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Abstract

While powerful techniques exist to accurately account for anharmonicity in vibrational molecular 

spectroscopy, they are computationally very expensive and cannot be routinely employed for large 

species and/or at non-zero vibrational temperatures. Motivated by the study of Polycyclic 

Aromatic Hydrocarbon (PAH) emission in space, we developed a new code, which takes into 

account all modes and can describe all IR transitions including bands becoming active due to 

resonances as well as overtones, combination and difference bands. In this article, we describe the 

methodology that was implemented and discuss how the main difficulties were overcome, so as to 

keep the problem tractable. Benchmarking with high-level calculations was performed on a small 

molecule. We carried out specific convergence tests on two prototypical PAHs, pyrene (C16H10) 

and coronene (C24H12), aiming at optimising tunable parameters to achieve both acceptable 

accuracy and computational costs for this class of molecules. We then report the results obtained at 

0 K for pyrene and coronene, comparing the calculated spectra with available experimental data. 

The theoretical band positions were found to be significantly improved compared to harmonic 

Density Functional Theory (DFT) calculations. The band intensities are in reasonable agreement 

with experiments, the main limitation being the accuracy of the underlying calculations of the 

quartic force field. This is a first step towards calculating moderately high-temperature spectra of 

PAHs and other similarly rigid molecules using Monte Carlo sampling.

I Introduction

Polycyclic Aromatic Hydrocarbons (PAHs) are a family of organic compounds composed of 

aromatic rings containing carbon atoms, and whose peripheral bonds are saturated by 
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hydrogen atoms. PAHs (or closely related species) are thought to be the carriers of the so-

called Aromatic Infrared Bands (AIBs) at ~3.3, 6.7, 7.7, 8.6, 11.3 μm.1,2 These features are 

among the strongest emission features observed in the interstellar medium.3 Therefore, the 

infrared (IR) spectroscopy of PAHs is of paramount importance in astrophysics. PAHs 

absorb starlight in the visible and ultraviolet domain via electronic transitions and re-emit 

most of this energy in the mid-IR in a vibrational de-excitation cascade. In such model PAHs 

should emit most of the flux in the AIBs from highly vibrationally excited states 

corresponding to a thermal temperature of the order of ~1000 K.4 Each AIB results from the 

superposition of the emission of molecules at different temperatures, each of which being 

the superposition of a large number of individual vibrational transitions from a statistical 

distribution of excited states. Due to anharmonicity, each of these states is expected to have a 

shifted position with respect to the corresponding 1-0 fundamental transition. Temperature-

dependent effects of anharmonicity in modelling astronomical PAH spectra received only 

relatively sparse attention.5,6 These works followed measurements on a few neutral gas-

phase PAHs, which reported the overall band shift and broadening of the most intense 

fundamental bands with temperature up to ~900 K.7 Similar data became also available 

from theory.8–10 In most AIB modelling studies though, theoretical calculations are 

performed at the harmonic approximation level. The harmonic frequencies and first 

derivatives of the dipole moment are easily obtained using commonly available quantum 

chemistry computer codes that implement many different levels of theory for the electronic 

states of molecules such as the Hartree-Fock, Density Functional Theory (DFT) or Coupled-

Cluster levels. Databases of such harmonic computed spectra are available11,12 and include 

PAHs with up to a few hundreds C atoms. Anharmonicity in the Hamiltonian is then 

typically taken into account by some overall frequency scaling factor chosen in order to 

obtain a better agreement with laboratory data measured in rare-gas matrices at low 

temperature. Note that laboratory data are themselves affected by matrix effects which can 

be modeled as anharmonicity effects.13 Scaling procedures can be refined in order to take 

into account the nature of the vibrational modes.14,15 In any case, this completely neglects 

the anharmonic shifts of hot bands with respect to the fundamental, just correcting 

(empirically) for the effect of anharmonicity on the absolute position of the 1-0 transitions. 

In order to perform simulations that can be compared with the AIB spectrum, temperature 

effects are then only simply included by adding some ad-hoc band redshift and broadening, 

see e. g. Ref. 16 and the discussion of synthetic PAH spectra by Boersma et al.16 and 

Pauzat.17

In order to progress in the analysis of the astrophysical spectra, one has clearly to go beyond 

this simplified treatment. Efforts should be dedicated to describe connected states at non-

zero temperatures. For this, the approximation of the electric dipole moment by its Taylor 

expansion truncated to the linear terms is not sufficient. Indeed this approximation only 

describes vibrational transitions connecting harmonic states which differ by only one 

quantum in only one (IR-active) vibrational mode. Any other vibrational transitions, 

including e.g. overtones, combination and difference bands, are thus completely neglected at 

this level of treatment. The reason for using such seemingly crude approximations is that 

performing actual anharmonic calculations for anything but the smallest PAHs quickly 

becomes prohibitively expensive from a computational point of view. Complete variational 
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calculations of rovibrational levels with ab-initio potential energy and electric dipole 

surfaces are only feasible for very small molecules with up to four or five atoms.18–20 

However, the field is making constant progress and variational vibrational calculations can 

now be achieved for systems with up 11 atoms.21 Vibrational Self Consistent Field (VSCF) 

methods, based on the ansatz that the vibrational wave-function can be represented by a 

product of functions depending on a single coordinate,22,23 can treat systems as large as a 

couple of hundreds of atoms, including PAHs.24 However, they neglect all correlation 

between different degrees of freedom and are generally not accurate enough for our 

purposes. Techniques like the Vibrational Mean Field Configuration Interaction 

(VMFCI)25,26 improve on this by contracting several modes into one to describe correlated 

wave-functions, and can scale up to molecules as big as naphthalene (C10H8), provided that 

the modes involved in important resonances form disjoint subsets of limited sizes. For much 

larger molecules, perturbation theory up to second order (VPT2) or beyond,27 is the method 

of choice to treat inter-modes correlation starting from VSCF solutions, or both intra-mode 

anharmonicity and inter-modes correlation starting from the harmonic approximation. 

However, this treatment breaks down in the case of near degeneracy, be it accidental or due 

to symmetry. While analytical VPT2 equations have existed for long, symmetric and 

spherical tops deserve special care due to symmetry degeneracies of modes28, furthermore, 

accidental near-degeneracies of energy levels have to be detected and treated in a specific 

manner. Since in PAHs vibrational modes of the same type cluster at given frequencies, 

near-degeneracies are unavoidable for these molecules, in particular in the spectral region of 

C-H stretches and C-H bends. Resonances must therefore be taken out of the perturbation 

treatment, and explicitly accounted for, without omitting any interacting state nor resonant 

term of the vibrational potential, using for example the generalized second-order vibrational 

perturbation theory (GVPT2).28–31

This GVPT2 approach requires to first define some appropriate thresholds as a function of 

the desired target accuracy to determine which terms are to be considered “resonances” and 

which can safely be treated using perturbation theory. Then, one defines polyads of 

interacting harmonic vibrational states connected by resonant terms and solves the 

corresponding variational problems, while perturbative corrections for non-resonant terms 

can be added either before or after. In principle, for vanishingly small thresholds all terms 

are considered resonances and one goes back to the limit of a full variational calculation in a 

basis of harmonic vibrational states. In general, in addition to thresholds for discriminating 

between resonant and non-resonant terms, one also needs to implement some truncation 

scheme to keep the size of the polyads and of the associated variational problems small 

enough to be tractable without degrading the accuracy of the results. This kind of calculation 

has been implemented and successfully applied to compute the vibrational spectrum of 

PAHs involving transitions from the ground vibrational state and possibly some of the lowest 

lying ones in energy.32–34 Solving for all vibrational states up to higher energies quickly 

becomes prohibitive, since the number of states involved explodes, behaving as a multi-

factorial with energy. However, if one is interested in reproducing the overall envelope of the 

spectral profile resulting from the superposition of hot bands as a function of vibrational 

excitation (or temperature), a possible approach is to give up a complete solution in favor of 

a Monte Carlo sampling of vibrational states.8,10,35–37 We developed and implemented a 
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code suitable for this approach,38 and in this paper we test its behaviour benchmarking its 

calculations of the 0 K spectrum against both experimental measurements for some small-

medium PAHs and very high-level VM-FCI calculations for a smaller species, namely 

ethylene oxyde. In Section II we describe the Van Vleck perturbation approach and we give 

computational details. Then in Section III we proceed to compare the outcomes of our 

calculations with reference calculations, which we use to define a strategy for choosing 

tuning parameters that provide both acceptable accuracies and computational costs. We also 

compare with experimental results, assessing the accuracy that can be expected from these 

calculations for fundamental bands, bands becoming weakly active due to resonances, and 

also overtone/combination/difference bands stemming from transitions mediated by the 

second order terms in the expansion of the electric dipole moment. In Section IV we discuss 

our results, assessing the applicability of the method and its estimated computational costs 

for future calculations of spectra of PAHs and similarly rigid molecules considering all 

significantly populated levels at moderately high T using Monte Carlo sampling.

II Computational Formalism

A Van Vleck perturbation theory

In this section, we give a brief review of the Van Vleck approach to perturbation theory 

applied to molecular vibrations.39–42 The anharmonic vibrational Hamiltonian H is written 

as

H = H 0 + λH 1 + λ2H 2 , (1)

where λ is the perturbation parameter. The zero-order Hamiltonian is given as the harmonic 

normal-mode Hamiltonian

H 0 = Hharm = ∑
i

ħωi
2 pi

2 + qi
2 , (2)

and the first- and second-order Hamiltonian are given by the cubic and quartic expansion of 

the vibrational potential

H 1 = 1
3! ∑i jk

∂3V
∂qi∂q j ∂qk 0

qiq jqk, (3)

H 2 = 1
4! ∑i jkl

∂4V
∂qi∂q j ∂qk ∂ql 0

qiq jqkql . (4)
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Higher-order terms in the potential are neglected. The Van Vleck procedure relies on an 

infinitesimal contact transformation which will lead to an effective Hamiltonian. The contact 

transformation is defined by T = exp (S) where the operator S is anti-hermitian S† = −S. This 

operator can be expanded up to the second-order in the perturbation parameter

S = λS 1 + λ2S 2 + ⋯ (5)

The transformed Hamiltonian H = T†HT up to the second-order in the pertubation parameter 

is then written as

H = H 0 + λH 1 + λ2H 2 + ⋯, (6)

where

H 0 = H 0 , (7)

H 1 = H 1 − S 1 , H 0 , (8)

H 2 = H 2 − S 2 , H 0 − S 1 , H 1 + 1
2 S 1 , S 1 , H 0 . (9)

Each term of the contact transformation S(i) is chosen such that it cancels out all non-

diagonal terms of H i . This is in general possible as long as no resonance occurs. For 

example, in the case of the anharmonic vibrational Hamiltonian of Eqs. (1), (2), (3) and (4), 

one can find in Ref. 43 the following expression for S(1)

S 1 = ∑
i jk

iωk
3! Δi jk

∂3V
∂qi∂q j ∂qk 0

2ωiω jpip jpk + ωi
2 + ω j

2 − ωk
2 qiq jqk + qiqkq j + pkqiq j ,

(10)

where Δijk is defined by

Δi jk = ωi − ω j − ωk ωi + ω j − ωk × ωi − ω j + ωk ωi + ω j + ωk (11)
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This expression can then be used in Eq. (9) and S(2) can be determined. In fact, at this point, 

it is not necessary to obtain an explicit expression for S(2). One just have to assume that the 

second order transformation exists and is not divergent, which is the case if no resonances 

occur. Then, the eigenvalues of the effective Hamiltonian are given by the usual Dunham 

expansion

En = χ0 + ∑
i

ωi ni + 1/2 + ∑
i ⩽ j

χi j ni + 1/2 n j + 1/2 (12)

where the expression for the anharmonic coefficients χ0, and χij can be found easily in the 

literature.27,30,43

In the case of exact or near resonances, the expression for the first order contact 

transformation Eq. (10) cannot be used as it is. Indeed, Fermi resonances defined by the 

occurrences of triplets i,j and k such that ±ωi ± ωj ± ωk ≃ 0 would result in a diverging first-

order contact transformation. This implies that the contact transformation should be 

determined to infinite order. In the case of quasi-degenerate perturbation theory these 

resonant terms are simply excluded from the definition of the contact transformation. As a 

result the first-order transformed Hamiltonian H 1  is not diagonal. Similarly the occurrence 

of Darling-Dennison44 (DD) resonances arises by diverging terms in the second-order 

contact transformation S(2) and occurring when ±ωi ± ωj ± ωk ± ωl ≃ 0. These terms should 

also be excluded, therefore preventing for a full cancellation of the non-diagonal terms in the 

second-order transformed Hamiltonian H 2 . Note that DD resonances can occur even if 

there are no corresponding quartic derivatives since quartic coupling terms appear due to the 

application of the first order contact transformation. After using the contact transformation, 

we obtain an effective and non-diagonal Hamiltonian H whose eigenvalues are identical to 

the Hamiltonian H at the second order of the perturbation. This effective Hamiltonian can be 

diagonalized using a finite variational basis.

After being determined, the infinitesimal contact transformation can be applied to any 

operators such as the dipole operator μ resulting in a transformed operator accounting for 

both mechanical and electric anharmonicity up to the second order in the perturbation 

parameter. Similarly as for the Hamiltonian, the dipole operator is expanded as

μ = μ 0 + λμ 1 + λ2 μ 2 + ⋯, (13)

where μ(0) is the permanent dipole, and where μ(1) and μ(2) are respectively the linear and 

quadratic terms of the expansion of the dipole as a function of the normal mode coordinates 

about the equilibrium position, they are written as

μ 1 = ∑
i

μi
1 qi = ∑

i

∂ μ
∂qi 0

qi, (14)
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μ 2 = 1
2 ∑

i j
μi j

2 qiq j = 1
2 ∑

i j

∂2 μ
∂qi∂q j 0

qiq j . (15)

Applying the perturbative transformation, the expression for the transformed dipole operator 

up to the second-order in the perturbation parameter is given by

μ = μ 0 + λ μ 1 + λ2 μ 2 − S 1 , μ 1 + ⋯, (16)

where one should remember that resonant terms are omitted from the definition of S(1), as 

explained before. The intensities of the transitions are then calculated by computing the 

matrix elements of the dipole operator between two eigenstates of the effective Hamiltonian 

H . The intensity of a vibrational transition, neglecting rotational degrees of freedom, is then 

written as

Iab = 2π
3ħc ϵ0

ωab |ψa | μ |ψb |2 , (17)

where ωab = ωb – ωa are the transitions between eigen-frequencies and where |ψa〉 are the 

eigenstates of H . Iab is comparable to the experimental band intensity integrated over its 

rotational substructure.

B Polyad construction and variational problem

In this section we give the computational details of our implementation of the Van Vleck 

perturbation theory described in Sec. II A. The computational protocol described in this 

section was implemented in our code: AnharmoniCaOs (the Cagliari-Orsay model for 

anharmonic molecular spectra in 2nd order perturbation theory).

The first step is to identify resonances. For this purpose, starting from an initial harmonic 

state n = (n1, … , nN), we first identify all harmonic states n′ ≠ n directly connected to n 
through the cubic couplings. For these states, the ratio of the coupling term 

Vnn′
1 = n|H 1 |n′  and the harmonic energy difference between these states is used to define 

a resonance. A Fermi resonance occurs then if

Vnn′
1

En
0 − En′

0 ⩾ r3 (18)

where r3 is a small threshold parameter. A list of Fermi resonances is thus built. From this 

list the first-order contact transformation S(1) can be defined by excluding all terms 

corresponding to a resonance as in Eq. (18). Applying the first-order contact transformation 

S(1) onto the Hamiltonian H we obtain the second-order part of the transformed Hamiltonian
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H 2 − S 1 , H 1 + 1
2 S 1 , S 1 , H 0 . (19)

This operator is then used to identify harmonic states n′ ≠ n directly connected to the initial 

state n through the quartic couplings which include the effect of the first-order 

transformation. Darling-Dennison (DD) resonances are then defined by

Vnn″
2

En
0 − En″

0 ⩾ r4 (20)

where Vnn″
2  is non-diagonal matrix element of operator (19). The list of DD resonances 

having been built, the second-order contact transformation can be defined implicitly. This 

transformation is used to define the transformed Hamiltonian H (Eq. 6).

After this preliminary work, polyads are iteratively constructed as resumed in Fig. 1. A list 

of starting states is built by including the initial harmonic state n and the final harmonic 

states n reached by a dipolar transition through the transformed dipole operator μ Each 

starting state will constitute the start of a polyad. Running trough the resonances the list of 

states in each polyad is increased iteratively. When two polyads share a common state, they 

are merged. Symmetry can be taken advantage of by considering only states of a given 

symmetry type at a time. This way, one could think of separating explicitly the problem into 

a number of subproblems, However, in practice, given the way in which polyads are 

recursively built by following resonances, resonant terms can only be non-zero between 

harmonic states of the same symmetry. Hence symmetry separation is automatically 

enforced and there would not be any significant performance gain by implementing the 

explicit separation, which would make the code more complicated. It is only necessary to 

include a cutoff parameter to remove the numerical noise, introduced by cubic and quartic, 

non-symmetry-adapted Hamiltonian terms, in case the separate code used to obtain the 

potential does not explicitly use symmetry itself and thus produces very small non-zero 

spurious terms.

This procedure, depending on how resonances combine, can lead to polyads of very large, in 

principle even infinite, size. To keep the problem tractable, a truncation mechanism is 

therefore necessary. To obtain finite size polyads we used a “cost model”. The very initial 

harmonic states, i. e. the initial one and the ones connected to it by permitted transitions, are 

assigned a “budget” initialized to 1. Additional states newly added to a polyad “inherit” the 

budget of the state they are connected to, minus a “cost” which is inversely proportional to 

the “strength” of the resonance (the ratio between the non-diagonal element and the 

difference of the diagonal elements of the connected harmonic states) divided by a tuning 

parameter h. Therefore, a very strong resonance will add many states to a polyad, whereas a 

weak one will add few, possibly only one. Larger values of h will produce larger polyads, 

reducing truncation errors at the price of an increased computational cost.
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To each distinct polyad corresponds a variational problem, for which an effective 

Hamiltonian is defined. What we want to obtain is an accurate description of the anharmonic 

states containing a non-negligible component of the initial harmonic starting states (the very 

first harmonic state and the ones connected to it by allowed transitions). Depending on how 

strong resonances are, and on chosen tuning parameter values, the eigensolutions we need 

may be a small fraction of the size of a given polyad. If the polyad is relatively small, 

complete solution using a standard direct method (e.g. Divide and Conquer45 or Relatively 

Robust Representations46) is more efficient. If, instead, the polyad is large (e. g. tens of 

thousands of harmonic states or more) and a small fraction of the eigensolutions is needed 

(e. g. less than ~10%), then an iterative method like Jacobi-Davidson,47,48 explicitly tuned 

to select the eigenvalues with the largest component in the space of the initial starting states, 

may become more competitive. After the eigensolutions are found, the line intensities 

between anharmonic states are computed using Eq. (17). The final spectrum is then built 

from individual transitions weighted by the square of the component of the starting state it 

contains. In this way, when the same polyad is obtained more than once from different 

starting states, each transition will eventually converge to its exact value for complete 

coverage of the starting states.

C Electronic structure calculations

The Van-Vleck method described in the previous sections relies on the use of a quartic force 

field corresponding to harmonic frequencies, cubic and quartic derivatives of the potential 

energy surface as well as the first and second derivatives of the dipole moment. These 

parameters are easily obtained from quantum chemical calculations. All electronic structure 

calculations were performed using the Gaussian09 suite of programs.49 Geometry 

optimizations and frequency calculations were performed using density functional theory 

(DFT) with the hybrid functional B97-1,50 and with the TZ2P51 and 6-31G*52,53 basis 

sets. We chose this exchange-correlation functional over some more commonly used ones as 

e.g. B3-LYP54,55 because the former was found to provide more accurate band position and 

intensities in particular for aromatic molecules.32,33,56 As in Ref. 56 we used a (150,770) 

grid for the Kohn-Sham (KS) integration and a (75,194) grid for the Coupled Perturbed 

Kohn-Sham (CPKS) steps.

For each molecule, geometry optimization was first performed, then harmonic frequencies 

and normal modes were computed. Cubic and quartic normal mode derivatives of the 

potential around the equilibrium position were obtained using numerical differentiation of 

the analytical Hessian matrix, using a displacement step of 0.01 Å·amu1/2. The calculation 

of all quartic derivatives requires 36N2 Hessian calculations, where N is the number of 

atoms. For large systems like pyrene or coronene such a calculation could only be performed 

with semi-empirical force-field and not with ab-initio or DFT methods. Note that only the 

semi-diagonal involving at most two different indices are needed for perturbation theory, the 

other terms just contribute to DD resonances. Therefore, we only computed the quartic 

derivatives with two identical indices ∂4V
∂qi∂qi∂q j∂qk 0

. Similarly, second derivatives of the 

dipole moment were obtained by numerical differentiation of the analytical dipole first 
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derivatives. Invariance of derivatives on the order of differentiation was used to check the 

numerical stability.

III Results

We now compare the results we obtained with AnharmoniCaOs with some reference 

calculations and experimental results. Comparison with reference highlevel vibrational 

calculations performed with the VM-FCI method using exactly the same quartic force field 

will enable us to benchmark the effect of the different user-defined thresholds. In this way 

we can separate the effect of using the van Vleck method, and different levels of resonance 

detection and truncation of the size of variational calculations, from the effect of using a 

quartic force field and, in turn, from the level of theory used to obtain it. On the other hand, 

comparison with available experimental data for PAHs enables us to gauge the accuracy of 

this method including also the effect of truncating the nuclear potential to the quartic 

expansion and of the level of theory used to compute it. In addition, we perform some 

convergence tests on pyrene and coronene, to study the accuracy vs. computational cost as a 

function of the tunable parameters of AnharmoniCaOs specifically for the family of PAHs.

A Comparison with VMFCI calculations for Ethylene oxyde

A new VMFCI calculation of all vibrational energy levels of ethylene oxyde up to about 

3600 cm−1 has been performed (see supplementary material). The results compare favorably 

with previously published ones,21,57–59 using the same quartic force field for the nuclear 

potential. We used the very same force field with AnharmoniCaOs, and compared the results 

with the VM-FCI ones for different values of the tuning parameters r3, r4, and h. Table I 

shows how the accuracy of AnharmoniCaOs changes for decreasing values of r = r3 = r4, 

while keeping fixed the parameter h = 4. Decreasing values of r cause more and more terms 

to be taken out of the perturbative treatment, and instead considered as resonances, in setting 

up and solving polyads in a variational way. For comparison, we also list in the same Table I 

the VSCF results, which we obtained as an intermediate step of our reference VMFCI 

calculation. Clearly, the VSCF discrepancies are much larger than those of our GVPT2 

results, for all sets of tuning parameters used. Conversely, Table II compares the results of 

AnharmoniCaOs for fixed r = r3 = r4 = 0.05 and varying h. Interestingly enough, the 

accuracy of AnharmoniCaOs steadily improves for larger and larger h (at the price of a 

considerable increase in computational cost), while this is not the case for r. Indeed, we see 

in Table I that the best accuracy, for h = 4, is obtained with r ≈ 0.3, and it gets worse, not 

better, if r is reduced while keeping h fixed. This is due to the way in which polyads are 

built, and their truncation mechanism: no matter how weak it is, a resonance always adds at 

least one basis state to the starting ones. The idea behind this is that it is pointless to add a 

term to the list of resonances and then just neglect it because it is too weak. Conversely, if 

one decreases too much r without in parallel increasing h one gets an unbalanced truncation, 

with some weakly coupled basis states included (namely the ones connected to starting 

states via very weak resonances) while others, comparatively more strongly coupled, are not. 

Indeed, Table II shows that with r = 0.05 one does obtain more accurate results than with r = 

0.3 provided that one then uses a large enough value of h to allow for a balanced truncation 
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of polyads. All in all, it appears that r ≈ 0.3 and h ≈ 4 provide a good compromise in terms 

of accuracy versus computational cost.

B Convergence tests on pyrene

The quartic force field and first and second derivatives of the electric dipole moment were 

obtained using DFT with the B-97150 exchange-correlation functional and the TZ2P51 

Gaussian basis set, as described in Sect. II C. We then used the AnharmoniCaOs code with 

the resulting quartic force field and second order Taylor expansion of the electric dipole, 

using the harmonic ground vibrational state as a starting state. We started with r = 0.3 and h 
= 4, based on the results of Sect. III A, as a reasonable compromise between speed and 

accuracy, bearing in mind that our final goal will eventually be to perform (at least) tens or 

hundreds of thousands of such individual calculations to obtain a good enough Monte Carlo 

sampling of the energy dependence of vibrational bands. Still, in the case of pyrene, we 

conducted exploratory calculations where these parameters were pushed further, to check 

convergence with respect to the number of resonances and the number of states being 

included in the polyads to be explicitly diagonalised. For the smallest value of the threshold 

(r = 0.05) we obtained very large polyads. The size of the largest polyad, keeping fixed h = 

8, ramped up from ~ 650 with r = 0.3, to ~ 2700 with r = 0.2, to ~ 15000 with r = 0.1, and to 

~ 36000 with r = 0.05 harmonic states. In particular, the polyads containing the states 

involved in the fundamental transitions in the C–H region include states spanning an energy 

range increasing from ~3015-5120 cm−1 for r = 0.3, to ~2540-5120 cm−1 for r = 0.2, 

~500-9800 cm−1 for r = 0.1, and ~450-10000 cm−1 for r = 0.05.

Some spectra for various values of r are shown in Fig. 2 for the region of C–H stretches and 

in Figs. 3, 4, and 5 for three other representative spectral ranges. We studied how the 

positions of specific bands change with different r values. A large set of bands as they result 

from calculations with different r values is given in Table V in Supplementary Material. In 

some cases, most notably in the C-H stretch spectral region, with decreasing r values some 

bands split in several ones due to resonances. This happens, for example, for the bands 

which are computed at 3034, 3037, and 3042 at the r = 0.3 level, which split into a multitude 

of bands at smaller r values. Some of these results are summarised in Fig. 6, which shows 

the ratio between anharmonic and harmonic frequencies of unambiguously identified 

fundamentals, for the different r values. In general, this exploration shows that r = 0.3 (and h 
= 8) already provides an acceptable level of accuracy for most bands, when compared with 

harmonic calculations. In almost all cases in which the same fundamental band can be 

unambiguously identified for all r values, the calculation for r = 0.3 already provides ≥90% 

of the anharmonic correction to frequencies. Going from r = 0.3 to r = 0.05 only changes the 

positions of fairly strong bands (i. e. with peak intensities larger than ~1 km mol−1 cm when 

convolved with a 1 cm−1 wide Lorentzian) by less than ~3-5 cm−1, usually (but not always) 

slightly redwards. Only in very few particular cases, e. g. around 1430 cm−1, when some 

resonance is taken into account due to decreasing r, a significant band may split in two close 

ones, but the overall spectral structure does not change much anyway except for the C-H 

stretch region. Very weak bands (i. e. bands with peak intensities < 1 km mol−1 cm when 

convolved with a 1 cm−1 wide Lorentzian) are more sensitive. However, in most cases this is 

because some of them are “peripheric” states in big polyads, “borrowing” just very little 
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intensity from fundamentals to which they are very indirectly connected by resonances. 

These states are indeed expected to be less well described, due to basis truncation errors.

Bands in the C–H stretches region, in contrast to other strong ones, appear very sensitive to 

thresholds and more difficult to get to converge. This is clearly due to the crowding of a 

much larger number of resonating states than the ones involved in transitions in other 

spectral regions. When more and more resonances are included, and larger polyads 

considered, the fundamental bands split in a few fairly strong and a multitude of weak 

bands. In some cases, this makes it actually impossible to “identify” a given fundamental in 

this spectral region with any specific anharmonic transition in the r = 0.05 calculation. Upon 

examining the spectra in Fig. 2, a side effect of this is also apparent: the total, integrated 

band intensity somewhat decreases when more and more resonances are treated explicitly. 

This happens due to the multitude of very weak Fermi resonances. Fermi resonances cause 

some transitions, which would be IR-inactive in the double harmonic approximation, to 

“borrow” some intensity from a fundamental transition. When such a Fermi resonance is 

treated explicitly, the total intensity is conserved, i. e. the “borrowed” intensity that appears 

from the band becoming active simultaneously disappears from the resonating fundamental. 

In contrast, when the same Fermi resonance is treated via a perturbative treatment, the 

“borrowed” intensity from a fundamental by a combination/difference band appears as a 

second order contribution, whereas the intensity decrease from the resonating fundamental 

appears as a third order one. Consequently, the latter is not included in the second order 

perturbative treatment. Some caution is therefore in order when considering band intensities 

obtained by these kinds of calculations, when a large number of weak resonances can add up 

and reach a total “borrowed” intensity which amounts to a sizeable fraction of the 

fundamental transition intensities. We actually implemented in our code an optional intensity 

correction which enforces the conservation of total intensity when computing the 

contribution of mechanical anharmonicity to the van Vleck transformed second derivatives 

of the electric dipole moment. This correction is not really well-balanced, since it 

approximately includes only one selected 3rd order correction to the transformed dipole 

moment operator, and not for example the one, at the same order, transferring intensity in the 

opposite direction from an IR-active combination/difference band (produced by a sizeable 

second derivative of the dipole moment itself) to a fundamental resonating with it. This new 

functionality should be more fully tested under conditions in which other sources of error 

are negligible, hence it is disabled by default in AnharmoniCaOs, we just use it in the next 

section to get an estimate of how large its effect might be.

We carried out similar convergence tests for coronene. Its quartic force field and derivatives 

of the dipole moment were obtained using DFT with the B97-150 exchange-correlation 

functional. However, for coronene we used the 6-31G* Gaussian basis set to perform all the 

numerical derivatives required to obtain the quartic force field, since using the TZ2P51 

basis-set would be computationally too expensive. For AnharmoniCaOs we used r = 0.3, r = 

0.2, and r = 0.1, keeping fixed h = 6. Calculations with r = 0.05 and h = 8 were 

computationally too expensive. The results of this exploration for coronene were by and 

large the same as for pyrene, with the C-H stretch region being the only fairly sensitive one 

to thresholds and relatively difficult to converge.
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C Comparison with experimental results and previous theoretical calculations

Benchmarking our calculations on PAHs at 0 K would ideally require spectra recorded in 

gas-phase at very low temperatures. Such data are now becoming available for the CH 

stretch region.60,61 We therefore took the band positions reported for pyrene in ref. 61. 

Since this data is limited to the CH stretch range and does not report absolute intensities, we 

also used experimental data from Joblin et al.,62 both in Ne matrix at 4 K and in gas phase 

at relatively high temperatures (~ 300-500 °C) due to the low vapour pressure of PAHs. 

Since the matrix effect on the band position is expected to be weak for neon13, we used the 

measured positions in Ne as the best available experimental data to be compared with our 

calculated positions. For most of the spectrum, the bands in Ne are very sharp and well 

resolved. We remark though that the band structure in the CH stretch range is less resolved 

in Ne matrices compared to gas-phase at low temperature, which can be observed from the 

values reporded in Table III. Again this indicates a strong role of anharmonicity in this 

range. Ne matrix spectra lack an absolute calibration of band intensities. In order to compare 

the experimental integrated band intensities with calculated band strengths, we therefore 

used the gas-phase spectra from Joblin et al.62 Error bars are not easy to derive but we 

proceeded as follows for the gas-phase data that are available to us.63 A key point in 

deriving absolute intensities is to estimate the PAH column density. For gas-phase 

experiments in which all the PAH sample was evaporated at the temperature of interest, we 

were able to derive the column density of molecules in the gas-phase. If the evaporation is 

not total then this density is controlled by the vapour pressure, which is less precisely 

known. For coronene at 723 K we could use two spectra corresponding to total evaporation 

with different column densities. For pyrene at 523 K, we had only one such case and used a 

second case by applying an average global scaling on all bands. We deemed this useful to 

get an estimate of the relative errors from one experiment to the other but the absolute values 

might be less accurate in this case compared to coronene. In hot gas phase spectra it is often 

difficult to separate overlapping bands. After substraction of a continuum from the spectra, 

we defined intervals to calculate band intensities. We then identified the corresponding 

bands in the theoretical spectra and summed them for comparison. The slight differences 

that can be found between the new gas-phase intensities and the ones previously reported62 

is attributed to changes in the considered intervals and to the way the continuum level is 

substracted.

1 Pyrene—The quartic force field and first and second derivatives of the electric dipole 

moment were obtained as described in Sections II C and III B. We then used the 

AnharmoniCaOs code with the resulting quartic force field and second order Taylor 

expansion of the electric dipole, using the harmonic ground vibrational state as a starting 

state.

The results of our calculations can be compared with those obtained by Mackie et al.64 and 

with the experimental data as described above. The comparison is shown in Table III for 

band positions and Table IV for band intensities. We remark that the calculated spectrum 

shown in Ref. 64 is nearly identical to the one we obtained with r = 0.1 and h = 8, shown in 

Fig. 2, which is not completely converged yet. We tentatively suppose that the smallest 

thresholds they tested for convergence, necessarily limited by computational constraints (the 
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run including the largest polyads we tested required about 100 Gbytes of RAM) were 

smaller than the ones we arrived at. Since the computed spectrum changes abruptly every 

time the decrease of the threshold causes a significantly larger number of states to be 

included in the polyads, they probably did not reach threshold values low enough to obtain 

the top spectrum we show in Fig. 2.

Table IV also includes the results of AnharmoniCaOs including the partial correction 

enforcing total band intensity conservation in the perturbative calculation (see previous 

section), to get an estimate of how large this effect is.

To assess the overall accuracy of our calculations, we compare in Tables III and IV our 

results with the laboratory data that have been described above, as well as with the scaled 

harmonic calculation (see Supplementary material for all harmonic results and scaling 

factors). We also compared with the previously published anharmonic calculations by 

Mackie et al.64 Since in this latter paper only relative intensities are given, we estimated 

absolute intensities for all possible bands by multiplying them by the absolute intensity we 

calculated for the band the authors chose for reference. This excludes C-H stretches that the 

authors studied separately from the rest of the spectrum with an unknown scaling factor. 

Concerning band positions, we listed all states which carry a significant intensity and only 

one position was listed when these states are too close to be resolved. Assigning a given 

theoretical band to an experimental one can be tricky. We did our best on the basis of band 

proximity. This can be disputable especially in the case of the CH stretch region for which 

the calculations face some difficulties, as discussed above and in Sect. IV. For anharmonic 

calculations we label bands by the leading harmonic base state in the expansion of the upper 

state of the transition. The harmonic modes are given in tables in the supplementary 

material. While in some cases anharmonic states are close enough to a single, well-defined 

harmonic state, in others they happen to be linear combinations of many harmonic states 

with coefficients of about the same magnitude, which can be as small as 10-20% for the 

leading harmonic state (which is nonetheless chosen to label the transition). Clear examples 

of both cases occur in the C-H stretch region. The ν42 harmonic state remains fairly well 

defined in the anharmonic calculation, with a large fraction of its intensity therefore in a 

single band at a computed position of 3040 cm−1. The corresponding anharmonic state is a 

linear combination of the harmonic states ν42 (38%), ν45 + ν48 + ν53 (19%), ν4 + ν45 (4%), 

plus many other harmonic states contributing each less than 3%. Conversely, the ν43 and ν23 

harmonic states appear to distribute over a large number of anharmonic states via strong 

resonances. For example, the anharmonic state corresponding to the band at 3076 cm−1, 

which we labelled ν23, is a linear combination of the harmonic states ν23 (the “leading” one 

with 12%), ν4 + ν27 (11%), ν24 (9%), plus a large number of other harmonic states 

contributing less. The harmonic state ν43, while contributing to many states, is not the 

leading one in any.

When compared to values in Ne matrices and excluding the CH stretch range, band positions 

appear to be accurate on average to better than 0.8%. The worst case is the band at 20.0 μm 

for which the shift reaches 1.2%. There is a very slight tendency to underestimate band 

positions, with an average ratio between theoretical and experimental positions of 0.998, 

which shows that systematic error is minimal. Of course Ne matrix positions will also be 
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affected by some matrix shift effect, even if it is expected to be small. Concerning integrated 

band intensities, we listed the integration limits we adopted to allow comparison with the 

gas phase spectra. We give here for pyrene the results both using our higher order correction 

enforcing conservation of band intensity and without it. The difference between the two 

theoretical sets of values are much smaller than the differences with experimental values, 

with the uncorrected ones appearing, if any, slightly better on average. For band intensities, 

the largest differences between calculated and experimental values appear in some of the 

weakest bands, the one at 5.7 μm being lower by a factor of two in calculations, while the 

one at 7.7 μm is larger by the same factor. The C-H stretch at 3.3 μm, typically one of the 

most difficult bands to compute accurately with DFT, is lower in calculations by ~40%, the 

remaining bands are within 25%. The fractional differences have both signs and average to 

about zero.

Our results are generally consistent with those published by Mackie et al.64 for pyrene, even 

if a detailed one-to-one comparison depends on the possibility of unambiguously matching 

them based on what is given in Table 1 of their supplementary material. For this reason, not 

all theoretical band positions reported by Mackie et al.64 are listed in last column of Table 

III, but only those whose identification could be matched with a corresponding band in our 

calculations. In particular, in the C-H stretch region we only included the three bands with 

the largest component of the three C-H stretch IR-active fundamentals. Differences are non-

negligible nonetheless, as could be expected from using two different implementation of 

Van-Vleck theory (see Sect. IV) and could also originate from small differences in the initial 

quartic force field. We remark that the best agreement with the low-temperature gas-phase 

data in the CH stretch range is found with our not completely converged calculation with r = 

0.1, extremely similar to the one shown in Ref. 64. This hints that the accuracy we can 

achieve with this kind of calculation is, in this case, limited by the accuracy of the 

underlying DFT calculations yielding the quartic force field. The apparent slightly better 

accuracy of the r = 0.1 calculation with respect to the nominally better one with r = 0.05 is 

likely due to a partial accidental cancellation of errors. The complete, anharmonic spectrum 

of pyrene, computed with r = 0.05 and h = 8, is shown in the supplementary material, and 

available in tabulated form from the online database by Malloci, Joblin, and Mulas.65

2 Coronene—As for pyrene, the quartic force field and first and second derivatives of the 

electric dipole moment were obtained as described in Sections II C and III B. We then used 

the results obtained by our AnharmoniCaOs code with r = 0.1 and h = 6, leading to the 

largest polyads we could computationally handle, to obtain positions and intensities of the 

permitted transitions. We did not use our correction to enforce intensity conservation, since 

we saw in the case of pyrene that its effect is small compared to the errors arising from the 

underlying DFT calculations.

In Table V we compare our computed results for the band positions of coronene with 

laboratory data that were described above and with the scaled harmonic calculation, using 

the same approach as that described for pyrene. The band positions appear to be accurate to 

better than 0.7% except for the weak band at ~5.3 μm for which the normalized shift 

between theory and experiment is 1.1%. As for pyrene, there is a balance between negative 
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and positive values for this shift, since the average ratio between theoretical and Ne matrix 

positions is ~0.998.

Theoretical band intensities appear somewhat less accurate than the ones for pyrene. The 

extreme cases are the bands at 5.3 μm and 13.0 μm, which are both lower by a factor ~3 in 

the calculations compared to the experiment. The average difference is about 35%, with 

errors on both the positive and negative sides, with a prevalence of theoretical 

underestimation of experimental values. However, the accuracy is rather good for the most 

intense bands at 3.3 and 11.7 μm. This is consistent with what we found in the case of 

pyrene. The slightly worse agreement with experimental data relative to the case of pyrene, 

is likely due to the smaller basis set used to obtain the quartic force field for coronene. The 

complete, anharmonic spectrum of coronene is shown in the supplementary material, and 

available in tabulated form from the online database by Malloci, Joblin, and Mulas.65

IV Discussion and Conclusions

We performed anharmonic calculations of the vibrational spectra of neutral pyrene and 

coronene at 0 K using our AnharmoniCaOs code, and compared them to the best available 

experimental data. The results are overall fairly satisfactory, yielding a significant 

improvement over the conventional double harmonic DFT calculations normally used for 

molecules of this size. As we already remarked at the beginning of Sect. III C, the most 

meaningful comparison should be with high resolution, low temperature gas phase 

measurements, which are only available in the C-H stretch region for a small set of PAHs.

60,61 For the present work, we mostly relied on Ne matrix spectra for band positions and 

high temperature gas-phase spectra for band intensities.62,63 Our conclusions might slightly 

change if/when full high resolution, low temperature gas phase spectra of such species 

become available.

The accuracy of our anharmonic calculations is clearly related to several different 

independent limiting factors, respectively:

1. The representation of the true adiabatic potential energy surface as a quartic 

force field, and the dipole moment as a Taylor expansion truncated to second 

order, both in terms of cartesian normal coordinates ;

2. The accuracy of the determination of the quartic force field and quadratic dipole 

parameters via quantum chemistry calculations;

3. The accuracy of the GVPT2 method itself;

4. The accuracy of our AnharmoniCaOs implementation (as a function of its 

parameters).

Point 1 is an acceptable approximation when oscillations have a relatively small amplitude. 

Therefore, it is suitable for semirigid molecules at not too high vibrational energies. So, it 

should be appropriate for PAHs, unless they have side groups that give rise to internal 

rotations, that are poorly represented by a truncated Taylor expansion in normal coordinates.

66 We notice that it would be desirable in some cases, to opt for non-cartesian coordinates 

so that the associated quartic force field would have a better asymptotic behaviour, and the 
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potential would be reasonably described even along large amplitude motions.67,68 Such 

coordinates, however, are not directly applicable in our case: the Van Vleck approach used 

here for GVPT2 requires a description of the Hamiltonian in terms of normal coordinates, 

since it exploits their commutation properties to obtain a formally simple representation of 

the infinitesimal contact transformations and of the transformed Hamiltonian and dipole 

moment operators.

Point 2 is basically a matter of trade-off between computational cost and accuracy. Band 

positions can be fairly accurate for PAHs, as shown also by our results, even using moderate 

size basis sets (such as the triple zeta ones we used) with DFT using hybrid exchange-

correlation functionals.69 This can be further improved, approaching spectroscopic 

accuracy, by using more accurate (and computationally way more expensive) methods with 

larger basis sets, either only for the harmonic frequencies or also for some of the higher 

derivatives of the potential, and for the first and/or second derivatives of the dipole moment 

(see Ref. 70 and references therein). Absolute intensities are more difficult to get with the 

same accuracy as for positions using DFT calculations, but they also become fairly precise 

when using high (computationally expensive) levels of theory.71

As to point 3, GVPT2 has been used successfully for many years (see e.g. Ref. 29), and it 

has been reviewed by Bloino et al. in Ref. 70. In general, GVPT2 should be appropriate as 

long as point 1 is valid.

Finally point 4 has been assessed in our comparisons with higher level vibrational 

calculations, in Sect. III A. Our code has the limitation that rotational degrees of freedom, 

and their interaction terms with vibrational ones (i.e. terms due to the Coriolis and 

centrifugal pseudo forces) are not included in our approximated Hamiltonian. This is not 

expected to be an important limit for relatively large, semi-rigid, asymmetric top molecules 

such as e. g. pyrene. However, it is always possible that a small number of individual states 

undergo accidental Coriolis resonances. In contrast, strong Coriolis interactions are bound to 

occur for vibrational states which are degenerate due to symmetry reasons, and this will be 

more likely for symmetric species like coronene. However, we remark that the agreement 

between theoretical and experimental data for coronene does not seem significantly worse 

than that of pyrene, hinting that Coriolis coupling is not crucial.

Summing up, we find that for the cases of pyrene and coronene presented here the main 

limitation appears to be point 2, since we clearly reached a point at which increasing the 

accuracy of our GPVT2 calculation did not improve the agreement with experimental data. 

Indeed, it looks like there is a “sweet spot” in the accuracy of the GPVT2 calculations where 

some accidental cancellation of errors with the underlying DFT-based quartic force field 

produces the best results, even if this may not be general.

The calculations presented here are similar to those performed by Mackie et al. in Ref. 64. 

The latter authors reported an agreement of calculated band positions with experimental data 

(in rare gas matrices) of 0.4 ± 0.6%, to be compared with our value of better than 0.8%. 

Since both studies include different sets of laboratory data, it is difficult to conclude which 

one provides the best results. Still, it can be noticed that some individual bands positions 
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differ by more than numerical noise, when comparing both theoretical studies (cf. Table III). 

The implementation of GVTP2 in Ref. 64 is different from ours. In particular, a different 

strategy is used to define which cubic and quartic terms of the potential should be included 

in the treatment of resonances rather than in the perturbation expansion, and subsequently 

the construction (and truncation) of polyads differ. In spite of these differences, the overall 

agreement can be seen as a validation of both approaches. With the parameters used, the 

results reported here appear slightly more accurate for the region of combination bands, 

whereas the results in Ref. 64 appear somewhat better in the C-H stretches region. We 

remark once more that we actually did obtain very nearly the same results as Mackie et al.64 

for the C-H stretches of pyrene with our not completely converged anharmonic calculation, 

as discussed in Sect.III C 1 and recalled in the previous paragraph, where we hinted that this 

can be due to an accidental cancellation of errors. The availability of two independent codes 

performing similar calculations is of course important, as this can be used to test both. 

Indeed, the close similarity of the results, at least with some choice of the tunable 

parameters, validates both codes and the correctness of their results. In addition we remark 

that AnharmoniCaOs is freely distributed under an open source license via SourceForge, 

guaranteeing it will remain available and easy to find and download for the foreseeable 

future.

Scaled harmonic calculations of fundamentals appear to be not much less accurate than our 

anharmonic ones. However, they depend on the use of empirically calibrated parameters. 

Moreover, harmonic calculations are limited only to fundamental transitions and completely 

neglect combination, difference and overtone bands, some of which may be of sizeable 

intensity especially when strong Fermi resonances occur, as shown also in Refs. 34, 64 and 

61. Indeed, Fig. 2, and Table V in Supplementary Material, clearly show that some bands, 

most notably (but not only) in the C-H stretch region, split from their simplistic harmonic 

structure into several, sometimes a multitude of, close ones, due to resonances. Such a 

complex structure was confirmed for the C-H stretch region by the low temperature, gas-

phase measurements of Refs. 34, 64 and 61. Only anharmonic calculations can account for 

this. We also note that as a by-product we can also use this kind of anharmonic calculation to 

estimate purely theoretical frequency scaling factors. Fig. 6 shows the empirical scaling 

factors for the level of theory B97-1/TZ2P,56,60,61 as well as the ones we can derive from 

our calculations on pyrene, which are consistent with them.

The main limiting factor to this kind of anharmonic calculations, at least for species of up to 

a few tens of atoms in size, is related to the computational cost of computing the cubic and 

quartic force field constants, as well as the second derivatives of the electric dipole moment, 

which must be obtained via numerical differentiation since currently there is no readily 

available code that can compute them analytically. However, some general schemes have 

been proposed72 to obtain such higher order derivatives in the framework of the Density 

Functional Theory, even if their computational implementation is still a work in progress and 

is still private. When such codes will become available and well-tested, anharmonic 

calculations, at least of the ground vibrational state and of the states connected to it by 

permitted transitions, are likely to become commonplace. The AnharmoniCaOs code, 

besides being usable to process quartic force fields and first and second order electric dipole 

moment derivatives to obtain spectra from the vibrational ground state, can be used for 
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vibrationally excited states as well, and is currently being tested to obtain moderately high 

temperature spectra of the same PAHs studied here.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Schematic algorithm of polyad definition
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Fig. 2. 
Anharmonic spectrum of pyrene in the C–H stretch region for various values of the threshold 

r, keeping fixed h = 8. Black bars indicate the precise position of individual bands, whereas 

red envelopes are convolved with Lorentzian profiles with a 1 cm−1 width. Spectra computed 

with different values of r are shifted for clarity by multiples of 15 km mol−1 cm with respect 

to the previous one.
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Fig. 3. 
Anharmonic spectrum of pyrene from 600 to 1100 cm−1 computed with various values of 

the threshold r, keeping fixed h = 8. Black bars indicate the precise position of individual 

bands, whereas red envelopes are convolved with Lorentzian profiles with a 1 cm−1 width. 

Spectra computed with different values of r are shifted for clarity by multiples of 40 km mol
−1 cm.
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Fig. 4. 
Anharmonic spectrum of pyrene from 1100 to 1500 cm−1 computed with various values of 

the threshold r, keeping fixed h = 8. Black bars indicate the precise position of individual 

bands, whereas red envelopes are convolved with Lorentzian profiles with a 1 cm−1 width. 

Spectra computed with different values of r are shifted for clarity by multiples of 5 km mol
−1 cm.
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Fig. 5. 
Anharmonic spectrum of pyrene from 1600 to 2000 cm−1 computed with various values of 

the threshold r, keeping fixed h = 8. Black bars indicate the precise position of individual 

bands, whereas red envelopes are convolved with Lorentzian profiles with a 1 cm−1 width. 

Spectra computed with different values of r are shifted for clarity by multiples of 2.8 km mol
−1 cm.
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Fig. 6. 
Ratio between the computed anharmonic frequencies and the harmonic frequencies of 

unambiguously identified fundamentals of pyrene, as a function of the harmonic 

frequencies. Magenta squares are for r = 0.3, green ones for r = 0.2, red ones for r = 0.1, blue 

ones for r = 0.05. The overlaid lines represent the scaling factors for C-H stretches (dotted) 

and for all other bands (dashed). Red lines mark scaling factors from Ref. 56, namely 0.966 

for C-H stretches and 0.982 for all the other bands. Blue lines mark scaling factors obtained 

from our best anharmonic calculation for pyrene, namely 0.962 for C-H stretches and 0.978 

for all other bands except the two lowest modes, for which it is 0.946
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Table I

Fundamental frequencies for ethylene oxyde as a function of the threshold r and for h = 4.

mode VMFCI VSCF r=1.0 r=0.5 r=0.3 r=0.2 r=0.1 r=0.05 r=0.01

1 2920a 3015 2955 2955 2918 2918 2918 2920 2930

2 1496 1525 1502 1502 1502 1503 1502 1503 1503

3 1271 1286 1271 1271 1271 1271 1271 1272 1272

4 1122 1160 1128 1128 1128 1128 1129 1127 1132

5 879 891 878 878 878 878 879 878 879

6 3029 3108 3043 3043 3043 3043 3060 3065 3097

7 1148 1172 1154 1154 1154 1154 1156 1156 1166

8 1018 1050 1025 1025 1025 1025 1027 1028 1037

9 2910 3032 2920 2920 2920 2921 2921 2920 2949

10 1468 1487 1474 1474 1474 1474 1475 1475 1482

11 1124 1158 1131 1131 1131 1131 1132 1132 1133

12 822 842 822 822 822 822 822 822 826

13 3041 3125 3058 3058 3058 3058 3055 3054 3085

14 1146 1169 1151 1151 1151 1151 1152 1152 1152

15 793 837 802 802 802 802 802 803 803

root mean square error 55.3 12.1 12.1 8.0 8.0 10.8 11.8 25.2

a
VMFCI assignments of step n are in terms of eigenstates of step n − 1 and not in terms of the initial harmonic oscillator (HO) basis functions. So, 

we use Thomas et al.21 assignments to relate the VMFCI frequencies to those assigned in this work on the basis of the dominant HO basis 
function. In fact, VMFCI assignments coincides with those of Ref. 21 except for ν1 see supplementary material.

J Chem Phys. Author manuscript; available in PMC 2018 November 02.



 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Mulas et al. Page 29

Table II

Fundamental frequencies for ethylene oxyde as a function of the parameter h and for r = 0.05.

mode VMFCI h=4 h=8 h=16 h=18

1 2920a 2920 2920 2920 2918

2 1496 1503 1503 1503 1503

3 1271 1272 1272 1271 1271

4 1122 1127 1127 1127 1127

5 879 878 878 878 878

6 3029 3065 3065 3053 3043

7 1148 1156 1156 1155 1155

8 1018 1028 1028 1027 1026

9 2910 2920 2919 2918 2917

10 1468 1475 1474 1474 1474

11 1124 1132 1132 1132 1132

12 822 822 822 822 822

13 3041 3054 3054 3051 3050

14 1146 1152 1152 1152 1152

15 793 803 803 803 802

root mean square error 11.8 11.8 8.9 7.0

a
Same remark as in Tab. I.
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Table III

List of the main band positions for pyrene. Theoretical data are from (a) this work and (b) Ref. 64. The 

experimental band positions are those of the main bands in the Ne matrix spectrum recorded at 4K taken from 

Ref. 62. For the CH stretch range we also report the values recorded in gas-phase at low-temperature from Ref. 

61.

Gross pos. (µm) Position (cm–1)

Ne Matrix 4 K
*Gas-phase (low 

T)

Theory 0 K

harm. scaled             anharmonic

(a) (a) (b)

3.3 *3118.7

*3108.9 3102, 3098 ν10 + ν52 + ν57

*3096.0 3095, 3092 ν30 + ν44 + ν53, ν21 + ν34 + ν40 + ν57

*3087.8 3089, 3086 ν4 + ν45, ν30 + ν46 + ν64

*3071.9 3084, 3083 ν45 + ν62 + ν64, ν9 + ν13 + ν27

“3066”, *3064.9 3074 3076, 3073, 3071 ν23, ν26 + ν57, ν4 + ν36 + ν70 3072

*3063.3 3066, 3065 ν29 + ν45 + ν53, ν28 + ν32

*3059.5 3062 ν26 + ν34 + ν51

*3057.5 3056, 3050 ν4 + ν28, ν10 + ν28 + ν65, ν4 + ν10 + ν53

*3055.6 3045 ν35 + ν56 + ν70 3043

*3052.9 3042 ν33 + ν49 + ν53 + ν63, ν11 + ν51 + ν63 + ν65

3053,*3049.8 3057 3040 ν42 3048

*3044.0 3034 ν12 + ν31 + ν32 + ν52

3033 ν17 + ν44 + ν66, ν21 + ν26 + ν37

3032, 3031 ν12 + ν29 + ν32 + ν53, ν21 + ν26 + ν37

3030 ν52 + ν57 + 2ν70, ν5 + ν27,ν26 + ν30 + ν53

3026 ν19 + ν39 + ν45, ν35 + ν48 + ν53

3025 ν12 + ν37 + ν66

3024 ν17 + ν34 + ν62 + ν66

3023 ν13 + ν46 + ν62, ν33 + ν56 + ν63, ν5 + ν45

3022 ν21 + ν36 + ν51 + ν64

3019, 3018 ν5 + ν27, ν30 + ν58 + ν64

3014 ν5 + ν35 + ν70

3011 ν12 + ν32 + ν56

3002 ν28 + ν56

2960 ν15 + ν40 + ν57, ν45 + ν57

2940 ν35 + ν39 + ν47, ν26 + ν59, ν7 + ν30 + ν64

2927 ν4 + ν47
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Gross pos. (µm) Position (cm–1)

Ne Matrix 4 K
*Gas-phase (low 

T)

Theory 0 K

harm. scaled             anharmonic

(a) (a) (b)

2908 ν21 + ν59 + ν66

5.2 1935 1937
1934

ν14 + ν35

ν35 + ν66

1945
1937

1923 1921 ν14 + ν36 1932

1918 1919 ν36 + ν66

5.3 1870, 1867, 1863 1866 ν14 + ν19 1860

1851 1858, 1848, 1842 ν10 + ν69, ν15 + ν35 ν15 + ν36

5.6 1800 1801 ν37 + ν66 1804

1796 1792 ν15 + ν19 1799

5.7 1761 1766 ν14 + ν20 1774

1749 1745 ν19 + ν67

1725 ν15 + ν37

5.9 1695 1697 ν35 + ν68

6.0 1670, 1665 1669 ν36 + ν69

1648 1651, 1645 ν16 + ν35, ν20 + ν67

6.2 1617 1617, 1612, 1610 ν19 + ν68, ν38 + ν67, ν19 + ν69

1605 1606 1600, 1596 ν44, ν12 + ν34

6.5 1597 1585, 1575 ν26, ν12 + ν41 + ν68, ν16 + ν19 1588

1545 1537, 1544 ν39 + ν66, ν20 + ν68

1517 1521, 1505 ν16 + ν37, ν38 + ν68

6.8 1496 1481 1473, 1489, 1485
1460, 1459

ν45, ν14 + ν21, ν21 + ν66

ν15 + ν39, ν51 + ν64

1479

7.0 1438, 1436 1442
1430
1427

1442, 1438
1424
1418,1417,1412

ν36 + ν70, ν27

ν28

ν34 + ν63, ν46, ν10 + ν53

1444
1431

7.7 1311 1314 1311, 1320, 1317 ν47, ν13 + ν67, ν32 + ν64 1319

8.0 1244 1242 1241, 1236 ν40 + ν68, ν29 1243

8.4 1185, 1182 1181 1180 ν49, ν16 + ν40, ν39 + ν41 + ν53, ν39 + ν41 + 
ν53

1188

9.1 1097, 1087 1089 1089,1081,1080 ν30, ν12 + ν34, ν53 + ν63 1081, 1095

9.4 1063 1058 ν39 + ν70

10.0 1004 993 996,993 ν31, ν52 + ν65

10.4 966 966 964,963 ν66, ν41 + ν69 969

11.8 844 845 843 ν67 861

822 815 816 ν32 822
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Gross pos. (µm) Position (cm–1)

Ne Matrix 4 K
*Gas-phase (low 

T)

Theory 0 K

harm. scaled             anharmonic

(a) (a) (b)

13.4 745 742 739 ν68 750

14.0 713 713 710 ν69 741

18.5 542 539 538 ν52

20.0 499 495 493 ν34

20.5 488 487 483 ν70

29.0 350 347,342 ν53, ν22 + ν72

50 206 198 ν71
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Table IV

List of the integrated intensities for pyrene. Theoretical data are (a) this work and (b) from Ref. 64. Since only 

relative intensities are reported in this latter study, we have scaled the values to the theoretical anharmonic 

intensity of the main CH out-of-plane bend mode. For our anharmonic results we list two columns, the “nc” 

one is standard GPVT2, “c” includes our correction borrowing some third order perturbation theory terms to 

enforce conservation of the intensity of transitions in resonances treated with perturbation theory. 

Experimental values have been derived from measurements in gas-phase at 570 K from two independent 

spectra taken from Refs. 62 and 63. The mean values are listed and the values in brackets provide the scatter 

around these values. Since in these spectra band overlapping is unavoidable, we selected integration ranges 

and integrated the corresponding theoretical bands. The listed ranges are the ones considered for the 

theoretical spectra and have been slightly shifted to cover the band envelopes in gas-phase spectra.

Gross pos.(μm) Integration range (cm−1) Intensities (km · mol−1)

Gas 570 K Theory 0 K

harm. anharm.

(a) (a) (b)

nc c

3.3 [2850-3250] 140(±10) 95 99 74

5.2 [1900-1950] 9.5 (±0.5) 9.0 9.3 18.2

5.3 [1830-1880] 3.8 (±0.1) 5.5 5.7 2.0

5.6 [1780-1830] 7.8 (±0.7) 8.8 9.1 14.1

5.7 [1715-1760] 5.8 (±0.2) 2.7 2.9

5.9 [1677-1704] – 1.9 2.0

6.0 [1655-1677] 2.5 (±0.2) 2.7 2.7

6.1 [1630-1655] – 2.8 2.9

6.2 [1560-1620] 11.4 (±1.2) 13.2 17.3 16.4 7.1

6.6 [1531-1552] – 2.6 2.7

6.8 [1467-1525] – 3.7 3.5 3.0

7.0 [1405-1430] 11.4 (±0.1) 11.2 8.8 7.8 6.1

7.7 [1300-1327] 2.4 (±0.1) 4.9 5.2 4.5 6.1

8.0 [1224-1245] 1.9 (±0.3) 2.3 2.6 2.4 2.0

8.4 [1165-1200] 10.5 (±0.1) 14.0 13.7 12.1 14.1

9.1 [1074-1100] 5.4 (±1.2) 7.0 5.4 4.7 8.1

10.0 [988-1003] 2.2 (±0.6) 1.7 1.6

11.8 [824-863] 100 (±6) 112 101 93 101

13.4 [730-750] 20.8 (±1.4) 17.5 15.2 14.0 24.2

14.0 [695-725] 46 (±1) 44.8 45.3 42.9 41.4

18.5 [526-550] 2.5 2.3 2.1

20.0 [487-501] 2.7 2.4

20.5 [474-487] 2.1 1.9 1.7

29.0 [335-354] 1.4 1.3

50 [185-212] 9.7 9.0
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Table V

List of the main band positions for coronene. Theoretical data are from this work. The experimental band 

positions are those of the main bands in the Ne matrix spectrum recorded at 4 K taken from Ref. 62.

Gross pos. (µm) Position (cm−1)

Ne Matrix 4 K Theory 0 K

harm. scaled anharmonic

3.3 3121 ν30 + 2ν61, ν30 + ν61 + ν62, ν30 + 2ν62

3120 ν2 + ν51, ν2 + ν52

3112 ν30 + ν71, ν30 + ν71

3070 3066 3071 ν45, ν46

3056 ν10 + ν51, ν10 + ν52, ν21 + ν71, ν21 + ν72

3049 ν21 + 2ν61, ν21 + ν61 + ν62, ν21 + 2ν62

3050 ν49 + ν75, ν49 + ν76, ν50 + ν75, ν50 + ν76

3038 ν10 + ν51 ν10 + ν52

“3035” 3048 3025 ν47, ν48

5.3 1926, 1913, 1898 1918, 1920 ν35 + ν91,ν35 + ν92, ν36 + ν91,ν36 + ν92

1889, 1892, 1895 ν7 + ν35, ν7 + ν36

1886 ν6 + ν14

5.6 1809, 1801, 1786 1783 ν7 + ν37, ν7 + ν38

5.9 1721 1708 ν14 + ν37, ν14 + ν38

1697 1692 ν17 + ν91, ν17 + ν92

1681 ν37 + ν93, ν37 + ν94, ν38 + ν94, ν38 + ν94

6.2 1621 1614 1619 ν49,ν50

7.6 1317 1309 1315 ν55,ν56

1310 ν14 + ν41, ν14 + ν42

8.8 1139 1134 1143 ν59,ν60

11.7 857 857 862 ν14

13.0 772 767 767 ν63,ν64

18.2 549 548 553 ν15

26.5 376 379 ν65,ν66

81 121 126 ν16
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Table VI

List of the integrated intensities for coronene. Theoretical data are from this work. Experimental values have 

been derived from measurements in gas-phase at 570 K from two independent spectra taken from Refs. 62 and 

63. The mean values are listed and the values in brackets provide the scatter around these values. The strongest 

band at 11.7 µm (annotation (s)) was saturated in one of the two experimental spectra so only a single value 

could be reported. Since in these spectra band overlapping is unavoidable, we selected integration ranges and 

integrated the corresponding theoretical bands. The listed ranges are the ones considered for the theoretical 

spectra and have been slightly shifted to cover the band envelopes in gas-phase spectra.

Gross pos. (µm) Exp. Range (cm−1) Intensities (km · mol−1)

Gas 570 K Theory 0 K

harm. anharm.

3.3 [2995-3110] 190 (1) 134.7 177

5.3 [1870-1906] 23 (3) 31.5

5.6 [1770-1825] 18 (4) 5.9

5.9 [1670-1720] 20 (3) 13.9

6.2 [1600-1629] 19 (2) 15.2 24.9

7.6 [1300-1330] 37 (2) 42.3 22.7

8.8 [1128-1158] 22 (4) 17.3 14.4

11.7 [845-880] 138 (s) 167.9 147

13.0 [745-785] 32 (1) 13.6 13.2

18.2 [530-565] 44 (2) 42.7 23.0

26.5 [360-395] 7.7 5.9

81 [110-140] 6.9 4.6
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