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Abstract

The structures and physicochemical properties of chemicals are important for determining their 

potential toxicological effects, toxicokinetics, and route(s) of exposure. These data are needed to 

prioritize the risk for thousands of environmental chemicals, but experimental values are often 

lacking. In an attempt to efficiently fill data gaps in physicochemical property information, we 

generated new data for 200 structurally diverse compounds, which were rigorously selected from 

the USEPA Distributed Structure-Searchable Toxicity Database (DSSTox). This pilot study 

evaluated rapid experimental methods to determine five physicochemical properties including the 

log of the octanol:water partition coefficient (known as log(Kow) or logP), vapor pressure, water 

solubility, Henry’s law constant, and the acid dissociation constant (pKa). For most compounds 

experiments were successful for at least one property; log(Kow) yielded the largest return (176 

values). It was determined that the presence of 21 structural features may have played an overall 

role in rapid measurement method failures. To gauge consistency with traditional measurement 

methods, the new measurements were compared with previous measurements (where available). 

Since quantitative structure-activity/property relationship (QSAR/QSPR) models are used to fill 
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gaps in physicochemical property information, 5 suites of QSPRs were evaluated for their 

predictive ability and chemical coverage or applicability domain of new experimental 

measurements. The ability to have accurate measurements of these properties will facilitate better 

exposure predictions in two ways: 1) direct input of these experimental measurements into 

exposure models; and 2) construction of QSPRs with a wider applicability domain, as their 

predicted physicochemical values can be used to parameterize exposure models in the absence of 

experimental data.

GRAPHICAL ABSTRACT
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1. INTRODUCTION

Physicochemical properties such as the log of the octanol:water partition coefficient 

(log(Kow) or logP), and vapor pressure (VP) play a critical role in addressing many aspects 

of a chemical’s behavior including in drug discovery1–5, migration through the environment 

and body6–13, and potential impact on human health and the environment14–17. In order to 

estimate the environmental risk posed by such chemicals, cheminformatics tools and 

predictive models rely on physicochemical properties to predict important aspects such as 

toxicity14–17, toxicokinetics10,12,23, and exposure6,7,11. However, there are tens of thousands 

of manufactured chemicals, that may find their way into living organisms and the 

environment18–22 but also have few or no physicochemical property data,. This lack of data 

is particularly problematic as physicochemical properties govern how chemicals 1) affect the 

biosphere (i.e., physiological and pathological effects) and 2) emit from or pass through the 

lithosphere (soil), hydrosphere (water), and atmosphere (air) to arrive at biological sites of 

exposure. Advancements in computational toxicology methods support on-going efforts to 

develop rapid toxicity information to inform the anthroposphere (human evaluation and 

regulation) in a decision-making context24–31. The USEPA’s Exposure Forecasting 

(ExpoCast) project32 relies upon robust physicochemical property information in order to 
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develop high-throughput exposure and toxicokinetic models. In lieu of measured data, 

property prediction models can potentially be used, but the validity and relevance of these 

models needs to be assessed as new chemistries are developed. One of the goals of the 

ExpoCast project is to assess the utility and reliability31 of available existing 

physicochemical property models. This requires new experimental physicochemical data to 

be generated, but given the thousands of chemicals of potential interest, higher-throughput 

methods are attractive if they can be shown to be reliable.

Physicochemical properties have been found to be useful descriptors in predicting a wide 

range of properties33, including absorption34, distribution10,12,34, clearance34, 

permeability35,36, membrane (lipid bilayer) affinity37,38, plasma protein binding39,40, in 
vitro assay concentration41,42, and predictive ability of in vitro toxicokinetics (TK) assays23. 

Models derived from the use of physicochemical properties as well as molecular structure 

descriptors also enable the prediction of chemical functional use in products (e.g., 

emulsifiers and dyes)2,4,5. Thus, any resulting model’s accuracy will be affected by 

uncertainty in the properties used, which subsequently impacts their utility for chemical risk 

assessment.

Physicochemical properties can be predicted from chemical structure via quantitative 

structure-property relationships (QSPRs)43–49. A QSPR expresses, in mathematical form, 

the quantitative relationship that may exist between the chemical structure of a series of 

chemicals and their measured properties. Many QSPRs are derived using machine learning 

algorithms which seek out statistically relevant correspondence between specific structural 

features and property values for a training set of chemicals43–49. Applicability domains 

(AD) are typically defined for QSPRs to facilitate reliable use. The AD for a QSPR is 

defined as the response and chemical structure space in which the model makes predictions 

with a given acceptable reliability. There are many different types of ADs that can be 

defined for QSPR models; for statistically based QSPR models relying on structural 

features, interpolation methods are often used43–46,50. Chemicals within the AD are 

associated with model-specific prediction uncertainty based on approximations to 

experimental measurements51. In addition, it is worth noting that prediction uncertainty is 

assumed to increase for chemicals determined to be outside of the AD or for models with 

unknown AD boundaries43,45,52. Since predicted physicochemical properties are often used 

as inputs to derive QSAR models, whether they be for toxicity, environmental fate or 

toxicokinetic parameters, any prediction uncertainty will ultimately cascade to these model 

predictions also.52 Unfortunately, for many chemicals of interest, the relevant 

physicochemical properties of interest have not been measured and/or are out of the any 

predictive models’ interpolation spaces6,53,54.

There are a number of QSPRs for physicochemical properties that have been incorporated 

into software tools for ease of use. Some of these tools are open-source and free, such as 

OPEn (quantitative) structure-activity Relationship Application (OPERA)55,56, whilst others 

are proprietary but free, such as Estimation Program Interface (EPI Suite)53 and Online 

Chemical Database (OCHEM)57 . There are also a number of tools that are proprietary and 

commercial such as Simulations Plus58 and Advanced Chemistry Development, Inc. (ACD/

Labs)59 or a mix of different categories such as ChemAxon60 products that provide QSPR 
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models. Some of these models are not transparent in terms of providing end-users with the 

information needed to assess their reliability, specifically details such as the AD, underlying 

training set and details of the model algorithms. For example, EPI Suite53 does not provide 

an AD for any of its physicochemical QSPR models.

Here we describe a pilot study where we rapidly generated experimental data for 5 

physicochemical properties of 200 structurally diverse chemicals using high-throughput 

approaches. The selected parameters were log(Kow), VP, water solubility (WS), Henry’s law 

constant (HLC), and the acid dissociation constant (pKa). The chemicals were identified to 

incorporate: 1) those with existing values measured using traditional, lower-throughput 

protocols (Note: There was no accessible database of measured values for pKa); 2) those that 

are structurally similar to chemicals with existing data; and 3) those that are structurally 

diverse from chemicals with existing property data. New experimental measurements were 

thus compared with their respective previously measured values that resulted from 

traditional measurement protocols (e.g., one compound at a time). Structural features were 

identified that lend themselves to failed measurements. Furthermore, it was determined 

whether successful experiments might be added to the already existing measured data in 

publicly accessible databases. We compared the experimental measurements to model 

predictions from five models that were either available publicly or licensed for use (ACD/

Labs59,61, Chemical Properties Estimation Software (ChemProp)62, EPI Suite53,61, National 

Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological 

Methods (NICEATM)61,63 and OPERA55,56,61).

2. METHODS

2.1 Test Chemical Selection

Multiple factors were considered in the selection of the set of test compounds. First, 

resources allowed for only 200 compounds to be tested. Then, selection criteria were used to 

gauge experimental reproducibility and the ability to retrieve new experimental data for 

chemical moieties that have substantial data gaps. Figure 1 illustrates the workflow which 

was used to filter chemicals in the Distributed Structure-Searchable Toxicity (DSSTox) 

database64 based on the following: 1) whether enough chemical sample was readily in stock 

(i.e., greater than 20 mg), 2) whether chemical properties had been previously measured, 3) 

limits of detection (LOD) for each property, which are the bounds within which 

experimental measurements are most reliable (as determined by the analytical methods to be 

used), and 4) computed similarity coefficients for chemicals within and outside the LOD. 

This workflow was then implemented in KNIME65 (V2.9), a free and open-source 

environment for data mining with a multitude of integrated cheminformatics tools. Starting 

with 2,553 DSSTox compounds (Figure 1) that were in stock, 60 of the compounds had 

measured properties for log(Kow), VP, WS, and HLC as provided in a curated version of the 

PHYSPROP56,66 database, a publicly accessible resource for existing physicochemical 

property measurements. The remaining 2,493 chemicals were filtered based on two 

approaches to maximize chemical diversity: consideration of the LOD of the experiments 

and identification of various patterns of structural similarity. 782 chemicals were within the 

range of new measurement LOD based on EPI Suite predictions: Kow (0<log(Kow)<6)67 and 
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VP (10−7<VP<102 Pa at 25°C)68. While HLC and WS had previous experimental data in 

PHYSPROP, neither one had a pre-specified LOD range prior to experimentation. Although 

there were no previous experimental pKa data in PHYSPROP, new measurement values were 

based on a specific pH range (3<pH<12)69.

In order to include the most diverse chemicals from the set of 782 chemicals, Tanimoto70 

similarity indices (S) were computed based on extended CDK fingerprints71 (~4000 bits), 

such that if any two compounds achieved a similarity score of greater than 0.6, then one of 

two compounds was randomly removed from consideration in this pilot study. The 

remaining 385 compounds (with S ≤ 0.6) were further filtered based on their similarity to 

chemicals in PHYSPROP datasets that were used to train the EPI Suite models for log(Kow), 

VP, and HLC. Tanimoto indices were calculated between the 385 remaining compounds and 

the compounds in PHYSPROP with a measured value for at least one of 3 properties: 

log(Kow), VP, and HLC. Sixty compounds were then selected from each of three similarity 

index ranges: high (S > 0.7); medium (0.5 ≤ S < 0.7) and low (S < 0.5) similarity, for the 

purpose of providing chemicals inside and outside of the chemical space covered by EPI 

Suite for the three models. This led to 180 compounds for which there were no measured 

values and therefore resulted in a total of 240 compounds for measurement analysis (60 

already measured and 180 with no measurement). We aimed for 200 chemicals and the 

addition of 20% (40 chemicals) in excess of the goal as a precaution for any problems with 

the measurement methods. Out of the 240 computationally selected chemicals, the 200 most 

abundant in stock were submitted to be tested where 22% (44) had previously measured 

values for log(Kow), VP, and HLC, while there were 62 compounds where WS had been 

previously measured. For the remaining chemicals, the measured values were mostly within 

or near the pre-specified LODs. The KNIME65 workflow with a detailed description, a 

screenshot, and summary statistics are provided in Supplemental Code S1. Results of 

experimental measurements for all 5 properties are available in Supplemental Table S1.

2.2 Determination of Octanol:Water Partition Coefficient

For the high-throughput experimental measurements of log(Kow), the procedures in the 

Estimation by Liquid Chromatography and OECD Test Guideline 11767 and the EPA 

OPPTS 830.7570 Partition Coefficient (n-Octanol/Water)72 were adapted and modified. In 

reverse phase high-performance liquid chromatography (HPLC), the chemicals are retained 

in proportion to their hydrocarbon:water partition coefficient. Hydrophilic chemicals elute 

first and lipophilic chemicals elute last. This enables the relationship between the retention 

time on a reverse phase column and the octanol:water partition coefficient to be established. 

The HPLC method is applicable to compounds with log(Kow) in the range of 0 – 6. The 

HPLC method described in the EPA and OECD methods was converted to high-throughput 

with the use of ultra-high pressure liquid chromatography (UHPLC) with sub-2 μm particles 

column. A Waters ACQUITY system equipped with a 2996 photodiode array detector was 

used for analysis. The analytical column used was Waters BEH C18 (2.1 × 50 mm, 1.8 μm). 

An isocratic mobile phase system using 55% water and 45% acetonitrile maintained at 25oC 

was used to elute the chemicals. The flow rate was maintained at 0.3 mL/min. By plotting 

the capacity factor (k) generated from the retention times of the reference compounds versus 
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log(Kow), a linear regression curve was generated to estimate the log(Kow) of the compound 

in question by its retention time using Equations (1) and (2).

log10(Kow) = a +   b   ×   log10 k Eq. 1

k   =  
tR − t0

t0
Eq. 2

where tR is the retention time of the test compound, and t0 is the dead-time of the analytical 

system. Three reference compounds: nitrobenzene, toluene, and benzyl benzoate with their 

log(Kow) values of 1.85, 2.73, and 3.97, respectively62, were used in the initial screening 

process. Test compounds with retention time results within range of these three compounds 

were considered valid. Test compounds that eluted after benzyl benzoate were reanalyzed a 

second time using a different mobile phase system with 15% water and 85% acetonitrile. For 

this system, benzyl benzoate, fluoranthene, and 4,4’-DDT were used as the reference 

compounds, whereby the reference log(Kow) values used were 3.97, 5.1, and 6.5, 

respectively62.

2.3 Determination of Vapor Pressure

Several methods developed by the ASTM International73 organization were available for use 

in VP determination but these methods were primarily intended for liquid petroleum 

products. Here, capillary gas chromatography (GC) using the relative retention time method 

was evaluated as an option to estimate VP of the compounds68. This GC method was an 

indirect measurement and involved establishing the retention times of compounds using a 

capillary GC column with a non-polar phase such as 100% dimethyl-polysiloxane. The GC 

technique was fast, easily automated, and required minimal amounts of sample. The 

disadvantage of using this method was selecting the appropriate reference chemicals to 

relate to the VP of the test substance. The chemical structures, functional groups and 

polarities of chemicals in the DSSTox library are very diverse which made the data 

measurement and interpretation difficult. Two compounds di-n-propyl phthalate (DnPP) and 

di-2-ethylhexyl phthalate (DEHP) were selected as the reference compounds for the VP 

measurement. The reference VP values used were 1.76 × 10−2 and 8.27 × 10−6 Pa for DnPP 

and DEHP, respectively63.

An Agilent 6890 gas chromatograph coupled to an Agilent 5973 mass spectrometer was 

used for the measurement of VP. The instrument was equipped with a Restek Rtx-1MS 

column (15 m; 0.25 mm id; 0.25 μm film thickness). Helium was used as the carrier gas with 

a constant flow setting of 1 mL/min. The injector temperature was set at 250 oC. The initial 

oven temperature was set at 40 oC, followed by a linear ramp of 8 oC/min to a final 

temperature of 300 oC. The test substances were injected and the retention times of the 

compounds were then correlated to the log(VP) values.
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2.4 Determination of Water Solubility and Henry’s Law Constant

Measurements of WS were generated using high-performance liquid chromatography-

ultraviolet (HPLC-UV) analysis. The test substances were dissolved in HPLC grade 

acetonitrile to approximately 1 mg/mL. The stock solutions were further diluted to 100 

μg/mL, 10 μg/mL and 1 μg/mL for use as calibration curves to quantitate the amount of 

material soluble in water. For the test item substance, 1 mL of water was added to 

approximately 5 mg of material74. The aqueous solutions were equilibrated at room 

temperature for 48 hours. Prior to analysis, the aqueous solution was carefully transferred to 

a separate vial avoiding any particulates present in the vial. VP results obtained from the GC 

experiment were used in conjunction with WS results to generate HLC results. HLC 

measurements were based on the relationship of vapor pressure and water solubility describe 

in Equation (3):

HLC =   VP
WS   × 1

MW

Eq. 3

where MW is the molecular weight of the substance.

2.5 Determination of Acid Dissociation Constant

For high-throughput determination of pKa values, spectrophotometric titration was 

conducted75. An ultraviolet (UV) spectrum from 210–400 nm of a target analyte was 

acquired at each unit pH datum point of the titration. The change in UV with pH absorbance 

was then plotted. This method is suitable for compounds that contain a chromophore close to 

the ionization center such that the spectrum absorbance changes as a function of ionization. 

Although a rapid measurement method for pKa was attempted (SI Methods), it was 

considered to be unsuccessful due to a failed experimental procedure.

2.6 Previous Experimental Data versus New Experimental measurements

Previously measured properties for log(Kow), VP, WS, and HLC were compiled from the 

curated version of the publicly available PHYSPROP56,66 database. In this curated version 

structures are best matched to their respective experimental properties based on a series of 

data accuracy scoring mechanisms developed at the USEPA National Center for 

Computational Toxicology (NCCT). This database does not contain any pKa values. A linear 

regression (in log-space) was employed to illustrate the correlation between the new and 

previous experimental values along with the Pearson76 coefficient (R2) (using the ‘ggplot 

2’77 R package), root mean squared error (RMSE), and mean absolute error (MAE) were 

reported for each of these. RMSEs are reported in addition to the R2 in order to emphasize 

the average deviation of new and previous data versus the use of a model to explain the 

percentage of response variation.

2.7 Identification of Features in Chemicals Lacking New Experimental Data

In order to identify key features of the chemicals for which some or all experimental 

measurements were unsuccessful, odds ratios were calculated for each fingerprint bit (i.e., 
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substructure) between chemicals that had new experimental results and those that did not. 

The odds ratio is defined as:

OR =  
n0, N n0, Y
n1, N n1, Y

Eq. 4

where n0,N is the number of chemicals where the bit of the fingerprint was not present and 

the chemical could not be measured, n0,Y is the number of chemicals where the bit was not 

present and the chemical could be measured, n1,N is the number of chemicals where the bit 

was present and the chemical could not be measured, and n1,Y is the number of chemicals 

where the bit was present and the chemical could be measured. Using this definition, if the 

OR for a substructure is greater than 1, then that bit’s presence in a chemical’s structure is 

associated with an inability to measure that property. Conversely, if the OR is less than 1, 

then that bit’s absence from a chemical’s structure is associated with the inability to measure 

a property. The closer an OR value is to 1 the less significant that bit’s association with 

either the ability or inability to measure a chemical’s property.

2.8 Predicted Physicochemical Properties

Model predictions for the properties were obtained from sources that were publicly available 

and/or using commercially licensed products available in the authors laboratories: ACD/

Labs59,61 (log(Kow), WS, and pKa), ChemProp (v6.5)62 (log(Kow), WS, and VP), EPI Suite 

(v4.11)53,61 (log(Kow), VP, WS, and HLC), NICEATM61,63 (log(Kow), and WS), and 

OPERA (v1.5)55,56,61 (log(Kow), VP, WS, and HLC). ChemProp (v6.5)62 predictions were 

obtained via multiple algorithms each for log(Kow), VP, and WS. Sources for the EPI Suite 

(v4.11) predictions for log(Kow), VP, and HLC are the from KOWWIN (v1.68), MPBPWIN 

(v1.43), and HENRYWIN (v3.20) modules, respectively. Predictions from ACD/Labs59,61, 

EPI Suite53,61 and NICEATM61,63 were collected from the USEPA’s CompTox Chemistry 

Dashboard61,78 (https://comptox.epa.gov/dashboard/) using its batch mode functionality. 

OPERA’s predictions, which are also available on the CompTox Chemistry Dashboard61,78, 

can be obtained via a batch mode prediction using the command line application recently 

developed at USEPA’s NCCT and available on GitHub (https://github.com/kmansouri/

OPERA).55,56,61 Values and links to OPERA predictions are provided in Supplemental 

Table S2. Unit conversions were applied (where necessary) such that all data sources for a 

given property were reported in consistent units. Supplemental Table S3 summarizes the 

scale and units for reported values from all seven sources of physicochemical property data.

2.9 Previous Experimental Data versus QSPR Model Predictions

Analysis was performed in order to compare QSPR model predictions (if applicable) to 

experimental measurements for all five physicochemical properties. Final model predictions 

of chemicals with both new measurement and PHYSPROP values for log(Kow), VP, WS, 

HLC, and pKa are provided in Tables S4-S8, respectively. Results from ACD/Labs models 

used to determine if a compound could be ionized and absorbance measurements used for 

determining pKa values are provided in Tables S9 and S10, respectively. For the compounds 
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that had available experimental data, in the literature or in accessible databases, for 

log(Kow), VP, WS, and HLC properties, new measurement data were aggregated with 

previously measured (PHYSPROP) data and model predictions from ACD/Labs59,61, 

ChemProp62, EPI Suite53,61, NICEATM61,63, and OPERA.55,56,61 Linear regression plots 

were used to illustrate the correlation between new experimental data and predicted values. 

RMSEs and MAEs were reported for each property in logarithmic-space. In order to achieve 

a one-to-one comparison between previous measurements and model predictions, only the 

subset of compounds that had previous PHYSPROP values along with newly obtained data, 

were included in this analysis. As ChemProp provided multiple predictive models for 

log(Kow), VP, and WS, the models with the fewest missing predictions and the lowest 

RMSE value were selected. Thus, via ChemProp, for log(Kow) and VP, the unpublished 

read-across methods yielded the lowest RMSE value while the model that yielded the lowest 

RMSE for WS was that of Huuskonen (2001)79.

3. RESULTS

3.1 Comparison of Experimental Measurements with Previous Measurements

200 chemicals reflecting a mix of chemicals with traditionally measured physicochemical 

properties, unmeasured chemicals with structures expected to be similar to those with 

measured properties, and more diverse (i.e., challenging) chemicals were characterized using 

high-throughput property measurement methods. As summarized in Table 1, the log(Kow) 

method was successful for 176 of the 200 because measurements were obtained. Only 32 of 

these have PHYSPROP56,66 values. The rapid VP method was successful for 168 of the 200, 

of which only 32 of these had PHYSPROP values. For WS, 129 of 200 were successfully 

measured and 36 had new experimental measurements. For HLC, 23 of the 110 compounds 

that could be measured also had experimental values reported in PHYSPROP. The structural 

similarity of the chemicals which had both new experimental measurements and 

PHYSPROP values for a given property is shown in Supplemental Figures S1 – S4.

The correspondence between the previous measurements and the rapid experimental 

measurements is illustrated in Figure 2 and Tables 1 and 2. RMSE and MAE values were 

computed along with linear regressions for each property that was measured. For log(Kow) 

and WS the RMSE in Table 1 indicates concordance within a factor of 10 between the rapid 

measurements and the traditionally measured values. The VP of the selected chemicals are 

somewhat difficult to measure because they are all non- or semi-volatile chemicals amenable 

to high-throughput in vitro testing. Experimentally measured compounds that show the most 

consistency are closest to their PHYSPROP counterparts as illustrated in Figure 3. All 

experimentally measured data and PHYSPROP values were compared with OPERA model 

predictions.

3.2 Comparison of Experimental Measurements with Model Predictions

Linear regressions were performed, comparing the new measurements to each of the 5 (or 

fewer) QSPR sources. The chemicals used in this comparison are the same as those used in 

the previous section (i.e., those chemicals having both traditional measurements and new 

experimental measurements). For log(Kow), the order of increasing RMSE values are as 
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follows: OPERA < NICEATM < ChemProp < EPI Suite < ACD/Labs. For VP, there were 

data available from three predictive models whereby the RMSEs were ranked: OPERA < 

EPI Suite < ChemProp. For WS, there were predictions from five models. RMSE rankings 

for WS models were as follows: ACD/Labs < NICEATM < ChemProp < EPI Suite < 

OPERA. For HLC there were only two available models and the RMSE rankings were 

OPERA < EPI Suite. RMSE and MAE values are summarized in Table 2. In order to 

illustrate correlations between new rapid experimental values, previous traditional 

experimental values, and all predicted values, statistics of linear regressions (i.e., R2, RMSE 

and MAE) for log(Kow), VP, WS, HLC, and pKa (all in logarithmic-space), are provided in 

Table 2 (see also Supplemental Figures S5 – S8 for with linear regression equations and 95th 

percent confidence intervals). Using ACD/Labs to predict pKa values for the 200 pilot 

chemicals and to determine whether a compound was acidic or basic (Supplemental Table 

S9), we observed a balanced accuracy of 0.38 for acids (a “true positive” prediction occurs 

when experimental data show any hydrogen donor ionization equilibrium and this pKa was 

also determined), 0.61 for bases, and 0.49 for any ionization (acid or base). Because of the 

low balanced accuracies, we did not consider this assay to have performed successfully and 

thus did not further analyze the data.

3.3 Identification of Features in Chemicals Where Experimental Measurements Failed

The impact of chemical structure on the success or failure of experiments was then evaluated 

by calculating odds ratios (OR) for substructural features. Here OR describes the odds that a 

specific substructural feature in the fingerprint is common to chemicals that were 

unsuccessfully measured for one or more of the physicochemical properties. There were 47 

features that were positively associated with experimental failures with respect to log(Kow). 

Seven of these features had 10-fold or higher odds of being present in chemicals where the 

log(Kow) experiment of a property was unsuccessful. The fingerprint feature with the highest 

odds of contributing to whether the log(Kow) experiment was unsuccessful was a linear 

chain where the second and third carbons are bound by an alkene bond (OR=25). Here, this 

feature was present in the fingerprints of 21 of the 23 chemicals that did not have a new 

experimental measurement of log(Kow). Conversely, the aromatic benzene ring feature had 

the lowest OR (0.0182) for log(Kow), indicating that the odds of this feature being in a 

compound that has a successful experiment was higher than that of a compound that was 

unsuccessful. For the group of 8 structurally similar chemicals where all five property 

measurements were unsuccessful, both the presence of 21 features and the absence of two 

alternative features may play a role in their experimental success (Figure 4). The features 

whose presence contributed to the failure of all property experiments, had much higher odds 

than those whose absence contributed to the failure to produce new experimental data. 

Structural similarity between chemicals that had common unsuccessful experimental 

measurements is shown in Figure S9; odds ratio results are provided in Supplemental Table 

S11.

4. DISCUSSION

While physicochemical properties impact the total environment from how chemicals emit 

from their sources80–82 to how they ultimately affect their environmental targets1,3,83, 
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resources are not available to determine physicochemical properties for all of the thousands 

of chemicals of interest to the USEPA using traditional measurement methods. QSPRs 

provide a means to address this problem but rely upon training sets that may not necessarily 

reflect all chemicals of interest14,45,55,63,78. As an intermediary, high-throughput 

measurements can evaluate the performance of QSPRs for chemicals that may be different 

from training sets. If high-throughput methods reasonably reproduce the more resource-

intensive traditional measurement methods, then the data provided may replace QSPR 

estimates and augment QSPR training sets to expand their ADs. Here, a diverse set of two 

hundred chemicals was used as part of a pilot study to assess methods of high-throughput 

experimental measurements of five physicochemical properties: octanol:water partition 

coefficient, vapor pressure, Henry’s law constant, water solubility, and acid dissociation 

constant. These properties are of highest interest because these data are needed to prioritize 

the risk of thousands of chemicals6.

We recognize that a high-throughput method for property measurement will trade some 

degree of precision for speed. We neither expect nor require that these new methods work 

for all classes of chemicals. For these reasons, we have attempted to characterize bias and 

examine a range of chemicals to establish the strengths and weaknesses of the available 

high-throughput approaches. We summarized structural features whose presence or absence 

may lend themselves to experimental success, which may provide insight into new methods 

development for failed compounds. Also, experimental measurements were compared 

against previous low-throughput measurements (as represented by the data in the 

PHYSPROP56,66 database), which illustrated experimental inconsistencies. This highlights a 

need for insight as to which experimental measurements must be used in cases where 

multiple experimental measurements for the same compound disagree. Upon comparing new 

experimental measurements to predicted values from a selection of both publicly, and 

commercially available QSPR models, we found that some models are relatively similar in 

predictive ability for compounds whose experimental measurements were successful. 

Although AD information is not available in all models, we did not observe marked 

differences in prediction accuracies between chemicals inside and outside the domain of the 

models.

The physicochemical properties studied here are relevant to many areas of risk assessment. 

Any refinements to both the QSPR models that predict these properties as well as QSAR 

models for hazard, exposure, and toxicokinetics that use these properties as inputs, may 

impact human and environmental health chemical risk prioritization. These data can help 

prioritize chemicals for more traditional testing by identifying the regions of chemical space 

most in need of further study84.

4.1 High-Throughput Experimental Measurements of Physicochemical Properties:

The high-throughput property measurement methods described here rely on calibrations of 

an experiment developed with a few reference chemicals and well-established measured 

values (e.g., two phthalates for water solubility). If a database of high-throughput 

experimental values for a large number of reference chemicals could be established, then 

structural similarity could potentially be used to identify a handful of reference chemicals to 
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build a chemical-specific calibration for each new test chemical. The high-throughput 

method for characterizing ionization (pKa) attempted here (high-throughput UV–visible 

spectrophotometry) has been demonstrated for pharmaceuticals and pesticide-like 

compounds75,85,86. However, this method appears to require structural features that are not 

as common within the broader chemical space explored here. Until new high-throughput 

methods can be developed, it may be that traditional, lower-throughput methods will be 

needed to characterize pKa for arbitrary chemical structures.

4.2 Use of New Experimental Data to Expand QSPR Model Training Sets:

This new pilot dataset showed good agreement with the curated version of PHYSPROP used 

in this analysis. PHYSPROP data were the basis for the training sets of some of the QSPR 

models picked for this study; PHYSPROP was used to train EPISUITE models, while the 

curated PYHYSPROP database was used to train NICEATM and OPERA models. In the 

case of log(Kow), experimental measurements that were not contained in the PHYSPROP 

database were mostly within expected ranges of the models. Thus, these new data can be 

merged with the PHYSPROP data and used to recalibrate and refine the QSPR models. 

Although both OPERA and EPI Suite models predicted log(Kow), VP, WS, and HLC, only 

OPERA provided insight into the reliability of a prediction via its AD and confidence level 

metrics for each prediction (which EPI Suite does not provide). After further analysis, 

OPERA and other models may incorporate this pilot study data in order to improve AD 

coverage and reduce the prediction uncertainty for environmentally relevant chemical 

classes.

4.3 Impact of Expanding the Training Sets of the Models:

As the ExpoCast project depends on physicochemical properties (either measured or QSPR-

predicted) to parameterize a number of exposure models6,54,87, 23 of the 200 pilot chemicals 

were found in reported consumer product material safety and data sheets or ingredient 

disclosures that have been collected by the USEPA from publicly available sources4,5,88,89. 

Also, 9 of the 200 pilot chemicals were identified across 32 consumer products in a recent 

suspect screening analysis of 100 consumer products90. Many more of these pilot chemicals 

were found within ~4000 products within a larger database consisting mostly of personal 

care products and products used to clean indoor residential areas. The ability to have 

accurate measurements or predictions of these properties will facilitate better exposure 

predictions in two ways: 1) direct input of these experimental measurements into exposure 

models; and 2) construction of QSAR/QSPR models with a wider AD, as their predicted 

physicochemical values can be used to parameterize exposure models in the absence of 

experimental data.

5. CONCLUSION

Following a rigorous pilot chemical selection process, 200 chemicals now have new 

physicochemical data for up to 5 parameters (log(Kow), VP, WS, HLC, and pKa). Novel 

rapid experimental methods were implemented to 1) collect physicochemical property 

values for data poor chemicals, 2) compare traditional versus novel experimental methods, 

and 3) inform in silico QSPR models that predict these parameters. Applicability domains of 
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the various experimental methods and QSPR models were explored in each of these cases 

and can further be explored on a larger scale for prioritizing chemicals for the next wave of 

data collection. Furthermore, QSPR models that are trained on broader environmental 

chemical spaces, may serve to increase the utility of computational toxicology tools that 

depend on these parameters to help inform environmental health risk-based decision making.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• High-throughput measurements of five physicochemical properties for 200 

compounds were attempted

• New data are now available for optimizing physicochemical property QSPR 

models.

• Data gathered from rapid physicochemical property measurement methods 

will help reduce uncertainty in QSAR models that are relevant for informing 

chemical risk assessment.
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Figure 1. 
Simplified workflow for selecting chemicals for testing. An excess of 20% of the 

compounds were filtered and 200 compounds were submitted for experimental 

measurements of five physicochemical properties: octanol:water partition coefficient 

(log(Kow)), vapor pressure (VP), water solubility (WS), Henry’s law constant (HLC), and 

acid dissociation constant (pKa).
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Figure 2. 
Plot of high-throughput measurements versus PHYSPROP values for A) octanol:water 

partition coefficient (log(Kow)), B) vapor pressure (VP), C) water solubility (WS), and D) 

Henry’s Law constant (HLC). All axes are shown in a log-scale value of the 

physicochemical property. The identity line (black) represents a perfect predictor. All axes 

are shown in a log-scale value of the physicochemical property.
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Figure 3. 
Experimental values of A) octanol:water partition coefficient (log(Kow)), B) vapor pressure 

(VP), C) water solubility (WS), and D) Henry’s Law constant (HLC) compared to the 

predicted values of those same properties from the OPERA models. High-throughput 

measurement values are shown as blue circles while traditionally measured values retrieved 

from PHYSPROP are shown as yellow squares. The identity line (black) represents a perfect 

predictor. All axes are shown in a log-scale value of the physicochemical property.
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Figure 4. 
Odds ratio values for all ToxPrint bits either positively (presence; blue bars) or negatively 

contributing (absence; green bars) to failure of all five physicochemical property 

measurements.
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Table 1.

For the total number of new experimental measurements (Ntotal), coefficient of determination (R2), root mean 

square error (RMSE) and mean absolute error (MAE) values between the number of new experimental 

measurements and previously measured values (Nprevious) for octanol-water partition coefficient (log(Kow)), 

vapor pressure (VP), water solubility (WS), and Henry’s Law Constant (HLC).

Ntotal Nprevious R2 RMSE MAE

log(Kow) 176 32 0.77 7.71E-01 6.21E-01

log(VP) 168 33 0.66 2.10E+00 1.49E+00

log(WS) 129 36 0.55 9.32E-01 8.12E-01

Iog(HLC) 110 23 0.69 2.07E+00 1.82E+00
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