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Abstract

Background

Children are susceptible to severe influenza infections and facilitate community transmis-

sion. One potential strategy to improve vaccine immunogenicity in children against seasonal

influenza involves a trivalent hemagglutinin DNA prime-trivalent inactivated influenza vac-

cine (IIV3) boost regimen.

Methods

Sites enrolled adolescents, followed by younger children, to receive DNA prime (1 mg or 4

mg) intramuscularly by needle-free jet injector (Biojector), followed by split virus 2012/13

seasonal IIV3 boost by needle and syringe approximately 18 weeks later. A comparator

group received IIV3 prime and boost at similar intervals. Primary study objectives included

evaluation of the safety and tolerability of the vaccine regimens, with secondary objectives

of measuring antibody responses at four weeks post boost by hemagglutination inhibition

(HAI) and neutralization assays.

Results

Seventy-five children�6 to�17 years old enrolled. Local reactogenicity was higher after

DNA prime compared to IIV3 prime (p<0.001 for pain/tenderness, redness, or swelling), but
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symptoms were mild to moderate in severity. Systemic reactogenicity was similar between

vaccines. Overall, antibody responses were similar among groups, although HAI antibodies

revealed a trend towards higher responses following 4 mg DNA-IIV3 compared to IIV3-IIV3.

The fold increase of HAI antibodies to A/California/07/2009 [A(H1N1)pdm09] was signifi-

cantly greater following 4 mg DNA-IIV3 (10.12 fold, 5.60–18.27 95%CI) compared to IIV3-

IIV3 (3.86 fold, 2.32–6.44 95%CI). Similar neutralizing titers were observed between regi-

mens, with a trend towards increased response frequencies in 4 mg DNA-IIV3. However,

significant differences in fold increase, reported as geometric mean fold ratios, were

detected against the H1N1 viruses within the neutralization panel: A/New Caledonia/20/

1999 (1.41 fold, 1.10–1.81 95%CI) and A/South Carolina/1/1918 (1.55 fold, 1.27–1.89 95%

CI).

Conclusions

In this first pediatric DNA vaccine study conducted in the U.S., the DNA prime-IIV3 boost

regimen was safe and well tolerated. In children, the 4 mg DNA-IIV3 regimen resulted in

antibody responses comparable to the IIV3-IIV3 regimen.

Introduction

Each influenza season children have an increased burden of influenza infection [1] and facili-

tate disease transmission to others in their communities [2]. Children between 2 and 17 years

of age have the highest rates of influenza-positive influenza-like illness (ILI) in outpatient clin-

ics [3], and school-age children are typically the main source of transmission in household set-

tings [4, 5]. Severe disease requiring hospitalization is also substantially higher in children

under 5 years of age [6]. In addition, outpatient clinic visits and days missed from school or

work (for children and parents) can result in a significant economic and public health impact

[7].

Vaccination remains the most effective way of preventing both influenza infection and dis-

ease in children and adults, although vaccine efficacy needs to be improved [8]. The vaccine

predominantly administered to children each year is an inactivated influenza vaccine (IIV)

preparation that is updated annually and has an overall vaccine efficacy of 59–64% [9]. This

efficacy can be lower when the selected vaccine strains are antigenically distinct from those

currently circulating in the community [8]. Even during years where the vaccine strains closely

match those circulating, IIVs only reduce outpatient medical visits caused by circulating influ-

enza viruses by 50 to 75% [10]. Additional disadvantages to the current vaccine strategies exist,

including a long production time and a dependence on embryonated eggs [11].

Various strategies, including the use of adjuvants or DNA vaccines, have been suggested as

ways of improving vaccine immunogenicity in children while avoiding the aforementioned

limitations of the licensed vaccines [11–13]. DNA vaccines are a particularly appealing strategy

since this platform has been shown to be safe and immunogenic in healthy adults against mul-

tiple viruses [14–21] without requiring eggs for production or preservatives in the final vaccine

preparation [22]. Also, since DNA vaccines require shorter time for development and produc-

tion compared to inactivated vaccines, vaccination of vulnerable populations with DNA vac-

cines may start earlier in a pandemic situation while inactivated vaccines are still being

manufactured [22].
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In healthy adults, studies with DNA influenza vaccines against emerging subtypes of avian

origin (including H5 and H7) administered as a prime injection prior to an inactivated boost

improved the overall antibody titers [19–21]. These studies also revealed that the optimal

responses occurred with a prime-boost interval between 12 and 24 weeks [20]. In some cases,

the DNA prime was found to induce hemagglutinin (HA) stem-specific neutralizing antibod-

ies, which could improve the breadth of the antibody response by eliciting a response against a

stem domain that is highly conserved across multiple subtypes [19–21]. However, there were

no significant increases in antibody responses as assessed by hemagglutination inhibition

(HAI) in adults primed with either seasonal trivalent HA DNA vaccine or placebo followed by

a boost with seasonal trivalent IIV (IIV3) [23]. The possibility that pre-existing immunity in

the adult population limited the effect of the DNA prime warranted further evaluation in

expanded age groups, including children and adolescents. In this first in the U.S. study of a

DNA vaccine in a pediatric population, we compared the safety and immunogenicity of a sea-

sonal influenza trivalent HA DNA vaccine prime-IIV3 boost (DNA-IIV3) regimen to a IIV3

prime-IIV3 boost (IIV3-IIV3) regimen.

Materials and methods

The clinical trial protocol and CONSORT checklist are available in supporting information.

Ethics statement

The trial was conducted at five clinical sites in the United States between June 2012 and July

2013. The protocol was reviewed for scientific, regulatory, and ethical requirements and was

approved by the institutional review board at each site, including Cincinnati Children’s Hospi-

tal Medical Center, Vanderbilt University Medical Center, Saint Louis University, Emory Chil-

dren’s Center, and Dartmouth Hitchcock Medical Center.

Written informed consent was obtained during enrollment from a parent or legal guardian

with assent obtained from the minor child. The study followed guidelines for conducting clini-

cal research with human subjects in accordance with 45 CFR Part 46 from the US Department

of Health and Human Services [24], and US Food and Drug Administration regulations for

investigational products, and principals expressed in the Declaration of Helsinki.

Study design

The clinical trial was a Phase I, dose-escalation study in healthy children and adolescents to

evaluate the safety, tolerability, and immunogenicity of a prime-boost regimen of the 2012/13

seasonal influenza trivalent HA DNA vaccine followed by a boost with licensed split virus

2012/13 trivalent inactivated influenza vaccine (IIV3). The comparator group received

licensed 2012/13 IIV3 for both prime and boost.

Seventy-five healthy adolescents and children�6 and�17 years of age were enrolled in the

study between June and October 2012 (Fig 1). Participants were stratified by age (�6 to�11

or�12 to�17 years old), with the older age group receiving each dose (1 mg or 4 mg) of the

DNA vaccine first. Inclusion criteria required the participant to be in good general health with

hematological and biochemical parameters within normal institutional limits and willing to

have blood drawn throughout the trial. Exclusion criteria included weight less than 20 kg,

recent receipt of immune-modulating medical products, prior receipt of 2012/13 influenza

vaccine, contraindication to receiving influenza vaccine, or history of serious reactions to vac-

cination. After completion of the dose-escalation, the participants were randomized to receive

either 4 mg DNA or IIV3 for the prime. All injections were given intramuscularly in the
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deltoid. DNA vaccines were administered using the needle-free jet injection device, Biojector

2000 (Bioject; Tualatin, OR, USA), while IIV3 was administered by needle and syringe.

Each participant received an IIV3 boost 18 (±2) weeks after the prime, with exceptions

occurring in instances of local community outbreaks of influenza, only for participants who

received DNA prime. Under this allowance, six participants in the DNA-IIV3 regimen had the

IIV3 boost administered at either 14 (n = 5) or 15 weeks (n = 1). Participants with shortened

intervals were included in the analysis.

Fig 1. CONSORT diagram of study participants. All 75 study participants completed the scheduled vaccinations and 74 subjects completed the scheduled

visits and were included in the analysis. The remaining subject withdrew after completing the vaccination schedule but prior to the four week post boost time

point. This subject was analyzed for safety but was not included in the immunological end point analysis.

https://doi.org/10.1371/journal.pone.0206837.g001
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Solicited local and systemic reactogenicity were assessed for seven days after each vaccina-

tion with the use of a diary card; adverse events were recorded for 28 days; and serious adverse

events (SAE), new chronic medical conditions, or influenza-like illnesses (ILI) were monitored

for the duration of the trial. No laboratory testing was done to distinguish influenza infections

from illnesses with other etiologies. All adverse events were coded using the Medical Dictio-

nary for Regulatory Activities.

The trial is registered with clinicaltrials.gov (NCT01609998).

Vaccines

The investigational 2012/13 seasonal trivalent HA DNA vaccine (VRC-FLUDNA063-00-VP)

consisted of three closed-circular plasmid DNA macromolecules (VRC-9328, VRC-3027, and

VRC-2722) in equal amounts by weight, that express complete influenza HA sequences (A/

California/04/2009 [A(H1N1)pdm09], A/Victoria/361/2011 (H3N2), and B/Wisconsin/1/

2010, respectively) designed to closely match the 2012/13 licensed IIV3 (Table 1). The plasmid

DNA was manufactured at the VRC Vaccine Pilot Plant operated by Leidos Biomedical

Research, Inc. under current Good Manufacturing Practices, and formulated in phosphate

buffered saline (PBS) to a final concentration of 4 mg/mL.

The licensed split virus 2012/13 seasonal IIV3, Fluzone (Sanofi Pasteur, Inc., Swiftwater,

PA, USA), contained the three influenza strains (A/California/07/2009 [A(H1N1)pdm09], A/

Victoria/361/2011-like (H3N2), and B/Wisconsin/1/2010–like: B/Texas/6/2011) approved for

the 2012/13 influenza season (Table 1).

Randomization

Participants were randomized to the 4 mg DNA-IIV3 or IIV3 groups with equal allocation

stratified by age and site. The randomization sequence was generated by the trial statistician in

SAS using permuted blocked randomization with randomly selected block sizes of two or four.

Upon enrollment, each participant’s randomized assignment was displayed in the electronic

data entry system and vaccinations were administered in an open-label fashion.

Immunogenicity assays

Blood samples were collected before each vaccination, at four weeks after each vaccination,

and at 24 weeks after the boost to be tested for antibody responses by HAI and neutralization

assays. Antibody titers were evaluated by HAI for six influenza strains, three each included in

the 2012/13 and previous 2011/12 seasonal influenza vaccines to analyze both homologous

and heterologous antibody responses (S1 Table). HAI assays were conducted at Southern

Research, Inc. (Birmingham, AL) using validated methods [23]. Viruses were supplied by the

CDC and amplified in embryonated eggs. Serum samples were incubated with three volumes

of receptor destroying enzyme (RDE) and incubated at 37˚C for approximately 18 hours, fol-

lowed by 30–60 minutes ar 56˚C. Dulbecco’s phosphate-buffered saline (DPBS) was then

added to yield a 1:10 dilution of the original serum. Samples were tested in duplicate in V-

Table 1. Influenza antigens contained within the vaccines.

Vaccine A(H1N1)pdm09 H3N2 B

2012/13 trivalent HA DNA

(prime only)

A/California/04/2009 A/Victoria/361/2011 B/Wisconsin/1/2010

2012/13 IIV3

(prime and boost)

A/California/07/2009 A/Victoria/361/2011-like B/Wisconsin/1/2010-like: B/Texas/6/2011

https://doi.org/10.1371/journal.pone.0206837.t001
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bottom 96-well plates. Twenty-five μL of pretreated serum was added to the first row of the

plate, and diluted 1:2 fold, to a final dilution of 1:1280. Twenty-five μL of virus, adjusted to 4

(hemagglutination untis) HAU/25 μL, was added to all the wells and incubated at room tem-

perature for 30–60 minutes. Fifty μL of 0.5% turkey red blood cells was then added and plates

were incubated for 30–60 minutes at room temperature. The titer was determined to be the

last well that showed no agglutination and was expressed as the reciprocal of that dilution.

To study the neutralizing activity and breadth of the antibodies induced by vaccination, a

panel of ten viruses comprised of influenza A subtypes (H1N1, H2N2, H3N2, H5N1, H7N9,

and H9N2) and one influenza B virus was generated (S1 Table). The neutralization assays were

run as previously described [19], using replication incompetent HA-pseudotyped viruses pro-

duced in 293T cells. The pseudotyped viruses expressed the HA antigen along with a luciferase

reporter gene. Virus was incubated with sera samples for 45–90 minutes at 37˚C before being

added to the cells. Neutralization was quantitated by the relative decrease of the luciferase

activity in infected 293A cells as compared to control sera, measured at 48–54 hours after

infection. The dilution that resulted in 80% neutralization (ID80) was calculated relative to sig-

nal in the absence of sera, using five-parameter curve fitting. Assay controls included both

neutralizing and non-neutralizing antibodies run concurrently with clinical samples. Neutral-

izing antibody responses against influenza B strains were further examined through a micro-

neutralization assay. Both B/Brisbane/60/2008 and B/Wisconsin/1/2010 were analyzed (S1

Table). Each virus stock was grown in embryonated eggs, standardized to 103.3(± 0.08) 50% tis-

sue culture infective doses (TCID50), and added to a microtiter plate. The starting concentra-

tion for the heat inactivated serum was 1:10, and two fold dilutions were made to a final

dilution of 1:10240. The virus-serum mix was incubated at room temperature for 60 minutes

and added to confluent MDCK cells. Samples were plated in quadruplicate and incubated at

37˚C. Cytopathic effect was monitored and recorded at 72 and 96 hours. Neutralizing titer was

defined as the reciprocal of the highest dilution of serum that completely neutralized infectivity

of of the virus tested.

Statistical analysis

The primary objective of the study was to assess the safety and tolerability of the DNA prime

(at both 1 mg and 4 mg dosages) followed by an IIV3 boost in both children (�6 to�11 years)

and adolescents (�12 to�17 years). The sample size was selected to obtain preliminary esti-

mates of safety and immunogenicity in a pediatric population. The planned sample sizes pro-

vide over 90% chance to observe at least one event if the true rate is at least 0.21 in the 1 mg

DNA-IIV3 group (n = 10) or 0.074 in the 4 mg DNA-IIV3 or IIV3-IIV3 groups (n = 30). The

samples size of n = 30 provides 80% power to detect an absolute difference of 33%, assuming

the reference group had a response rate of 50%.

The secondary objectives were to assess the seroconversion and magnitude of immune

responses at four weeks post boost by HAI and neutralization assays. The 1 mg DNA prime

group was included in the study primarily for safety and dose-escalation, and therefore the

analysis of the antibody response focused on comparing the 4 mg DNA prime group to the

IIV3 prime group. The HAI antibody titers for each group were displayed as the geometric

mean titer (GMT). The seroconversion rates for HAI were determined per the FDA criteria of

positivity as either a baseline (Day 0) titer< 1:10 and a post boost titer� 1:40 or a baseline

titer� 1:10 and a minimum four-fold rise after boost [25], and the positive response rate for

the neutralization assay was based on a four-fold rise in titer from baseline. The fold increase

in HAI antibody titer was calculated by comparing the titer at four weeks post boost to the

titer at baseline. Additionally, for neutralizing antibodies against each strain, the baseline
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corrected geometric mean fold ratio (GMFR) between groups and associated p-value was esti-

mated using a linear regression model for log transformed titers, adjusting for baseline titer

(log-transformed) under the assumption of heteroscedasticity. HAI or neutralizing antibody

titers below the limit of detection for the assay (<10) were imputed for statistical purposes

using a value of 5. Comparisons were made for each virus strain tested, and within each age

stratum, using Fisher’s exact test for seroconversion rates, and t-test for response magnitude

using log-transformed HAI titers or neutralization titers. Statistical significance was consid-

ered at a level of alpha = 0.05 without adjustment for multiple comparisons. Statistical analyses

were performed in SAS 9.3 or higher (SAS Institute, Cary, NC).

Both nonparametric tests and t-tests were performed to analyze the results from this clinical

trial. Both analyses resulted in consistent outcomes with one exception: a difference was

observed in the GMFR comparison, due to the non-parametric tests not accounting for the dif-

ferences in baseline titers (see S5 Table). The t-test comparisons were included in this publica-

tion since these were the originally planned analyses and also since these more accurately

accounted for the baseline differences observed between groups.

Results

Study population

Seventy-five participants were enrolled in the study and all completed their vaccination regi-

mens of either DNA prime followed by IIV3 boost (DNA-IIV3, n = 44) or IIV3 prime followed

by IIV3 boost (IIV3-IIV3, n = 31). Overall, 74 participants (99%) completed the study protocol

and one participant voluntarily withdrew from the study early (Fig 1). In total, there were 39

male (52%) and 36 female (48%) participants�6 to�17 years old (Table 2).

Across all participants, 60% were immunized with seasonal influenza vaccine at least 3

times and 27% of participants 1–2 times in the five years prior to the start of the trial (Table 2).

For the�12 to�17 years of age strata, 47% of participants received influenza vaccination at

least 3 times and 37% received vaccine 1–2 times; while the majority (73%) of�6 to�11 years

of age children received influenza vaccination at least 3 times, and 16% received vaccine 1–2

times.

Vaccine reactogenicity and safety

The DNA-IIV3 regimen was safe and well tolerated. Three SAEs were reported; however, all

were assessed as not related to study vaccinations. Overall, the investigational DNA vaccine

was found to be associated with an increased frequency of local reactogenicity, with a signifi-

cant difference in all solicited local reactogenicity symptoms between DNA prime and IIV3

prime (p<0.001 for pain/tenderness, swelling, and redness) (Table 3). These symptoms were

treated with analgesics (ibuprofen or acetaminophen) if desired. However, all reactogenicity

was mild or moderate in severity and resolved without sequelae, confirming safety of the DNA

prime-IIV3 boost regimen.

To evaluate the pain perception in children, we used the Wong-Baker FACES Pain Rating

Scale [26] (Fig 2A). Overall, the results demonstrated that administration of the DNA vaccine

using a Biojector was associated with higher pain perception than administration of IIV3 via

needle and syringe (Fig 2B). The younger children (�6 to�11 years) chose higher pain read-

ings than the older group (�12 to�17 years) following DNA prime (p = 0.02), and this higher

perception of pain was also projected on the IIV3 boost (p<0.001).

The frequency of participants with at least one unsolicited AE recorded following vaccina-

tion was similar across groups. The most frequent AEs were ILI and injection site bruising.

Bruising occurred following DNA prime vaccination in three participants. Cumulatively, there
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were 17 participants with 19 total ILI cases recorded. Two unsolicited AEs assessed as possibly

related to a study injection included a Grade 1 diarrhea with onset one day after a 1 mg DNA

prime and a Grade 1 upper respiratory infection with onset four days after IIV3 boost. One ILI

with onset at five days after IIV3 boost was recorded as severe because of self-reported fever

being 104.1˚F; however, the illness resolved within a day and did not meet criteria for report-

ing as an SAE. The incidence and severity of reported systemic reactogenicity was otherwise

similar across all groups (Table 3).

Immune response

Prior to vaccination, 61%-71% of children had a pre-existing HAI titer� 1:10 and 36–48%

had a pre-existing HAI titer� 1:40 to both A/California/07/2009 [A(H1N1)pdm09] and A/

Victoria/361/2011 (H3N2) while the pre-existing responses to B/Wisconsin/1/2010 were lower

(23–26% of participants had an HAI titer of� 1:10 and 10–13% of participants had an HAI

titer� 1:40) (S2 Table). These trends were similar for the 2011/12 vaccine strains tested (S2

Table).

The 1 mg DNA group was included in the trial primarily for safety, and therefore the anti-

body responses described are from the 4 mg DNA group. After prime, the IIV3 group dis-

played higher antibody responses by HAI than the DNA group (S2 and S3 Tables), and this

was similar to previously published data on DNA influenza vaccines [27].

Table 2. Baseline demographics of participants by group and overall.

Characteristics

Treatment Group Overall

1 mg DNA-IIV3 4 mg DNA-IIV3 IIV3-IIV3

�12 to�17 yrs

(n = 6)

�6 to�11 yrs

(n = 6)

�12 to�17 yrs

(n = 16)

�6 to�11 yrs

(n = 16)

�12 to�17 yrs

(n = 16)

�6 to�11 yrs

(n = 15)

�6 to�17 yrs

(n = 75)

Sex–no. (%)

Male 2 (33) 3 (50) 9 (56) 8 (50) 7 (44) 10 (67) 39 (52)

Female 4 (67) 3 (50) 7 (44) 8 (50) 9 (56) 5 (33) 36 (48)

Age—yearsa

Mean (S.D.) 14.7 (1.2) 8.2 (1.5) 14.2 (1.5) 9.2 (1.3) 14.8 (1.9) 9.1 (1.6) 11.8 (3.2)

Median [Range] 15 [13,16] 9 [6,10] 14 [12,17] 9 [7,11] 15 [12,17] 9 [7,12] 12 [6,17]

Race–no. (%)

Black or African

American

2 (33) 0 (0) 2 (12) 0 (0) 4 (25) 4 (27) 12 (16)

White 4 (67) 4 (67) 11 (69) 15 (94) 11 (69) 11 (73) 56 (75)

Multiracial 0 (0) 2 (33) 3 (19) 1 (6) 1 (6) 0 (0) 7 (9)

Ethnicity–no. (%)

Non-Hispanic/Latino 6 (100) 5 (83) 16 (100) 15 (94) 16 (100) 15 (100) 73 (97)

Hispanic/Latino 0 (0) 1 (17) 0 (0) 1 (6) 0 (0) 0 (0) 2 (3)

Body Mass Index (BMI)a

Mean (S.D.) 21.6 (4.3) 17.3 (3.0) 24.1 (4.7) 18.0 (2.8) 23.4 (5.6) 18.2 (3.7) 20.7 (5.0)

Range [18.3, 27.1] [13.8, 22.7] [18.0, 34.2] [14.0, 24.5] [16.2, 38.4] [13.6, 28.2] [13.6, 38.4]

Influenza vaccinations in the previous 5 years–no. (%)

>5 times 0 (0) 0 (0) 3 (19) 3 (19) 4 (25) 2 (13) 12 (16)

3–5 times 3 (50) 1 (17) 4 (25) 12 (75) 4 (25) 9 (60) 33 (44)

1–2 times 1 (17) 3 (50) 8 (50) 0 (0) 5 (31) 3 (20) 20 (27)

0 times 2 (33) 2 (33) 1 (6) 1 (6) 3 (19) 1 (7) 10 (13)

aAge, along with height and weight (used for BMI), measured at date of prime vaccination.

https://doi.org/10.1371/journal.pone.0206837.t002
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Table 3. Summary of solicited reactogenicity.

Symptoms Intensity DNA Prime (n = 44) IIV3 Prime (n = 31) IIV3 Boosta (n = 75)

Local reactogenicity, participants (%)

PAIN/TENDERNESS

None 3 (6.8%) 13 (41.9%) 30 (40.0%)

Mild 41 (93.2%) 16 (51.6%) 42 (56.0%)

Moderate 0 (0.0%) 2 (6.5%) 3 (4.0%)

SWELLING

None 29 (65.9%) 31 (100.0%) 73 (97.3%)

Mild 11 (25.0%) 0 (0.0%) 1 (1.3%)

Moderate 4 (9.1%) 0 (0.0%) 1 (1.3%)

REDNESS

None 21 (47.7%) 26 (83.9%) 65 (86.7%)

Mild 22 (50.0%) 4 (12.9%) 7 (9.3%)

Moderate 1 (2.3%) 1 (3.2%) 3 (4.0%)

ANY LOCAL SYMPTOM

None 3 (6.8%) 12 (38.7%) 29 (38.7%)

Mild 37 (84.1%) 16 (51.6%) 40 (53.3%)

Moderate 4 (9.1%) 3 (9.7%) 6 (8.0%)

Systemic reactogenicity, participants (%)

MALAISE

None 36 (81.8%) 25 (80.6%) 57 (76.0%)

Mild 8 (18.2%) 6 (19.4%) 13 (17.3%)

Moderate 0 (0.0%) 0 (0.0%) 5 (6.7%)

MYALGIA

None 37 (84.1%) 28 (90.3%) 68 (90.7%)

Mild 7 (15.9%) 3 (9.7%) 6 (8.0%)

Moderate 0 (0.0%) 0 (0.0%) 1 (1.3%)

HEADACHE

None 31 (70.5%) 25 (80.6%) 59 (78.7%)

Mild 11 (25.0%) 5 (16.1%) 13 (17.3%)

Moderate 2 (4.5%) 1 (3.2%) 3 (4.0%)

CHILLS

None 42 (95.5%) 29 (93.5%) 70 (93.3%)

Mild 2 (4.5%) 1 (3.2%) 5 (6.7%)

Moderate 0 (0.0%) 1 (3.2%) 0 (0.0%)

NAUSEA

None 40 (90.9%) 31 (100.0%) 67 (89.3%)

Mild 4 (9.1%) 0 (0.0%) 6 (8.0%)

Moderate 0 (0.0%) 0 (0.0%) 2 (2.7%)

TEMPERATURE

None 43 (97.7%) 31 (100.0%) 73 (97.3%)

Mild 0 (0.0%) 0 (0.0%) 0 (0.0%)

Moderate 1 (2.3%) 0 (0.0%) 1 (1.3%)

Severe 0 (0.0%) 0 (0.0%) 1 (1.3%)

ANY SYSTEMIC SYMPTOM

None 27 (61.4%) 21 (67.7%) 49 (65.3%)

Mild 15 (34.1%) 9 (29.0%) 19 (25.3%)

Moderate 2 (4.5%) 1 (3.2%) 6 (8.0%)

(Continued)
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The HAI antibody titers following the boost are summarized in S3 Table and Fig 3A. The 4

mg DNA-IIV3 regimen resulted in higher GMTs than the IIV3-IIV3 regimen at four weeks

post boost for the H1 and influenza B strains, although the differences were not statistically sig-

nificant. Higher fold increases of GMT compared to baseline titers were observed following 4

mg DNA-IIV3 for all tested influenza strains (Fig 3B, S4 Table). However, only the increase

for A/California/07/2009 [A(H1N1)pdm09] was significant, with the 4 mg DNA-IIV3 group

exhibiting an increase of 10.12 fold (95% CI = 5.60–18.27) compared to 3.86 fold (95%

CI = 2.32–6.44) for the IIV3-IIV3 group (p = 0.015).

The seroconversion rates of participants at four weeks post boost by HAI are summarized

in S2 Table and Fig 3C. The seroconversion rates were higher for the 4 mg DNA-IIV3 group

compared to the IIV3-IIV3 group for all tested influenza strains except B/Texas/6/2011; how-

ever, the increase was not statistically significant between the groups for any of the influenza

strains tested.

We were also interested in evaluating the neutralizing activity and breadth of the antibody

responses following each vaccination regimen. At four weeks post boost, neutralizing antibody

GMTs were similar between the 4 mg DNA-IIV3 and IIV3-IIV3 groups for all strains analyzed

(S5 Table). Additional microneutralization assays were completed for influenza B, due to the

high baseline and post boost GMTs observed in both groups against B/Brisbane/60/2008 in the

pseudoneutralization assay (S5 Table). After adjusting for variable baseline titers the geometric

mean fold increase, reported by geometric fold ratio (GMFR), was significantly higher at four

weeks post boost in the 4 mg DNA-IIV3 compared with the IIV3-IIV3 groups for both H1N1

strains tested: A/New Caledonia/20/1999 (GMFR = 1.41, 95% CI = 1.10–1.81, p = 0.008) and

A/South Carolina/1/1918 strains (GMFR = 1.55, 95% CI = 1.27–1.89, p<0.001) (Table 4).

Seroconversion rates were also the same or higher in the 4 mg DNA-IIV3 group compared to

the IIV3-IIV3 group across all strains tested (excluding A/Canada/720/2005), although these

increases were not significant (Table 4).

In addition, in this small study we did not detect any statistically significant differences in

the HAI or neutralization assays in immune responses between the age groups or between par-

ticipants with different history of influenza vaccinations within age groups.

Discussion

In previous influenza vaccine trials involving healthy adults, priming with a DNA vaccine and

following with a monovalent inactivated boost proved more effective than an inactivated

prime-boost regimen at establishing an antibody response against emerging subtypes of avian

origin, including H5 and H7 [19, 21]. In a separate trial in healthy adults involving a DNA

prime-IIV3 boost regimen with seasonal strains of influenza (H1, H3, and B), no significant

improvement was observed compared to a placebo prime-IIV3 boost group, presumably due

to pre-existing immune responses [23]. Therefore, we evaluated the DNA prime-IIV3 boost

regimen in children and adolescents in an attempt to examine the safety and immunogenicity

Table 3. (Continued)

Symptoms Intensity DNA Prime (n = 44) IIV3 Prime (n = 31) IIV3 Boosta (n = 75)

Severe 0 (0.0%) 0 (0.0%) 1 (1.3%)

Solicited reactogenicity was collected for 7 days after each vaccination. Each vaccine recipient was counted once at

worst severity for any local and systemic parameter.
aIIV3 boost symptoms were consolidated for all vaccine regimens, as no differences were observed between groups.

https://doi.org/10.1371/journal.pone.0206837.t003
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of the DNA prime-IIV3 boost in a more naïve population. Overall, the trivalent HA DNA

prime-IIV3 boost regimen was safe and well tolerated. To our knowledge, this clinical trial is

the first Phase I study in the U.S. involving a DNA vaccine in a healthy pediatric population.

To date, few studies have examined DNA vaccines in juvenile populations. One previous

study conducted in Italy evaluated a therapeutic HIV DNA vaccine in HIV infected children

between 6 and 16 years of age on highly active antiretroviral therapy (HAART). In the Phase II

study, 20 children were enrolled and randomized to receive four intramuscular injections with

the HIV DNA vaccine along with HAART, or to only receive continued HAART. The vaccine

HA DNA
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Fig 2. Overall pain perception following administration of vaccines. (A) The Wong-Baker Faces Pain Rating Scale for evaluation of pain perception following

vaccination was shown to participants the same day (within an hour) and again at seven days post vaccination. (B) Overall pain perception of participants following both

prime and boost. Age groups are combined and pain scores of 0 are not displayed.

https://doi.org/10.1371/journal.pone.0206837.g002
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was reported as well tolerated with limited local reactogenicity and no severe systemic reac-

tions [28, 29], further confirming DNA vaccines are a feasible strategy in pediatric

populations.

One explanation for the difference in immune response observed between studies in

healthy adults against avian subtypes of influenza where a significantly improved response was

observed following priming with DNA [19, 21], and the single study investigating seasonal

strains of influenza where no difference in titers was observed [23], was the high levels of pre-

existing immunity to the seasonal strains in the adult population. This led to the possibility

that an improved response following DNA-IIV3 vaccination could be observed in the more

naïve pediatric population. However, in this pediatric trial we observed an immune response

comparable to an IIV3-IIV3 regimen in our small number of participants. Moreover, high lev-

els of baseline immunity against the seasonal vaccine strains were detected in this pediatric

Fig 3. Antibody responses to the vaccine strains by age and group, as determined by HAI. The antibody responses for the 4 mg DNA-IIV3 and the IIV3-IIV3

regimens are displayed as group means based on the (A) magnitude of response at 4 weeks post boost, (B) geometric mean fold increase of titers from baseline at

both 4 and 24 weeks post boost, and (C) seroconversion rates at 4 weeks post boost. DNA-IIV3 values shown in black, and IIV3-IIV3 in grey. Comparisons were

made between the DNA-IIV3 and IIV3-IIV3 groups using Fisher’s exact test for serconversion rates, and t-test for response magnitude using log-transformed HAI

titers.

https://doi.org/10.1371/journal.pone.0206837.g003
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population with the majority of children having received at least one seasonal influenza immu-

nization within the last five years (66% of�12 to�17 year olds, and 75% of�6 to�11 year

olds). Baseline HAI titers were observed in 60–70% of participants for both H1 and H3 strains.

Although these levels were lower than those observed in healthy adults [23], they could explain

the lack of improvement compared to IIV3. The possibility exists that improved response

Table 4. Baseline corrected geometric mean fold ratio and frequency of response by neutralization assays at four weeks post boost.

Treatment Group Baseline Corrected Geometric Mean Fold Ratio (GMFR) (95% CI) p-value for GMFR Frequency of response (%)

relative to baseline

(95% CI)b

A/New Caledonia/20/1999 (H1N1)
DNA-IIV3a 1.41 (1.10–1.81) p = 0.008 9.7 (2.0–25.8)

IIV3-IIV3 0.0 (0.0–11.2)

A/South Carolina/1/1918 (H1N1)
DNA-IIV3a 1.55 (1.27–1.89) p<0.001 35.5 (19.2–54.6)

IIV3-IIV3 19.4 (7.5–37.5)

A/Canada/720/2005 (H2N2)
DNA-IIV3a 0.96 (0.70–1.33) p = 0.808 3.2 (0.1–16.7)

IIV3-IIV3 16.1 (5.5–33.7)

A/Beijing/353/1989 (H3N2)
DNA-IIV3a 1.23 (0.87–1.73) p = 0.239 32.3 (16.7–51.4)

IIV3-IIV3 16.1 (5.5–33.7)

A/Hong Kong/1/1968 (H3N2)
DNA-IIV3a 1.21 (0.88–1.66) p = 0.241 22.6 (9.6–41.1)

IIV3-IIV3 19.4 (7.5–37.5)

A/Indonesia/05/2005 (H5N1)
DNA-IIV3a 0.96 (0.83–1.11) p = 0.559 0.0 (0.0–11.2)

IIV3-IIV3 0.0 (0.0–11.2)

A/Vietnam/1203/2004 (H5N1)
DNA-IIV3a 1.21 (0.88–1.66) p = 0.227 12.9 (3.6–29.8)

IIV3-IIV3 6.5 (0.8–21.4)

A/Anhui/1/2013 (H7N9)
DNA-IIV3a 1.04 (0.78–1.39) p = 0.783 3.2 (0.1–16.7)

IIV3-IIV3 3.2 (0.1–16.7)

A/Hong Kong/1073/1999 (H9N2)
DNA-IIV3a 1.28 (0.88–1.88) p = 0.191 16.1 (5.5–33.7)

IIV3-IIV3 9.7 (2.0–25.8)

B/Brisbane/60/2008
DNA-IIV3a 1.01 (0.74–1.38) p = 0.928 16.1 (5.5–33.7)

IIV3-IIV3 16.1 (5.5–33.7)

B/Brisbane/60/2008—microneutralization assay
DNA-IIV3a 0.94 (0.66–1.35) p = 0.738 9.7 (2.0–25.8)

IIV3-IIV3 9.7 (2.0–25.8)

B/Wisconsin/1/2010—microneutralization assay
DNA-IIV3a 1.18 (0.78–1.78) p = 0.421 54.8 (36.0–72.7)

IIV3-IIV3 41.9 (24.5–60.9)

p values for GMFR comparison between regimens were determined by pairwise t-test.
aDNA injection at 4 mg.
bPositive response rate defined as four-fold increase over baseline.

https://doi.org/10.1371/journal.pone.0206837.t004
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would occur in children younger than this trial enrolled who are more naïve to seasonal influ-

enza antigens.

Children under 5 years of age typically experience the most severe disease following influ-

enza infection [6]. Vaccination of this more naïve age group with a DNA prime could be bene-

ficial and provide protection against severe disease. However, performing a clinical trial with a

novel vaccine platform in extremely young children or infants requires additional precautions.

One such precaution includes conducting age de-escalation studies to first prove the safety of

the vaccine in adults and adolescents [30]. Once such trials are completed, vaccination of this

younger age group can be assessed in future trials.

While the majority of the antibody responses analyzed were similar among regimens, there

was a trend towards increased responses against H1 viruses in the 4 mg DNA prime group. A sig-

nificant fold increase in GMT was observed against the A(H1N1)pdm09 antigen, A/California/

07/2009, by HAI. Significantly higher neutralizing fold increases were also detected against the

two H1N1 viruses included in the panel (A/New Caledonia/20/1999 and A/South Carolina/1/

1918). The lack of significance observed for the H3N2 and influenza B strains included in the vac-

cines could be attributable to the antigenic drifting of the seasonal H3N2 strain, A/Victoria/361/

2011 that occurred during vaccine production [31], and the influenza B strain differing between

the DNA prime and the 2012/13 IIV3 (B/Wisconsin/1/2010 vs B/Texas/6/2011). These mis-

matches between the DNA prime and IIV3 boost could have resulted in suboptimal responses for

the DNA-IIV3 regimen. Although not analyzed in this study, DNA vaccines may also induce T

cell responses that would not occur in IIV protein-based vaccine recipients, and could provide an

additional benefit during future infections, even in cases of mismatched antigens [22].

The primary source of reactogenicity in this pediatric influenza vaccine trial may have orig-

inated from the administration method used for the DNA prime. This needle-free jet injection

device (Biojector 2000) resulted in significantly higher reports of pain, swelling, and redness

compared to needle and syringe administration in both age groups. This needle-free device

has previously been linked to higher reports of pain in healthy adults [23]. However, the Bio-

jector 2000 device used in this clinical study is an older version of needle-free technology that

requires a CO2 cartridge. Newer, spring-powered versions of this technology exist that could

possibly reduce, or possibly eliminate, these differences in reactogenicity [32] to make DNA

vaccines even more acceptable in this age group. Non-invasive dermal patches are another

novel possible route of administration for DNA vaccines that could be analyzed in future stud-

ies. The microneedle patches deliver vaccine antigens into the dermis of the skin before dis-

solving completely [33]. In a recent phase I study involving an IIV3 the microneedles were

well tolerated and immunogenic [34].

Based on the studies in healthy children and adults to date [19–21, 23], a DNA prime-inac-

tivated boost regimen appears most beneficial in a pandemic situation with novel subtypes,

where little to no pre-existing immunity is present in the population. Based on the HAI titers

following priming with DNA vaccine alone seen here and in other studies [27], an inactivated

vaccine boost would still likely be required. In the event of a pandemic, DNA vaccines have the

benefit of being rapidly developed and produced, allowing for quick priming of the population

while an inactivated vaccine is being prepared. A DNA vaccine could therefore help with vac-

cine availability and rapid response rate for an emerging subtype, while remaining safe and

well tolerated in all age groups.
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