 
function,16 was reduced.17 From these observations 
came models proposing the successive processing of 
ceramids by 12R-LOX and eLOX-3 as a prerequisite 
step for the recruitment of these lipid molecules to the 
CLE, thus promoting their participation in skin barrier 
function.13,17,18

In contrast, and unlike eLOX-3 and 12R-LOX, the 
role of other epidermal LOXs in the skin still needs to 
be clarified. Analyses in 12S-LOX-deficient mice did 
show a slight increase in basal epidermal water loss 
with no major changes in skin lipid composition thus 
suggesting a more ambiguous role for 12S-LOX in 
CLE formation and skin barrier function.19 Whereas 
the function of 15-LOX-2 in human skin is obscure, 
15-LOX-1 is known to promote appropriate wound 
healing in this tissue.20 Among epidermal LOXs, 12S-
LOX, 15-LOX-1, and 15-LOX-2 were associated with 
the regulation of cell proliferation and carcinogenesis 
(for a review see Kuhn et al.21). Changes in the expres-
sion or the activity of 12S-LOX, 15-LOX-1, and 
15-LOX-2 were also noted in psoriasis.22–24 However, 
the involvement of these LOXs in such diseases as 
well as their functions in human epidermis still need to 
be studied more extensively.

Mice have frequently been used as models for the 
understanding of LOX function in the skin.25 However, 
their use in such studies presents some drawbacks. 
Indeed, previous works have reported that human and 
mouse LOX orthologs do not share exactly the same 
substrates, products or expression pattern, as is the 
case for eLOX-3 and 15-LOX-2.26,27 Furthermore, the 
15-LOX-2 ortholog in mice, namely 8S-LOX, is not 
constitutively expressed in murine epidermis but is 
rather induced following skin treatment with phorbol 
ester,28 thus introducing an additional challenge to the 
study of this enzyme in mice and encouraging the 
development and use of human models.

Before proceeding to LOX functional studies in 
human skin, a more extensive characterization of their 
expression in this tissue was required. Whereas LOXs 
have been widely characterized in mice,25,28–30 their 
expression in human skin still needs to be clarified. 
Indeed, eLOX-3, 12R-LOX, 12S-LOX, and 15-LOX-2 
expression patterns have not been the subject of a 
systematic examination but have rather been reported 
in distinct and independent studies with some discrep-
ancies among the results.22,31–33 As for 15-LOX-1, to 
our knowledge, no immunohistochemical data have 
been presented for this enzyme in human epidermis.

In this context, the goal of this study was to charac-
terize LOX expression in both normal human skin and 
in Tissue-Engineered Skin Substitutes (TESS) pro-
duced in vitro, and to assess the potential of TESS  
as models for future studies on human LOX function. 
The expression profiles of five LOXs, namely, eLOX-3, 
12R-LOX, 12S-LOX, 15-LOX-1, and 15-LOX-2, were 
assessed in both TESS and normal human skin. Our 
results show that these LOXs are similarly expressed 
in both tissues, except for 15-LOX-1, which is not 
detected in normal human skin but is widely expressed 
in TESS. We suggest TESS as an interesting model for 
future studies on LOX function as epidermal differen-
tiation and LOX expression in TESS are similar to what 
is observed in native epidermis.

Materials and Methods

Skin Biopsies

This study was approved by the Ethical Review Board 
at the Centre Hospitalier Universitaire de Québec and 
conducted in conformity with the Declaration of 
Helsinki principles. After informed consent, healthy 
human skin specimens were obtained following fore-
skin, face-lift, or breast resection surgeries.

Cell Culture

Fibroblasts derived from the breast skin biopsy of a 
21-year-old adult woman were isolated as previously 
described.34,35 After isolation, the cells were cultured in 
Dulbecco’s modified Eagle’s medium (Gibco, 
Burlington, Canada #12800) supplemented with 10% 
fetal calf serum (HyClone, Logan, Utah), 100 IU/mL 
penicillin (Sigma-Aldrich, St-Louis, Missouri, #P3032-
100MV), and 25 mg/mL gentamicin (Galenova, Saint-
Hyacinthe, Canada, #GE152-100) and kept in an 8% 
CO2 atmosphere at 37C with 95% relative humidity. 
Culture medium was changed three times per week. 
Human keratinocytes were isolated from a 7-day-old 
human foreskin and cultured as previously described.34 
Briefly, cells were cultured on a feeder layer of irradi-
ated 3T3 mouse fibroblasts in Dulbecco’s modified 
Eagle’s medium with Ham’s F-12 medium in a 3:1 pro-
portion (Gibco, #21700) supplemented with 24.3 mg/
mL adenine (Sigma-Aldrich, #A2786), 5% Fetalclone 
II serum (Hyclone, Logan, Utah), 5 mg/mL insulin 
(Sigma-Aldrich, #I5500-16), 0.4 µg/mL hydrocortisone 
(Calbiochem, La Jolla, California, #386898), 1 nM 
cholera toxin (Sigma-Aldrich, #C8052), 10 ng/mL epi-
dermal growth factor (Austral Biologicals, San Ramon, 
California, #GF-0108), 100 IU/mL penicillin and 25 mg/
mL gentamicin. Fibroblasts and keratinocytes were 
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selected from a cell bank for their capacity to respec-
tively produce thick dermal sheets and well-differenti-
ated epidermis.

Human Skin Produced by Tissue Engineering

Human TESS were produced in vitro using the self-
assembly approach.36,37 Fibroblasts (passage 3) were 
allowed to grow in T25 culture dishes in the previously 
described medium supplemented with 50 µg/mL of 
ascorbic acid (Sigma-Aldrich, #A7631) during 28 days, 
thus allowing the production of extracellular matrix and 
the formation of dermal sheets. Then, two dermal 
sheets were peeled from the dishes, superimposed 
and allowed to fuse for 7 days in culture to form dermal 
tissues. Human keratinocytes (passage 3) were then 
seeded on top of these dermal tissues and cultured in 
immersion for 1 week in the previously described kera-
tinocyte culture medium, thus promoting keratinocyte 
proliferation and adhesion to the tissue. To induce 
keratinocyte differentiation, tissues were placed at the 
air–liquid interface for 14 days and cultured in keratino-
cyte culture medium deprived of Epidermal Growth 
Factor and supplemented with 50 µg/mL of ascorbic 
acid. During the entire process, culture media were 
refreshed three times a week. Samples were har-
vested after 14 days of air-liquid interface culture.

Histological and Immunofluorescence Staining

Skin and TESS biopsies were fixed with fresh 4% 
paraformaldehyde (pH 7.4) and embedded in paraffin. 
Microtome sections were stained with Masson’s tri-
chrome and photographed using AxioVision software 
(Carl Zeiss, Toronto, Canada).

For immunofluorescence studies, TESS and nor-
mal human skin samples from breast surgeries were 
embedded in Tissue-Tek OCT compound (Sakura 
Finetek, Torrance, California, #4583), frozen at −80C 
and cryosectioned at a thickness of 5 µm. For LOX 
detection, tissues were fixed at 37C for 30 minutes in 
a solution containing 80 mM PIPES (Sigma-Aldrich, 
#P1851) pH 6.9, 75 mM NaCl (Fisher scientific, 
Ottawa, Canada, #S271-3), 3 mM MgCl

2
 (Sigma-

Aldrich, #M9272), 1 mM CaCl
2
 (Sigma-Aldrich, 

#C7902), 0.5% Triton X-100 (Bio-Rad, Hercules, 
California, #161-0407), 3% paraformaldehyde 
(Electron Microscopy Services, Hatfield, Pennsylvania 
#15710), and 0.5% glutaraldehyde (Canemco & 
Marivac, Lakefield, Canada, #O121). After three 
washes in PBS, sections were incubated in 1 mg/mL 
of sodium borohydride (Sigma-Aldrich, #45882) for 15 
minutes at room temperature and washed again three 
times in PBS before incubation with primary 

antibodies. For keratin 16 and transglutaminase 1 
staining, samples were fixed in 100% acetone at −20C 
for 10 minutes. All immunostainings were performed 
by incubating primary antibodies for a 45-minute 
period followed by three washes in PBS, a 30-minute 
incubation in a combination of a fluorophore–conju-
gated secondary antibody and Hoechst 33258 (Sigma-
Aldrich, #B2883) nuclear stain followed by three 
washes in distilled water. Negative controls, with omis-
sion of the antibody during the first antibody incuba-
tion, were routinely performed. Samples were 
visualized and pictures acquired using Carl Zeiss 
(Oberkochen, Germany) Axioimager microscopes 
coupled with AxioCam ICc1 and AxioCam Hrm cam-
eras and operated by AxioVision 4.8.2 software. For 
the same staining, pictures were taken using the same 
exposition time and levels adjusted equally for all sam-
ples using Adobe Photoshop CS2. The antibodies 
used for immunostaining are presented in Table 1.

Results

Antibody Selection

As many different LOXs are expressed in human skin 
and that these enzymes are highly homologous 
(between 34% and 65% identity),6,38 antibody selec-
tion was carefully performed to avoid cross-detection 
of different LOX subtypes. Antibodies for eLOX-3, 12R-
LOX, 12S-LOX, 15-LOX-1, and 15-LOX-2 were selected 
in a way to maximize staining specificity. As shown in 
Fig. 1, the recognition sites of eLOX-3, 12R-LOX, and 
15-LOX-2 antibodies are located in areas showing no 
sequence identity with other epidermal LOXs. 
Recognition site for 15-LOX-1 antibody is located in an 
area showing only 53% identity with 12R and 12S-
LOX. To further assess the specificity of the anti-15-
LOX-1 antibody, sequence alignment starting with 
antibody’s immunogen sequence was performed 
using blastp suite (https://blast.ncbi.nlm.nih.gov). For 
this antibody, as well as for anti-eLOX-3, anti-12R-
LOX, and anti-15-LOX-2 antibodies, no other LOXs or 
known proteins were significantly detected in sequence 
alignment results, supporting the choice of these anti-
bodies (data not shown).

As 12S-LOX is relatively similar to 15-LOX-1 
(about 65% identity),39 an antibody produced using a 
protein epitope signature tag (PrEST) was selected. 
PrEST s are protein fragments designed to have min-
imal sequence identity when compared with other 
human proteins and are thus, in this case, theoreti-
cally expected to uniquely detect 12S-LOX.40 The 
antibodies selected for this study are described in 
Table 1.

https://blast.ncbi.nlm.nih.gov
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Histology and Epidermal Differentiation of 
Normal Human Skin and Human Tissue-
Engineered Skin Substitutes

Human TESS are models of epidermal differentiation 
expressing various epidermal markers (such as kera-
tins 10 and 14) and cell adhesion proteins (such as 
laminin 5, β-catenin, desmoglein-1, and claudin 4), as 
previously characterized by our team.41,42 Masson’s 

trichrome staining of transversal sections of normal 
human skin and TESS shows proper epidermal cell 
cohesion and differentiation in both tissues. Normal 
human skin and TESS presented the four expected 
epidermal layers: the basal, spinous, granular, and cor-
nified layers (Fig. 2A and B). The human TESS epider-
mis appears thicker, probably because of keratinocyte 
apparent increase in size in the reconstructed tissues. 
Larger cell size could be attributed to culture conditions 
(such as the addition of serum43) or to tissue process-
ing and preservation. To evaluate the epidermal differ-
entiation process, the expression of transglutaminase 
1, a well-known enzyme highly involved in cornified 
envelope formation and nonfunctional or mutated in 
some ARCI patients,44 was evaluated in TESS and nor-
mal human skin. As shown in Fig. 2C and D, transgluta-
minase 1 was expressed in both tissues: starting from 
the granular layer in normal human skin and from the 
spinous layer in TESS. Earlier expression of transgluta-
minase 1 is commonly observed in various human skin 
models produced in vitro.14,45,46

Similar Lipoxygenase Expression Profiles in 
Normal Human Skin and Human Tissue-
Engineered Skin Substitutes

To characterize LOX expression in TESS, immunofluo-
rescence staining was performed for eLOX-3 (Fig. 3A 
and B), 12R-LOX (Fig. 3C and D), 12S-LOX (Fig. 3E 
and F), and 15 LOX-2 (Fig. 3G and H) on both native 
and reconstructed tissues. As shown in Fig. 3, these 
LOXs were similarly expressed in TESS when com-
pared with normal human skin. In both cases, these 
four LOXs were present at the periphery of the cells 
from the basal to the granular layers of the epidermis 
with, for all these LOXs, some intermittent staining 
observed near the nucleus.

Table 1.  List of the Antibodies Used for This Study Including Host, Supplier and Catalog Number Information.

Antigen Host Supplier Catalog Number

eLOX-3 Rabbit Peter Krieg See Eckl et al.8

12R-LOX Rabbit Peter Krieg See Eckl et al.8

12S-LOX Rabbit Novus, Littleton, Colorado NBP1-90338
15-LOX-1 Goat Biorbyt, San Francisco, California Orb20099
15-LOX-2 Rabbit Abcam, Toronto, Canada Ab23691
Keratin 16 Mouse Acris, Rockville, Maryland SM1471-05
Transglutaminase 1 Rabbit ProteinTech, Rosemont, Illinois 12912-3-AP
Alexa 488 anti-rabbit Donkey Invitrogen, Grand Island, New York A21206
Alexa 594 anti-rabbit Chicken Invitrogen, Grand Island, New York A21442
Alexa 594 anti-goat Chicken Life tech., Grand Island, New York A21468
Alexa 488 anti-mouse Goat Life tech., Grand Island, New York A11001

Abbreviation: LOXs, lipoxygenases.

Figure 1.  Antibody recognition sites and sequence identity 
between the different LOXs shown in this study. eLOX-3, 12R-
LOX, 12S-LOX, 15-LOX-1, and 15-LOX-2 protein sequences are 
illustrated by long rectangles. Dark areas represent a protein sec-
tion sharing sequence identity with another lipoxygenase of this 
study. Numbers indicate amino acid position (above) or protein 
length (below). Bars indicate the recognition site of the antibody 
used in this study. Abbreviation: LOXs, lipoxygenases.
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15-LOX-1 Is Expressed in Tissue-Engineered 
Skin Substitutes But Not in Normal Human Skin

As 15-LOX-1 mRNA was previously detected in 
keratinocytes in culture,5 the expression of this LOX 
was investigated in TESS and normal human skin 
using immunofluorescence techniques. As seen in 
Fig. 4A, 15-LOX-1 was not observed in normal 
human skin. However, 15-LOX-1 was strongly 
expressed at the periphery of TESS epidermal cells 
from the basal to the granular layer, thus revealing 
the induction of 15-LOX-1 expression in this model 
(Fig. 4B). Once again, perinuclear staining was 
observed within epidermal cells. As 15-LOX-1 was 
reported to be associated with wound healing in epi-
thelial cells of the cornea,47 we investigated the 
expression of a well-known marker of this process 
within the skin, namely keratin 16.48 As expected, 

keratin 16 was absent in normal human skin but highly 
present in all suprabasal layers of the epidermis in 
TESS (Fig. 4C and D).

Discussion

Reports of mutations in LOX genes in patients suffer-
ing from ARCI as well as epidermal defects noted in 
12R-LOX and eLOX-3-deficient mice and human 
reconstructed skin recently pointed out the importance 
of these LOXs in the establishment and maintenance 
of skin barrier function in mammals.7–9,11–14 However, 
the exact contribution of other epidermal LOXs to this 
process as well as to disorders such as cancer and 
psoriasis is relatively unknown. The aim of this study 
was to characterize LOX expression in a fully differenti-
ated human epidermis model that could eventually be 
used for studies on LOX function.

Figure 2.  Epidermal cell differentiation in normal human skin and TESS. (A and B) Masson’s trichrome staining of normal human skin 
(A) and Tissue-Engineered Skin Substitutes (B). Epidermal layers are indicated by vertical bars. b: basal layer, s: spinous layer, g: granular 
layer and c: cornified layer. (C and D) Staining of normal human skin (C) and TESS (D) for transglutaminase 1 (green) and nuclei (blue). 
Magnification of the framed area is shown in the upper right corner of the corresponding picture. Dotted line underlines the basal layer. 
Scale bars: 25 µm. Abbreviation: TESS, Tissue-Engineered Skin Substitutes.
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Figure 3.  Immunofluorescence staining for eLOX-3 (red; A and B), 12R-LOX (red; C and D), 12S-LOX (green; E and F) and 15-LOX-2 
(green; G and H) in normal human skin (A, C, E, and G) and Tissue-Engineered Skin Substitutes (B, D, F, and H). Magnification of the 
framed area is shown in the upper right corner of the corresponding picture. Nuclei are stained in blue. Dotted line underlines the basal 
layer. Scale bars: 25 µm. Abbreviation: LOXs, lipoxygenases.
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This study brings more information about LOX 
expression in human skin models. The main finding of 
this report is that all detected LOXs were preferentially 
located at the cell periphery in epidermal cells of native 
and reconstructed human skin. Such a result is in 
agreement with previous reports showing a similar dis-
tribution for eLOX-314,31 and 12R-LOX14 but not for 
12S-LOX22 and 15-LOX-2.24 The distribution of LOXs 
at the periphery of epidermal cells is supported by 
various reports describing, in other cell types, the 
membrane association of some members of the LOX 
family. Indeed, early works found that 12-LOX enzy-
matic activity was mostly redistributed to the mem-
brane fraction in platelets and erythroleukemia cells 
(HEL) upon cell activation.49,50 The translocation of 
15-LOX-1 and 15-LOX-2 to membranes was also 
described in reticulocytes51 and prostate epithelial 
cells.52 Apparently, such a membrane association was 

not confirmed for 12R-LOX or eLOX-3. However, these 
proteins share, along with the other LOXs, an homolo-
gous ß-barrel-forming amino acid sequence, coined 
as the PLAT (for Polycystin-1, LOX, Alpha-Toxin) 
domain,53 which is known to play a role in the mem-
brane binding of mammalian 12S-LOX,54 15-LOX-1,55 
and 15-LOX-2.56 Interestingly, several lines of evidence 
suggest that the Ca2+ ion is involved in the regulation 
of membrane binding through the PLAT domain. Such 
a Ca2+-dependent membrane association was 
reported for 15-LOX-1 and 15-LOX-2 at concentrations 
as low as 10.4 µM.28,51,56,57 As epidermal cells from the 
basal, spinous, and granular layers are known to have 
an intracellular calcium content mostly ranging 
between 7 and 20 µM,58 the cortical distribution of 
LOXs can be promoted, thus explaining their detection 
at the cell periphery in normal human skin and in 
TESS. In our samples, staining for all LOXs was also 

Figure 4.  Immunofluorescence staining for 15-LOX-1 (red; A and B) and keratin 16 (red; C and D) in normal human skin (A and C) 
and Tissue-Engineered Skin Substitutes (TESS; B and D). Magnification of the framed area is shown in the upper right corner for A and 
B. Nuclei are stained in blue. Dotted line underlines the basal layer. Scale bars: 25 µm. Abbreviation: LOXs, lipoxygenases.
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sometimes observed near the nucleus. Nuclear or 
perinuclear localization of LOXs is possible as some 
reports did describe interaction with intracellular or 
nuclear membranes for 12S-LOX,59 15-LOX-1,60 and 
15-LOX-2.61 Further analysis should therefore be per-
formed to confirm such an interaction in differentiating 
epidermal cells.

The LOX expression reported herein, ranging from 
the basal to the granular layer, is consistent with what 
was previously observed in human native epidermis 
and/or reconstructed skin for eLOX-314,31 and 12R-
LOX14 but not in mice where these enzymes are 
restricted to the granular layer.11,13 Such a difference in 
eLOX-3 and 12R-LOX expression may be due to inter-
species variations. It could seem surprising for eLOX-3 
and 12R-LOX to be expressed early in keratinocyte dif-
ferentiation when they play a role in CLE formation, a 
process considered as a late event and associated 
with the granular layer of the epidermis. However, 
appearance of some proteins involved in cornified 
envelope assembly, another late event in keratinocyte 
differentiation, also occurs before the formation of the 
granular layer of the epidermis even if the main part of 
this process is thought to take place within this layer.62 
Indeed, involucrin, also described as the scaffold pro-
tein responsible for ceramide attachment to the corni-
fied envelope,63 is expressed starting from the spinous 
layer of the epidermis.64 In the context where eLOX-3 
and 12R-LOX are considered responsible for ensuring 
esterified omega-hydroxyacyl-sphingosine ceramide 
oxidation, a prerequisite to ceramide recruitment to the 
CLE13,18 it is credible for these LOXs to be expressed 
before the proteins involved in later events of CLE 
formation.

As for the other LOXs, our results show some dis-
crepancies with the previously reported distribution of 
12S-LOX, 12R-LOX, and 15-LOX-2 in human skin. 
Indeed, these enzymes were reported not to be 
expressed in all the living epidermal layers and seldom 
in the plasma membrane zone.22,31,32 We believe that 
these discrepancies could be due to differences in fix-
ation techniques used during tissue processing. 
Indeed, whereas other research teams used standard 
fixation agents such as acetone or formaldehyde, we 
rely on a mix of paraformaldehyde and glutaraldehyde 
known to minimize lipid extraction, thus maximizing 
the preservation of cell membrane integrity.65,66 As 
plasma membrane lipids act as an anchoring point for 
the binding of some PLAT domain-containing 
enzymes,28,67 dissolving these components with fix-
ators such as acetone may lead to leaking of the anti-
gen and thus to the loss of the signal from the original 
LOX localization.

Unlike other epidermal LOXs studied in this work, 
the 15-LOX-1 expression profile in TESS was different 
from the one observed in native tissue. Indeed, while 
15-LOX-1 was absent in normal human skin, it was 
strongly expressed at the cell periphery throughout 
the TESS living epidermis. This evident difference 
between 15-LOX-1 and the staining of the remaining 
LOXs in native epidermis supports the anti-15-LOX-1 
antibody specificity. As mentioned earlier, 15-LOX-1 
activity and mRNA expression are also induced in cell 
monolayer culture but are not observed in native epi-
dermis.5,68 15-LOX-1 is not the only protein showing 
different levels of expression in culture when com-
pared with native tissues. Indeed, culture-induced 
expression is also observed for keratin 16 in every 
epithelial cell culture system in vitro such as classical 
monolayer culture,69,70 skin explants,71 organotypic 
skin cultures,72,73 collagen-coated inserts (Leiden 
model),74 and TESS.75 Keratin 6, the binding partner 
of keratin 16 and also involved in the wound healing 
process,76 is aberrantly expressed as well in commer-
cially available reconstructed skin models such as 
Episkin, SkinEthic, and EpiDerm.45 Keratin 16 is also 
expressed in TESS produced in serum-free culture 
media and produced with cells originating from the 
same donor thus pointing out the fact that keratin 16 
expression in culture is not related with to the exposi-
tion to serum or to the mixing of cell populations.75 
Interestingly, keratin 16 and 15-LOX-1 are two pro-
teins whose expression is known to be induced during 
wound healing.47,77,78 Expression of these proteins in 
vitro can be explained by the presence of required 
factors in the culture media that induce proliferation or 
wound healing processes. Once again, culture condi-
tions, as well as tissue processing and preservation, 
could be factors explaining the apparent larger cell 
and nucleus size observed in TESS when compared 
with the native tissue. Despite the differences in cell 
size and keratin 16 expression, TESS present a per-
meability very similar to the one measured in normal 
human skin,79 thus suggesting that the keratinocyte 
differentiation process in this model ultimately leads to 
the production of a skin barrier function similar to the 
one observed in vivo. As LOXs are known to be 
involved in skin barrier function, we believe that TESS 
represent an accurate model for the study of their 
function. However, such a difference in 15-LOX-1 and 
keratin 16 expression in TESS should be kept in mind 
in future studies on LOX function.

In summary, this study enabled the characterization 
of epidermal LOX expression in normal human skin as 
well as in TESS. The expression profiles of eLOX-3, 
12R-LOX, 12S-LOX, and 15-LOX-2 were similar in 
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both tissues whereas 15-LOX-1 expression was only 
observed in TESS. Despite this difference between 
native and reconstructed skin, our data and previous 
results from other teams14 suggest TESS as an inter-
esting model for the study of human LOXs. Indeed, 
TESS recapitulate LOX expression and epidermal cell 
differentiation, a process much more difficult to study 
using classic monolayer cell culture techniques and in 
which keratin 16 and 15-LOX-1 are also expressed. 
TESS would notably be relevant for the functional 
study of 15-LOX-2; a LOX that is not constitutively 
expressed in mouse epidermis. Expression of 
15-LOX-1 in TESS should, however, be kept in mind. 
The existence of TESS models for psoriasis,80 wound 
healing,81 and cancer82 also offers an opportunity to 
further analyze the function of these enzymes within 
these pathophysiological processes.
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