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Abstract

Although modern methods of whole genome DNA methylation analysis have a wide range of

applications, they are not suitable for clinical diagnostics due to their high cost and complexity

and due to the large amount of sample DNA required for the analysis. Therefore, it is crucial to

be able to identify a relatively small number of methylation sites that provide high precision and

sensitivity for the diagnosis of pathological states. We propose an algorithm for constructing

limited subsamples from high-dimensional data to form diagnostic panels. We have developed

a tool that utilizes different methods of selection to find an optimal, minimum necessary combi-

nation of factors using cross-entropy loss metrics (LogLoss) to identify a subset of methylation

sites. We show that the algorithm can work effectively with different genome methylation pat-

terns using ensemble-based machine learning methods. Algorithm efficiency, precision and

robustness were evaluated using five genome-wide DNA methylation datasets (totaling 626

samples), and each dataset was classified into tumor and non-tumor samples. The algorithm

produced an AUC of 0.97 (95% CI: 0.94–0.99, 9 sites) for prostate adenocarcinoma and an

AUC of 1.0 (from 2 to 6 sites) for urothelial bladder carcinoma, two types of kidney carcinoma

and colorectal carcinoma. For prostate adenocarcinoma we showed that identified differential

variability methylation patterns distinguish cluster of samples with higher recurrence rate (haz-

ard ratio for recurrence = 0.48, 95% CI: 0.05–0.92; log-rank test, p-value < 0.03). We also iden-

tified several clusters of correlated interchangeable methylation sites that can be used for the

elaboration of biological interpretation of the resulting models and for further selection of the

sites most suitable for designing diagnostic panels. LogLoss-BERAF is implemented as a

standalone python code and open-source code is freely available from https://github.com/

bioinformatics-IBCH/logloss-beraf along with the models described in this article.
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Introduction

Prostate cancer (PC) is one of the most frequently diagnosed oncological diseases in males

worldwide [1]. Like most other cancers, the early stages of PC are characterized by an asymp-

tomatic course, which substantially impedes its early diagnosis [2]. Advances in the past decade

of research, particularly in genetic studies, have provided a deeper understanding of the molecu-

lar mechanisms underlying PC pathogenesis, and these advances can serve as the basis for the

development of effective molecular genetic methods for early diagnosis of this disease [3].

The latest experimental data have clarified the role of genetic and epigenetic factors in PC

pathogenesis [4]. Among these factors, epigenetic alterations, particularly aberrant DNA

methylation of CpG dinucleotides in genes, are of special interest. These alterations are often

functionally related to the expression regulation of tumor suppressors and oncogenes at early

stages of both prostate cancer and other types of oncological diseases [5,6].

Despite the advantages of this approach, the application of such epigenetic markers in diag-

nostic practice tends to have certain limitations, mostly at the technical level. Among the most

widely used are whole-genome DNA methylation analyses based on either high-throughput

sequencing or DNA hybridization arrays. For example, the Infinium HumanMethylation450

BeadChip array (HM450) can be used to estimate methylation levels for 98,9% of all character-

ized genes (according to the UCSC RefGenes database) [7]. However, such methods are not

always suitable for routine laboratory diagnostics due to their high cost and complexity com-

pared to PCR-based methods and due to the large amount of sample DNA required for the

analysis. Quantitative methylation-specific PCR techniques, such as methylation-sensitive

high-resolution melting (MS-HRM), which requires only 10 ng of DNA, are more convenient

for clinical pathology analysis, and their development may allow clinicians to switch to less

invasive diagnostic methods in the future [8]. However, despite their relative technological

simplicity, these methods are not designed to analyze large numbers of markers simulta-

neously. Thus, the number of candidate CpG sites often must be restricted, which results in

decreased sensitivity and specificity of the test.

High molecular heterogeneity of tumors compared to non-tumor tissues, which includes

DNA methylation patterns, presents another challenge for clinical diagnostics. Significant DNA

methylation variability in tumors is common in prostate cancer and has been shown to be the

case for many other oncological diseases [9]. The existence of different molecular tumor sub-

types makes it difficult, and sometimes even impossible, to select informative and reproducible

diagnostic signatures, and this is the reason why the results of conventional classification meth-

ods for marker selection from limited datasets are often irreproducible with independent data

[10]. The simplest method of forming a marker panel is the selection of top N differentially

methylated sites. The major problem of this approach is the possibility of redundant markers

being included in the model due to the fact that the selection of each next marker is indepen-

dent of the markers already present in the model. Moreover, this method does not allow to

identify markers that are specific only for a small cluster of samples belonging to a certain het-

erogeneity subgroup because such markers have insufficient level of differential methylation.

Many experimental studies suggest that methylation site selection methods, including both the

estimation of the average difference in methylation levels and calculation of the differential

methylation variability of different sites, may prove to be more reliable [11]. Thus, there is a

need for an approach that would take into account the high variability of the source dataset of

analyzed candidate markers and produce a limited number of final markers.

Currently used feature selection methods can be divided into three main categories [12]:

embed, wrapper, and filtering methods. Embed methods are characterized by joint optimiza-

tion of the classifier, model construction and feature subset selection. The main approach here
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is regularization, which is implemented in well-known and widely used algorithms such as

LASSO [13]. Wrapper methods include initial training on different factor subsets, and the

final model is defined by optimization of a previously selected metric. These methods use for-

ward selection (the algorithm starts from an empty set, and new factors are iteratively added to

it) and backwards selection (the algorithm iteratively removes “odd” factors from the set) [12].

This method reconstructs interactions between factors more effectively but at the same time

risks overfitting when a dataset contains few samples and many factors. Finally, filtering meth-

ods are based on statistical tests and usually process factors separately to calculate their correla-

tion with the goal variable. These methods tend to be faster than others, but they do not

consider interactions between factors.

Many studies [14–22] have focused on feature selection analyses for gene expression and

mutational data, but there are few studies describing similar approaches to methylation data.

Alkuhlani et al. suggested using a combination of feature selection through Fisher’s test and t-

tests, a genetic algorithm with SVM-RFE as an optimizable function, and an SVM classifier

[23]. Ma Z et al. used a variational Bayes beta mixture model as a method for selection and

optimization of prognostic markers [24]. However, neither of these models supports initial

restriction of the factor subset size, which makes the resulting sets hard to translate into rou-

tine laboratory practice.

The aim of this study was to develop a framework for selection of a limited number of diag-

nostically informative DNA methylation sites and to estimate its potential diagnostic effi-

ciency. We evaluated the method using publicly available whole-genome DNA methylation

data for prostate cancer, as one of the highly heterogeneous cancers, and for several other

oncological diseases.

Materials and methods

Datasets

DNA methylation data used in this study were acquired using lllumina Infinium Human-

Methylation 450k BeadChip technology [25]. The development of the model and the estima-

tion of its parameters were performed with the use of DNA methylation data from the TCGA

PRAD project. We used DNA methylation data from tumor and corresponding non-tumor

(morphologically unchanged) prostate tissue samples. We applied the framework to other

types of oncological diseases to demonstrate its efficiency. Since one of the promising current

trends is non-invasive PC diagnostics based on DNA methylation markers obtained from

urine samples [26,27], we also analyzed methylation data for urothelial bladder carcinoma

(BLCA), kidney renal clear cell carcinoma (KIRC), and kidney renal papillary cell carcinoma

(KIRP). As PC is often co-localized with colon adenocarcinoma, we also applied the frame-

work to TCGA COAD data. The samples used for the framework development and validation

are listed in Table 1.

Prostate adenocarcinoma. FRCC PCM dataset: our own dataset for 48 samples

(GSE74013) is available at Gene Expression Omnibus (GEO; www.ncbi.nlm.nig.gov/geo/);

TCGA PRAD dataset: data for 331 samples obtained from The Cancer Genome Atlas (https://

tcga-data.nci.nih.gov/tcga/, TCGA PRAD). The samples were selected according to age and

clinical criteria (a detailed description is provided in S1 Table); PRAD datasets downloaded

from Gene Expression Omnibus: GSE55479 (143 samples), GSE38240 (12 samples) and

GSE73549 (92 samples).

Urothelial bladder carcinoma. TCGA BLCA dataset: 351 samples.

Kidney cancer. Renal clear cell carcinoma–TCGA KIRC dataset: 420 samples; Kidney

renal papillary cell carcinoma–TCGA-KIRP dataset: 419 samples.
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Colon adenocarcinoma. FRCC PCM dataset: our own data for 34 samples (GSE42752);

TCGA COAD dataset: 370 samples.

White blood cells. For additional validation of the model, we used DNA methylation data

from 200 leukocyte blood fraction samples obtained from individuals of different ages

(GSE87571).

Preprocessing

Preprocessing of raw IDAT files was performed with the RnBeads package [28]. Systematic

batch effect correction was done using the ComBat algorithm from the sva package [29]. Nor-

malization and background correction were performed with NOOB [30] and BMIQ [31] algo-

rithms, which demonstrated the best results corrected for technical errors when used in

combination [32].

Combined feature selection

The methylation level of each CpG site is represented as a beta-value, β, which is calculated as

follows [25]:

b ¼
M

Mþ Uþ 100
ð1Þ

where M is the methylated intensity and U is the unmethylated intensity of each probe.

Henceforth, we will refer to a vector of beta values β 2 (0, 1)N, where N is the number of

samples, as a feature. Further feature selection is based on the following biological and techni-

cally required rules and limitations:

A selected feature set (henceforth called a signature) can include heterogeneously methyl-

ated CpG sites.

A selected signature must include not more than a predefined number of CpG sites (factors).

Methylation values of CpG sites included in the signature must differ between the analyzed

classes (i.e., pathology vs. non-pathology) by more than a predefined value and may vary

within the experimental level of accuracy.

Table 1. List of tumor (T) and non-tumor (N) samples and datasets used for model training and validation.

Source Training Set Test Set Total

Prostate cancer

FRCC PCM FMBA 8T, 11N 13T, 16N 48

TCGA (PRAD) 117T, 15N 176T, 23N 331

GSE55479 0 143T, 0N 143

GSE38240 0 8T, 4N 12

GSE73549 0 77T, 15N 92

Bladder cancer

TCGA (BLCA) 134T, 9N 201T, 14N 490

Colorectal cancer

TCGA (COAD) 133T, 15N 200T, 22N 370

FRCC PCM FMBA 6T, 9N 8T, 11N 34

Kidney cancer (KIRC)

TCGA (KIRC) 116T, 52N 174T, 78N 420

Kidney cancer (KIRP)

TCGA (KIRP) 101T, 63N 151T, 104N 419

https://doi.org/10.1371/journal.pone.0204371.t001
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The feature selection method must be applicable to unbalanced sets, where the number of

the samples from one class (i.e., pathology) is much greater than that of another or where the

number of factors is much greater than the total number of samples.

The scheme of the model construction algorithm is shown in Fig 1. Let P be the upper

limit for the number of features in the diagnostic panel, C—number of analyzed classes,

Fig 1. Pipeline of the proposed method.

https://doi.org/10.1371/journal.pone.0204371.g001
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Δβ—minimum difference between average methylation levels. The first step consists of the

selection of the factors for which the average methylation between at least one pair of groups

differs by more than the user-defined value Δβ (Eq 2):

9 i; j 2 f1; . . . ;Cg : absðmeanðbn
i Þ � meanðbm

j ÞÞ > Db ð2Þ

where b
k
i represent methylation beta values in a sample subset k belonging to class i.

The next step involves a combination of two feature selection methods. The first one is ran-

domized logistic regression (RLR), also known as the stability method [33], implemented in

the scikit-learn 0.17.1 package [34]. In RLR, the original set is split randomly, and the sites that

have non-zero coefficients after regularization are selected from the resulting subsets. The RLR

method was selected because it allows selection of a limited number of the most significant

sites for classification using L1 regularization and because it can identify highly correlated sites

and include them into the resulting set due to random splitting at each iteration of randomiza-

tion. Additionally, site selection on a subset of samples can potentially account for heterogene-

ity among samples. Nevertheless, because of the stochasticity of the process, not all highly

correlated features may be included in the resulting set, as some of them may be discarded dur-

ing model construction as non-informative compared to those already included in the model.

However, these features can be as valuable as the selected ones; thus, we perform a pairwise

correlational analysis in order to avoid data loss.

In the following steps, we used a random forest (RF) algorithm. RF is a popular and efficient

method for classification problems and is based on ensembles of decision trees and bootstrap

aggregating, which is designed to avoid overfitting [35]. To handle unbalanced data, sample

weights are adjusted inversely proportional to class frequencies.

A trained classifier provides the estimate of the importance factor used for sample classifica-

tion, which can be used for further feature selection.

The feature importance threshold is then varied to construct a random forest for each factor

subset, and 10-fold cross-validation is performed. This approach is a popular machine learning

method that provides an unbiased estimate of model accuracy [36]. Classification efficiency is

estimated based on several metrics: precision, recall and LogLoss, also called cross-entropy loss

or logistic regression loss [37]. The latter represents a classifier accuracy estimate and allows

the prediction of classes themselves (yij) and their probabilities (pij). (Eq 3)

LogLoss ¼ �
1

N
PN

i¼1

PC
j¼1

yij � logpij ð3Þ

The usage of LogLoss metrics is motivated by the fact that we want to impose penalties both

for false predictions and for low confidence in true ones. This approach allows us to identify

less noisy sites.

Next, when model quality values for different feature subsets have been obtained, a local

minimum search for the LogLoss function of the number of factors is performed in the neigh-

borhood of the desired number of sites. The resulting set of factors is selected as a set of mini-

mum size such that its logistic regression loss value differs from that of the local minimum by

not more than one standard error. (Eq 4)

minx2ð1;PÞx : jLogLossðxÞ � minxl2ð1;PÞ
LogLossðxlÞj < 1 s:e: ð4Þ

One of the advantages of LogLoss usage is the ability to detect outliers. For example, if some

samples in the input data are assigned to a wrong class or differ substantially from others, the

resulting model will be strongly penalized for their use, and the loss function value itself will be

relatively high. Class membership predictions and input object class data are incorporated to
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construct a list of potential outliers by marking objects for which the probability of belonging

to a wrong class is above the threshold.

The resulting classification performance was evaluated using AUC metrics.

Results and discussion

The developed framework was applied to the datasets listed in Table 1 with the following

parameters: user-defined minimum variation of the average methylation levels between classes

Δβ� 0.2; 1500 RLR iterations, a random forest of 500 trees for factor importance estimation,

and an intermediate random forest consisting of 1000 trees parameters were obtained through

nested cross-validation.

Model construction for prostate cancer

To construct a diagnostic model for prostate adenocarcinoma, we analyzed 626 samples: the

training set contained 151 samples, and the independent test set contained 475 samples. The

resulting model produced by LogLoss-BERAF included data from 9 methylation sites (Table 2,

S2 Table) that showed high levels of differential methylation between the groups (S1 Fig); the

model demonstrated 0.95 recall, 0.95 precision, a 0.95 F1-score and 0.97 AUC (95% CI: 0.94–

0.99) on the test set.

Algorithm allows to construct high efficiency panels of biomarkers without

a priori knowledge of their diagnostic efficacy

Prostate cancer analysis provides a good opportunity for the optimization of marker selection

methods because epigenetic alterations are highly prevalent and arise early in prostate tumori-

genesis. The most recent studies have identified many DNA methylation alterations as poten-

tial biomarkers for prostate cancer diagnostics. Feature selection was generally carried out

based on a prioritized list of genes showing the most significant differences in methylation lev-

els between tumor and non-tumor sample groups.

GSTP1 is the most well-characterized epigenetic biomarker for PC. DNA methylation of

GSTP1 is present in almost all PC cells but is absent or present in low levels in normal cells.

However, the estimation of GSTP1 methylation levels does not demonstrate high specificity

and recall (0.88 and 0.91 respectively) of GSTP1 as a diagnostic biomarker [38–40]. This issue

could be addressed in part using multigene promoter methylation testing. For the moment,

good clinical utility method of estimating methylation levels has been shown for promoters of

Table 2. Prostate adenocarcinoma classification model sites with their positions and their corresponding gene

name and group.

IlmnID Chr Position Gene name Group

Prostate adenocarcinoma

cg02361803 chr1 2014371 PRKCZ Body

cg11448068 chr2 191045026 C2orf88 TSS1500

cg16100120 chr2 56150475 EFEMP1 TSS200

cg00817367 chr12 52401214 GRASP Body

cg18844382 chr14 23834977 EFS TSS200

cg00402172 chr16 68118754 NFATC3 TSS1500

cg14621217 chr17 80944134 B3GNTL1 Body

cg16849024 chr19 41934210 B3GNT8 5’UTR

cg22059073 chr22 17602570 CECR6 TSS1500

https://doi.org/10.1371/journal.pone.0204371.t002
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GSTP1, APC and RASSF1 genes [41]. This model may be used to predict negative histopatho-

logical results in repeat prostate biopsies.

To assess the diagnostic performance of the developed model, we compared its results to

the precision and recall values calculated for the 3-gene model described by Stewart et al.

(2013) and several other published multigene models. We reproduced the calculations of these

models and applied them to the datasets being analyzed in this study. The 3-gene model based

on combined analysis of average methylation levels for GSTP1, RASSF1 and APC demon-

strated good results when applied to our data: 0.92 AUC (95% CI: 0.87–0.96), 0.91 precision,

0.89 recall, and 0.89 F1-score, which nonetheless represents a lower performance compared to

our model.

Chung et al. demonstrated the diagnostic significance of SPOCK2 and NSE1 gene methyla-

tion with 0.80 recall and 0.95 precision (AUC was not reported) [42]. The proposed logistic

regression model applied to our data had 0.90 precision, 0.87 recall and an 0.88 F1-score with

0.91 AUC (95% CI: 0.86–0.96).

One of the most common approaches is to first calculate differential methylation for indi-

vidual sites and then select statistically significant differences to construct a model. We applied

this method to select 3 methylation sites (cg00054525, cg16794576 and cg24581650) using a lin-

ear mixed model [43] and then used logistic regression to construct a diagnostic model that

had 0.845 recall and 0.917 specificity, with the resulting AUC of 0.92 for the test set. When

trained and tested on our datasets, the model demonstrated 0.93 AUC (95% CI: 0.88–0.95),

0.92 precision, 0.92 recall, and a 0.91 F1-score.

Tumor-associated events at the DNA methylation level can vary greatly in scale in prostate

cancer, and therefore, it is reasonable to consider a signature that uses more than 3 factors;

their selection can be conducted independently without an initial rating of all sites and extrac-

tion of a top subset. For example, Tang et al. [44] considered 8 hypermethylated sites

(cg06363129, cg08843517, cg03576469, cg05385513, cg07220448, cg11417025, cg20883831 and

cg23824801) located in promoter regions. The models constructed using logistic regression

had from 0.91 to 0.94 AUC for individual methylation sites and 0.94 AUC when a combination

of sites was used (recall and precision values were not reported). The 8-site model reproduced

on our datasets demonstrated 0.95 AUC (95% CI: 0.90–0.98), 0.93 recall, 0.92 precision, and a

0.93 F1-score. All obtained values are listed in S3 Table.

Thus, ensemble methods for model construction demonstrate higher efficiency than the

identification of individual sites due to their capability to reveal various connections between

factors and predicted classes, which provides more stable and reproducible results. Addition-

ally, in contrast to supervised approaches to marker selection that impose tight restrictions on

the candidate sites in terms of their methylation levels, variability, and differences between the

groups or gene information, our unsupervised method has demonstrated high classification

performance, both absolute and in comparison, with other prostate cancer diagnostic panels.

This framework has also allowed us to build a small-sized signature and expand the list of

known potential prostate cancer biomarkers.

Highly correlated model sites can be interchanged without a loss of

diagnostic significance

Highly variable data, such as DNA methylation profiles in oncological diseases, are often char-

acterized by the presence of several factor subsets that show equal or close classification effi-

cacy [45,46]. In our model, many highly correlated sites can be dismissed at the construction

step because they do not carry new information compared to those already included in the

model. However, such correlated sites can be as informative as individual sites from the model
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(S4 Table). We aimed to assess how replacing the sites from the resulting model with highly

correlated sites could affect the classification efficacy. Sites were considered highly correlated if

their Pearson correlation coefficient was greater than 0.85.

We performed 10,000 permutations where each site from the model could be replaced by

one of the correlated sites. The resulting classification efficacy had an AUC value of 0.93 (95%

CI: 0.90–0.97). Thus, certain model sites could be substituted with ones more convenient for

practical use, i.e., considering region mappability or applicability for primer design.

Method for model construction showed relatively high stability

In addition to accuracy, another important characteristic of an algorithm is its stability, which

is crucial for tasks involving few samples and high dimensionality. Algorithm stability is

defined as the variability of factor selection resulting from minor changes in the training set.

For k sub-samplings from the initial set, the final stability is estimated as the average agreement

over all subsampling pairs. Let fi be the i-th subsampling, then the agreement can be calculated

as Kuncheva index [47]

S ¼
2
Pk

i¼1

Pk
j¼iþ1

rN� s2
sðN� sÞ

kðk � 1Þ
ð5Þ

where N is the initial number of factors, r = |fi
T
fj| is the number of identical elements in the

subsamplings, s = |fi| = |fj|.
Due to the identified characteristics of correlated sites, factors combined with correlated

ones were used as fi. Our experiment included 100 bootstrapping iterations with 90% of sam-

ples randomly selected at each iteration and resulted in a relatively high Kuncheva index of

0.72, while LASSO alone obtained score of 0.55.

The developed framework allows methylation sites that are highly

heterogeneous between groups to be included in the resulting model

The key point of the algorithm is its capability of efficient sample classification regarding the

differential variability of the sites used in the model. In contrast, with supervised approaches

based on strict selection of candidate markers by differential methylation level, our method

allows for certain intra-group methylation level variability of candidate markers by differential

methylation level, our method allows for certain intra-group methylation level variability of

individual sites. For example, the methylation pattern of resulting model CpG sites in cancer

samples allows them to be split into at least three main clusters (Fig 2A) using a k-means algo-

rithm (skilearn v. 0.17.1). Different methylation patterns of samples combined with predictive

values of the sites can be used for biological interpretation of metagenetic manifestation of the

disease heterogeneity. Nonetheless, the clustering results produced by our model do not iden-

tify the same subtypes as those obtained by methylation analysis of the TCGA prostate cancer

dataset and reported in The Cancer Genome Atlas Research Network study [48].

Nevertheless, the survival analysis of disease recurrence for samples from different clusters

demonstrated statistically significant difference between clusters 2 and 3 (hazard ratio for

recurrence = 0.48, 95% CI: 0.05–0.92; log-rank test, p-value < 0.03) (Fig 3), which indicates

additional potential clinical applicability.

The proposed method demonstrates tolerance to input data errors

One of the problems that arise in practical application of a machine learning model is its toler-

ance to noise in the input data, which occurs because of a batch effect, technical errors and
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other errors [49]. To assess our model, we gradually introduced noise Δμi into the methylation

levels of the input data. Δμi values were varied randomly in the range of (−Δμi; +Δμi), the AUC

was calculated for each Δμi, and then, Δμi was increased (Fig 2B). In total, 1000 iterations were

performed to estimate AUC variance at each step. The model demonstrated robustness at

noise levels approximately 0.16 of the methylation β-value, which represents a good perfor-

mance and suggests an opportunity for further development of the model into a sufficiently

fast, inexpensive, robust and widely available method that will be useful for routine clinical

diagnostics [50,51].

This model has also produced high AUC values on sufficiently noisy data (±0.5 β-value).

We assumed that this result was due to the prevalence of tumor samples in the dataset and the

associated high dispersion of methylation values compared to non-tumor samples. To check

this hypothesis, we tested the model for type I errors by applying it to leukocyte blood fraction

methylation data from 200 samples obtained from nominally healthy people. The PCA graph

is shown in Fig 2C. The model classified all samples as non-tumors, which confirms the

hypothesis that due to the high intragroup heterogeneity of tumor samples, the model tends to

classify samples with highly non-uniform methylation levels as tumors. This finding also dem-

onstrates the effective performance of the model considering the considerable discrepancy

between the sizes of the datasets being analyzed.

Biological function of genes containing model methylation sites and

correlated sites

The present study is primarily concerned with methodical aspects of the development of bioin-

formatics approaches to the selection of candidate diagnostically informative DNA methyla-

tion sites. Since many highly correlated sites are excluded from the model during selection and

Fig 2. A. Clustering of tumor samples by shared methylation patterns of the sites included in the prostate cancer

classification model. The X axis shows indices of model sites (0: cg02361803; 1: cg16100120; 2: cg11448068; 3:

cg00817367; 4: cg18844382; 5: cg00402172; 6: cg14621217; 7: cg16849024; and 8: cg22059073). B. AUC changes

depending on the noise level, delta, introduced into methylation levels of the sites included in the prostate cancer

classification model. C. PCA graph for the sites of the PRAD diagnostic model with methylation groups assigned

according to the data for leukocyte blood fraction from nominally healthy people.

https://doi.org/10.1371/journal.pone.0204371.g002
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since the resulting number of model sites is limited, the remaining model sites may not always

represent the actual biological mechanisms associated with the disease. Despite this fact, we

analyzed the possible functional role of the alterations in the genes included in the final model

(Table 2). For most of these genes, the available information suggests that they may play a role

in the pathogenesis of oncological diseases.

Fig 3. Kaplan-Meier curves for samples from second and third clusters. Clusters introduced in Fig 2A.

https://doi.org/10.1371/journal.pone.0204371.g003
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For example, PRKCZ codes for the isoform of protein kinase C involved in a variety of cel-

lular processes, such as proliferation, differentiation and secretion. This gene is best known as

being responsible for insulin-stimulated glucose transport. Cornford et al. were the first to

show that the protein kinase C gene (PKC)-zeta (PRKCZ) mediates the malignant phenotype

of human prostate cancer [52]. Recently, a splice variant of PRKCZ has also been shown to be

a novel biomarker of human prostate cancer [53]. PRKCZ has also been characterized as one

of four genes with higher autoantibody titers in PC and is considered a novel potential serolog-

ical prostate cancer biomarker [54]. The role of PRKCZ methylation in the pathogenesis of

type 2 diabetes [55] and its association with sunlight exposure in North Americans [56] are

being discussed, but to date, there is no evidence of the contribution of PRKCZ methylation to

prostate cancer pathogenesis.

EFEMP1 was previously characterized as a biomarker for prostate cancer, for which epige-

netic alteration occurs early in prostate carcinogenesis and, in association with histone deace-

tylation, progressively leads to gene down-regulation, fostering cell proliferation, invasion and

evasion of apoptosis [57].

Decreased expression of the Fyn-associated substrate (EFS) gene involved in cell attachment

is often associated with systemic recurrence of prostate cancer [58]. The association between

EFS methylation and a considerable decrease in expression level in prostate cancer has also

been observed [59]. The authors suppose that high EFS expression is important to suppress the

malignant behavior of prostate cancer cells.

Many large-scale studies have reported an association between PC and methylation alter-

ations in the GRASP gene coding for a general receptor for phosphoinositide-1-associated scaf-

fold protein [60]. Further research concerning histologically benign prostate biopsy cores

from cancer patients suggests that this marker is more likely to be methylated in histologically

detectable cancer and may represent later events [61].

The NFATC3 (nuclear factor of activated T-cells, cytoplasmic 3) gene plays a role in the reg-

ulation of gene expression in T cells and immature thymocytes. This gene is a member of the

Wnt pathway and is associated with an increased risk of disease progression independent of

clinical parameters among 7 other loci in an epithelial ovarian cancer model. Increased meth-

ylation at NFATC3 is correlated with a poor response [62].

Although there is no solid evidence of association between C2orf88 methylation and pros-

tate cancer, a study of colorectal cancer via integrative epigenomics and genomic data reported

C2orf88 to be among the 10 most significant differentially downregulated genes [63].

Therefore, we conclude that CpG sites included in the model lie within genes that have already

been shown to contribute to the pathogenesis of PC or other types of oncological diseases.

Framework application for other cancers

The suggested framework for the selection of diagnostically informative methylation sites can

also be used for oncological diseases other than prostate cancer. To estimate LogLoss-BERAF

performance for other types of cancer, we applied it to available DNA methylation data for

kidney, bladder and colorectal cancer. The choice of urological cancer was determined by the

fact that these cancers are often characterized by the presence of tumor cells in urine. As analy-

sis of urine samples is one of the promising non-invasive methods for PC diagnostics, such a

test would allow an additional specificity test of the prostate cancer model applied for the dif-

ferential diagnosis of other urological cancers. The choice of colorectal cancer data is in turn

explained by its co-localization with PC. Although patients with synchronous carcinoma of

the bladder and colon or rectum are rare, there is a possibility of sample contamination with

colon cellular material, including malignantly transformed cells, during a transrectal biopsy.
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LogLoss-BERAF was applied to the available datasets (Table 1) for the listed cancers to

select model and correlated methylation sites, and their diagnostic efficacy was estimated

(Tables 3 and 4, S5–S8 Tables).

Because of the small number of non-tumor samples in the urothelial bladder carcinoma

dataset, 167 non-tumor samples from the kidney cancer dataset were added to the dataset

before splitting into train and test subsets. The usage of methylation data from non-malignant

tissues of other organs of the urogenital system is acceptable because tumors of this type repre-

sent a transitional epithelium carcinoma that affects the renal pelvis, renal ducts, bladder and

urethra.

Classification efficacy of the resulting models was very high (Fig 4), and classification qual-

ity metrics, such as precision, recall, F1-score and the AUC for the test sets of the listed can-

cers, were higher than those for the prostate cancer model (Table 3). It should be noted that

the resulting models included fewer sites (Table 4) and fewer correlated sites (S5–S8 Tables),

indicating lower heterogeneity in these cancers compared to PC. The resulting models are spe-

cific and do not intersect with each other at the level of model and correlated sites, with the

exception of cg22274117 in the ATXN1 gene (Kidney Carcinoma model). The analysis of these

Table 3. Model classification efficacy metrics: precision, recall, F1-score and AUC for test sets and the number of sites per model obtained using LogLoss-BERAF

for different types of oncological diseases.

Cancer type Sites num. Precision Recall F1 score AUC

Prostate Cancer 9 0.95 0.95 0.95 0.97

Colorectal Cancer 3 1.0 1.0 1.0 1.0

Bladder Cancer 6 0.98 0.98 0.98 1.0

Kidney Cancer (KIRP) 5 0.98 0.98 0.98 1.0

Kidney Cancer (KIRC) 2 0.99 0.99 0.99 1.0

https://doi.org/10.1371/journal.pone.0204371.t003

Table 4. Co-localized and diagnostically similar cancers: classification of model sites with their positions and corresponding gene names and groups.

IlmnID Chr Position Gene name Group

Colon Adenocarcinoma

cg01588438 chr8 67344553 ADHFE1 TSS200

cg04456219 chr7 17274337 - -

cg09287864 chr7 17274056 - -

Urothelial Bladder Carcinoma

cg06830167 chr1 7600135 CAMTA1 Body

cg10671066 chr1 160492861 SLAMF6 Body

cg14357535 chr2 25389040 POMC 5’UTR

cg03487935 chr7 51925284 - -

cg17202717 chr7 1708823 - -

cg01090433 chr16 82673506 CDH13 Body

Kidney Renal Clear Cell Carcinoma

cg22274117 chr6 16713613 ATXN1 5’UTR

cg00347746 chr19 48970082 - -

Kidney Renal Papillary Cell Carcinoma

cg04951371 chr2 3317860 TSSC1 Body

cg22274117 chr6 16713613 ATXN1 5’UTR

cg13458609 chr9 130608923 ENG Body

cg02921122 chr10 126712074 CTBP2 Body

cg02766539 chr17 57861641 TMEM49 Body

https://doi.org/10.1371/journal.pone.0204371.t004
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sites showed that they were previously reported as potential diagnostic biomarkers. The hyper-

methylation of the ADHFE1 promoter in colorectal cancer has recently been demonstrated

[64,65]. CDH13 promoter methylation has been identified as a biomarker for bladder cancer

[66]. Recently, ENG promoter hypermethylation was reported in several human cancers [67–

69]. These results suggest that the LogLoss-BERAF framework could be effectively applied to

different classification tasks.

Conclusion

We have designed a framework for selection of a limited number of informative DNA methyl-

ation sites based on a combination of several feature selection methods and an ensemble-based

classifier. We have applied the algorithm to the task of prostate cancer diagnostics and con-

structed a model with high classification efficacy metrics: 0.95 recall, 0.95 precision and 0.97

AUC. The method has also been demonstrated for methylation data from other types of can-

cers that are either co-localized with PC (colorectal cancer) or can be diagnosed using similar

biological urine samples (bladder and kidney cancers), yielding model AUC values of 1.0.

Based on the panel methylation pattern variability, a cluster of cancer samples was shown to

have statistically significant higher recurrence rate. The resulting model has demonstrated

robustness against input data errors, which can potentially allow the utilization of methylation

level detection using other experimental strategies with lower resolution. The biological signif-

icance of the identified sites has been confirmed by previous studies.

Fig 4. ROC curves for prostate adenocarcinoma (red), colon adenocarcinoma (yellow), urothelial bladder

carcinoma (green), kidney renal papillary cell carcinoma (purple) and kidney renal clear cell carcinoma (blue)

models. The lower-right inset shows a close-up of the upper-left parts of the AUC curves.

https://doi.org/10.1371/journal.pone.0204371.g004
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