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Abstract

Background and Purpose: Tobacco cigarette smoking is considered to be a strong risk factor 

for intracranial aneurysmal rupture. Nicotine is a major biologically-active constituent of tobacco 

products. Nicotine’s interactions with vascular cell nicotinic acetylcholine receptors containing α7 

subunits (α7*-nAChR) are thought to promote local inflammation and sustained angiogenesis. In 

this study, using a mouse intracranial aneurysm model, we assessed potential contributions of 

nicotine exposure and activation of α7*-nAChR to the development of aneurysmal rupture.

Methods: Intracranial aneurysms were induced by a combination of deoxycorticosterone-salt 

induced hypertension and a single elastase injection into cerebrospinal fluid in mice.

Results: Exposure to nicotine or an α7*-nAChR-selective agonist significantly increased 

aneurysm rupture rate. Co-exposure to an α7*-nAChR antagonist abolished nicotine’s deleterious 

effect. Additionally, nicotine’s promotion of aneurysm rupture was absent in smooth muscle cell-

specific α7*-nAChR subunit knockout mice, but not in mice lacking α7*-nAChR on endothelial 

cells or macrophages. Nicotine treatment increased the mRNA levels of vascular endothelial 

growth factor, platelet-derived growth factor-B, and inflammatory cytokines. α7*-nAChR 

antagonist reversed nicotine-induced up-regulation of these growth factors and cytokines.

Conclusion: Our findings indicate that nicotine exposure promotes aneurysmal rupture through 

actions on vascular smooth muscle cell α7*-nAChR.

Keywords

Nicotine; alpha7 nicotinic acetylcholine receptor; angiogenesis; intracranial aneurysm; models; 
animal

Introduction

Unruptured intracranial aneurysms are common, and 1 to 5% of the population may harbor 

an unruptured intracranial aneurysm.1 Despite advances in management, subarachnoid 

hemorrhage from aneurysmal rupture still has high morbidity and mortality.1 Tobacco 

contains over 7,000 different chemicals, including nicotine, and tobacco product use is 

associated with various cardiovascular and cerebrovascular diseases.2 Tobacco cigarette 

smoking is an independent risk factor for intracranial aneurysmal rupture, and the rupture 

risk in current smokers is three times higher than that of non-smokers.3

Nicotinic acetylcholine receptors (nAChR) are the biological targets of nicotine and mediate 

natural chemical signaling by acetylcholine.4–6 nAChRs are diverse members of the cys loop 

family of neurotransmitter-gated ion channels. In mammals, nAChRs are composed as 

pentamers of different combinations of sixteen, genetically-distinct, transmembrane protein 

subunits. Each nAChR subtype is defined by its subunit combination and isoforms of those 
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subtypes are further distinguished based on subunit ratios and arrangements.7 The accepted 

nomenclature for nAChR subtypes is based on known or inferred subunit combination and 

employs an “*” to indicate that there are known or potential assembly partners in addition to 

the subunit(s) specified.8

Each nAChR subtype or isoform has a unique distribution across cell types, organs and 

organ regions, and even subcellularly as well as its own pharmacological profile and 

responsiveness and sensitivity to nicotine and acetylcholine. Vascular cells including 

endothelial cells and smooth muscle cells express the nicotinic acetylcholine receptors 

containing α7 subunits (α7*-nAChR).9, 10 Nicotine’s interaction with α7*-nAChR on 

vascular cells promotes inflammation and angiogenesis,2, 10, 11 biological processes that are 

important for the development, growth, and rupture of intracranial aneurysms.12–14 We 

hypothesized that nicotine contributes to the pathophysiology of intracranial aneurysm 

through the activation of α7*-nAChR in the vascular wall. Therefore, in this study, using a 

mouse model of intracranial aneurysm,13–15 we studied potential contribution of nicotine 

exposure to aneurysmal rupture and roles for those effects of α7*-nAChR. Furthermore, 

utilizing cell-type specific nAChR α7 subunit knockout mice, we defined a cell type 

involved in nicotine’s effects on aneurysmal rupture.

Methods

The data that support the findings of this study are available from the corresponding author 

upon reasonable request. Experiments were conducted in accordance with the guidelines 

approved by the Institutional Animal Care and Use Committee. We obtained α7nAChRflox/

flox (α7f/f) mice16, α7nAChR knockout (α7nAChR KO) mice17, mice expressing Cre 

recombinase under the control of the myeloid-specific lysosome M (LysM) promoter 

(LysMCre18), the transgelin (smooth muscle protein 22-alpha) promoter (SM22Cre19), and 

the endothelial-specific receptor tyrosine kinase (Tie2) promoter (Tie2Cre20) from Jackson 

Laboratory (Bar Harbor, Maine). We used LysMCre, SM22Cre and Tie2Cre negative α7f/f 

mice as control and LysMCre, SM22Cre, and Tie2Cre positive α7f/f mice as myeloid-, 

smooth muscle cell-, and endothelial cell-specific α7nAChR knockout mice. We used 9-

week-old male C57BL/6J. To induce aneurysm formation, we combined systemic 

hypertension and a single injection of elastase (17.5mU) into the cerebrospinal fluid.13–15, 21 

To induce systemic hypertension, we used deoxycorticosterone acetate (DOCA)-salt-

induced hypertension.

Nicotine (Sigma-Aldrich, St. Louis, MO, USA) was dissolved in saline and administrated 

subcutaneously thorough Alzet osmotic minipumps (2004, Durect Corporation, Cupertino, 

CA) (5 mg/kg/day22). α7nAChR agonist (AR-R17779, 5mg/kg in 5%DMSO) and 

α7nAChR antagonist (5mg/kg in saline) were injected intraperitoneally once a day.23 

Vehicle control groups received saline or 5% DMSO. All drugs or vehicle were administered 

from one week before elastase injection, and the treatments were continued for 4 weeks.

To detect aneurysmal rupture, two blinded observers performed daily neurological 

examinations as previously described.14 Mice were euthanized when they developed 

neurological symptoms (score, 1–5). Asymptomatic mice were euthanized 21 days after 
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aneurysm induction as previously described.14 The brain samples were perfused with 

phosphate-buffered saline, followed by a gelatin-containing blue dye to visualize cerebral 

arteries. Aneurysms were defined as a localized outward bulging of the vascular wall, whose 

diameter was greater than the parent artery diameter. Two observers who were blinded to the 

treatments and mouse genotypes conducted a daily neurological examination and assessed 

subarachnoid hemorrhage and aneurysm formations. A detailed Methods section is available 

in the online-only Data Supplement.

Statistical Analysis

We used the Fisher’s exact test to analyze the incidence of aneurysms (number of mice with 

any aneurysms [ruptured or unruptured]/total number of mice) and rupture rate (number of 

mice with ruptured aneurysms/number of mice with any aneurysms). Mice that did not show 

aneurysm formation were excluded from the calculation of the rupture rate. As an 

exploratory analysis, the survival analysis was performed using the log-rank test. Levels of 

mRNA and blood pressure were analyzed by two-way ANOVA, followed by Turkey-Kramer 

post hoc test. Statistical significance was accepted at P < 0.05. Quantitative results were 

expressed as mean ± SD.

Results

Nicotine exposure promotes aneurysmal rupture in a mouse model of intracranial 
aneurysm.

As a first step, we assessed effects of nicotine exposure on the formation and rupture of 

intracranial aneurysms. There was no significant difference in the overall incidence of 

aneurysms between the vehicle and nicotine treatment groups (68% versus 76%; n = 22 

versus n = 25; Figure 1A). However, nicotine treatment significantly increased the aneurysm 

rupture rate (Figure 1A; vehicle versus nicotine: 46% versus 89%; P < 0.01). Mice treated 

with nicotine had significantly worse symptom-free survival compared to vehicle (Kaplan-

Meier log-rank P < 0.05; Figure 1A). Figures 1B, 1C, and 1D show normal cerebral arteries, 

an unruptured aneurysm from a mouse that was asymptomatic throughout the experimental 

period, and a ruptured aneurysm with subarachnoid hemorrhage from a mouse that became 

symptomatic 8 days after aneurysm induction, respectively. There were hemosiderin 

deposits on the brain surface along the Circle of Willis due to the blood leakage from the 

needle track of the elastase injection. There was no significant difference in blood pressure 

between two groups at any time points (Table I in Online Data Supplement).

Effects of α7*-nAChR agonist or antagonist exposure on the development of intracranial 
aneurysm rupture

Since nicotine increased the rate of aneurysmal rupture, we then investigated whether 

activation of α7*-nAChR mediates nicotine’s effects utilizing an α7*-nAChR-selective 

agonist, AR-R17779. There was no significant difference in the incidence of aneurysm 

formations between vehicle or α7*-nAChR agonist treatment groups (62% versus 72%; n = 

16 versus n = 18; Figure 2A). However, the α7*-nAChR agonist significantly increased 

aneurysmal rupture (Figure 2A; 40% versus 92%; P < 0.05). Mice treated with the α7*-
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nAChR agonist had significantly worse symptom-free survival compared to vehicle (Kaplan-

Meier log-rank P < 0.05; Figure 2A). There was no significant difference in blood pressure, 

aneurysm location, or aneurysm size between two groups (Table I-II in Online Data 

Supplement).

Next, to test whether α7*-nAChR activation mediates nicotine’s promotion of aneurysmal 

rupture, we compared the rupture rate between mice treated with nicotine alone and those 

treated with nicotine plus an α7*-nAChR-selective antagonist, methyllycaconitine. There 

was no significant difference in the incidence of aneurysm formations between nicotine and 

nicotine + α7*-nAChR-selective antagonist treated groups (66% versus 77%; n = 18 versus 

n = 18; Figure 2B). However, the α7*-nAChR antagonist effectively abolished nicotine’s 

promotion of aneurysmal rupture (Figure 2B; nicotine versus nicotine + antagonist: 100% 

versus 42%; P < 0.01). Mice treated with nicotine plus the α7*-nAChR antagonist had 

significantly better symptom-free survival compared to those exposed to nicotine alone 

(Kaplan-Meier log-rank P < 0.05; Figure 2B). α7nAChR antagonist alone did not have any 

significant effect on the rupture rate (42% versus 38%, n = 12 versus 13, P = 1.00). There 

was no significant difference in blood pressure among three groups (Table I in Online Data 

Supplement).

Aneurysmal rupture in global nAChR α7 subunit knockout mice

To further confirm that nicotine exposure promotes aneurysmal rupture through α7*-

nAChR, we compared effects of nicotine treatment between nAChR α7 subunit knockout 

(α7 KO) mice and wild-type littermates.

There was no significant difference in the overall incidence of aneurysms (Figure 3A) and 

blood pressure (Table I in Online Data Supplement) in among four groups. However, 

consistent with results presented in Figure 1, nicotine treatment significantly increased 

aneurysmal rupture compared to the vehicle treatment in the wild-type mice (Figure 3B; 

vehicle versus nicotine: 46% versus 84%; P < 0.01). More importantly, the effect of nicotine 

exposure on aneurysmal rupture was abolished in α7 KO mice (Figure 3B; wild-type + 

nicotine versus α7 KO + nicotine: 84% versus 27%; P < 0.05). In α7 KO mice, nicotine did 

not affect the rupture rate (Figure 3B; vehicle versus nicotine: 36% versus 27%; P = 1.00).

Nicotine promotes the expression of growth factors and inflammation in the cerebral 
arteries.

Previous studies have shown that the activation of α7*-nAChR in vascular cells promotes 

sustained angiogenesis and inflammation through the release of angiogenic factors.2, 10, 11 

Therefore, to explore the mechanisms by which nicotine promotes aneurysmal rupture, we 

used real-time RT-PCR to determine levels of mRNA for angiogenic factors and 

inflammatory cytokines in cerebral arteries in the vehicle, nicotine, and nicotine + α7*-

nAChR antagonist-treated groups.

Expression of vascular endothelial growth factor (VEGF) and platelet-derived growth factor-

B (PDGF-B) in cerebral arteries were significantly higher in the nicotine treatment group 

than in the vehicle group (n=7 and 6; VEGF: 1.0 ± 0.3 versus 1.6 ± 0.2; PDGF-B: 1.0 ± 0.3 

versus 1.6 ± 0.3, all P < 0.01; Figure 4A). Moreover, the presence of an α7*-nAChR 
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antagonist reduced nicotine-mediated elevation of VEGF and PDGF-B (n=7 and 6; VEGF: 

1.6 ± 0.2 versus 0.8 ± 0.3; PDGF-B: 1.6 ± 0.3 versus 0.9 ± 0.1, all P < 0.01; Figure 4A). 

Meanwhile, expression of transforming growth factor-β (TGF-β) was significantly lower in 

the nicotine group than in the vehicle group (n=7 and 6; TGF-β: 1.0 ± 0.4 versus 0.5 ± 0.1, 

all P < 0.05; Figure 4A). α7*-nAChR antagonist exposure did not normalize levels of TGF-

β mRNA in nicotine-treated mice. There was no difference in fibroblast growth factor-2 

(FGF2) or hepatocyte growth factor (HGF) levels across groups.

mRNA levels of interleukin-6 (IL-6), IL-1β, tumor necrosis factor-α (TNF-α), and matrix 

metalloproteinase-9 (MMP-9) in cerebral arteries were significantly higher in the nicotine 

group than in the vehicle group (n = 7 and 6; IL-6: 1.0 ± 0.5 versus 2.9 ± 1.8; IL-1β: 1.0 

± 0.7 versus 4.1 ± 1.7; TNF-α: 1.0 ± 0.3 versus 2.9 ± 0.7; MMP-9; 1.0 ± 0.5 versus 2.1 

± 0.4, IL-1b, MMP-9, and TNF-α P < 0.01, IL-6 P < 0.05; Figure 4B). Furthermore, 

addition of an α7*-nAChR antagonist blocked nicotine exposure-induced increases in IL-6, 

IL-1β, TNF-α, and MMP-9 (n = 6; IL-6: 0.5 ± 0.3 versus 2.9 ± 1.8; IL-1β: 1.1 ± 1.1 versus 

4.1 ± 1.7; TNF-α: 0.5 ± 0.2 versus 2.9 ± 0.7; MMP-9: 0.8 ± 0.6 versus 2.1 ± 0.4, all P < 

0.01; Figure 4B). There was no difference in monocyte chemoattractant protein-1 or NF-κB 

across groups.

Roles of α7*-nAChR in nicotine-induced inflammation of cerebral arteries were further 

examined by assessing macrophage infiltration in cerebral arteries. CD68 positive cell 

density was significantly lower in cerebral arteries from nicotine-treated α7 KO mice (n = 6) 

than in those from nicotine-treated wild-type mice (n = 6; CD68: 6.0 ± 2.1 versus 16.5 ± 7.7, 

P < 0.01; Figure 4C). Figure 4D shows representative staining of cerebral arteries for CD68.

Nicotine promotes aneurysmal rupture via the activation of VSMC α7*-nAChR.

To explore the cell type that mediates deleterious effects of nicotine-induced α7*-nAChR 

activation, we compared the incidence of aneurysmal ruptures among vascular smooth 

muscle cell (VSMC)-specific α7 KO mice (α7f/fSM22Cre+), myeloid lineage cell 

(macrophages, monocytes, and granulocytes)-specific α7 KO mice (α7f/fLysMCre+), 

endothelial cell-specific α7 KO mice (α7f/fTie2Cre+), and their corresponding control 

littermates (α7f/f).

As shown in Figure 5, there was no difference in the rupture rate between α7f/fLysMCre+ 

mice treated with nicotine and their nicotine-treated control littermates (Figure 5B; α7f/f + 

nicotine versus α7f/fLysMCre+ + nicotine: 92% versus 87%; P = 1.00). However, nicotine’s 

promotion of aneurysm rupture was abolished in mice lacking α7*-nAChR on vascular 

smooth muscle cells (α7f/fSM22Cre+) (Figure 5A; α7f/f + nicotine versus α7f/fSM22Cre+ + 

nicotine: 91% versus 22%; P < 0.01). α7f/fSM22Cre+ mice treated with nicotine had 

significantly improved symptom-free survival compared with α7f/f mice treated with 

nicotine (P < 0.05; Figure 5A). Meanwhile, there was no difference in the rupture between 

α7f/fTie2Cre+ treated with nicotine and their control littermates treated with nicotine (Figure 

5C; α7f/f + nicotine versus α7f/fTie2Cre+ + nicotine: 81% versus 72%; P = 1.00). There was 

no significant difference in the overall incidence of aneurysm formation (Figure 5) or blood 

pressure (Table I in Online Data Supplement) between any of three cell type-specific α7 KO 

mice and their corresponding control littermates.
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Consistent with results presented in Figure 4A, mRNA levels for VEGF and PDGF-B in 

cerebral arteries were significantly lower in α7f/fSM22Cre+ mice treated with nicotine than 

in α7f/f mice treated with nicotine (n=5; VEGF: 1.0 ± 0.1 versus 0.3 ± 0.1; PDGF-B: 1.0 

± 0.2 versus 0.4 ± 0.1, all P < 0.01; Figure 6). Moreover, expression of FGF2 was 

significantly lower in α7f/fSM22Cre+ mice treated with nicotine than in α7f/f mice treated 

with nicotine (n=5; FGF2: 1.0 ± 0.1 versus 0.4 ± 0.1, P < 0.01; Figure 6). There was no 

difference in TGF-β and HGF expression between these groups.

Discussion

Epidemiological studies have repeatedly shown a positive association between tobacco 

cigarette smoking and aneurysmal rupture (i.e., aneurysmal subarachnoid hemorrhage). 

However, underlying mechanisms are not well understood, nor is the specific role played by 

nicotine itself as opposed to other constituents of tobacco and of cigarette smoke. Our data 

indicate that nicotine exposure alone increases rates of aneurysm rupture in a mouse model 

and that this occurs through activation of vascular smooth muscle cell α7*-nAChR. These 

observations are supported by studies showing that α7*-nAChR-selective antagonism or 

global knockout of nAChR α7 subunits abolishes the deleterious effect of nicotine exposure 

on aneurysmal rupture. Moreover, α7 KO specific to VSMCs, but not in inflammatory cells 

such as macrophages and granulocytes, abolished nicotine’s promotion of aneurysmal 

rupture.

Although stimulation of α7*-nAChR of macrophages and lymphocytes exerts anti-

inflammatory effects,24 vascular cell α7*-nAChR have been shown to mediate VSMC 

proliferation, angiogenesis, and vascular inflammation.2, 10, 11 Roles of α7nAChRs in 

VSMCs have been extensively studied in the cell culture settings. Stimulation of α7*-

nAChR by nicotine can directly increase migration and proliferation of VSMCs in vitro.
25, 26 In addition, nicotine’s interactions with 7*-nAChR may indirectly affect the migration 

and proliferation of vascular and inflammatory cells through the release of cytokines.
10, 26, 27 7*-nAChR mediate nicotine-induced production and release of angiogenic growth 

factors, including PDGF-BB and VEGF, from vascular cells.10, 26, 27 PDGF-BB and VEGF, 

while causing smooth muscle cell proliferation and sustained angiogenesis, promote the 

release of inflammatory cell attractants into the vascular wall.27 Expression of VEGF and 

PDGF-BB in ruptured aneurysms is reported to be higher than those in unruptured 

aneurysms in humans.28 Inflammatory cytokines such as TNF-α and IL-1 secreted by 

inflammatory cells stimulate the release of growth factors from endothelial cells and 

VSMCs.29, 30 In our study, nicotine treatment increased expression of VEGF, PDGF-B, and 

inflammatory cytokines through 7*-nAChR. Both human and animal studies suggest that 

sustained inflammation and angiogenesis play key roles in the growth and rupture of 

intracranial aneurysms.28, 31, 32 Nicotine may promote aneurysm rupture by directly and 

indirectly causing excessive vascular remodeling and inflammation through the activation of 

7*-nAChR.

Interestingly, nicotine reduced mRNA levels of TGF-β in our model, but an α7*-nAChR 

antagonist did prevent this effect of nicotine. Other nAChR subtypes, such as α9*- or α4β2-

nAChR may regulate TGF-β signaling instead.33 As TGF-β can protect against pathological 
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vascular remodeling,34, 35 α7*-nAChR-independent down-regulation of TGF-β by nicotine 

may further destabilize vascular wall and promote rupture of intracranial aneurysms.

In this study, we did not detect a significant effect of nicotine on the incidence of aneurysm 

formations. In this model, aneurysmal formations are induced, while aneurysmal ruptures 

occur spontaneously. As the incidence of aneurysm formation in this model was already as 

high as 70% in the control mice when 17.5 milli-units of elastase was used, it may be 

difficult to reliably detect the further increase in the incidence of aneurysm in the nicotine-

treated mice. In addition, it may take a long-term exposure to nicotine to promote the 

formation of aneurysms. Alternatively, the mechanism for aneurysm formation may be 

different from the mechanism for aneurysmal rupture. Different doses of nicotine or 

exposure length may be required for the formation and rupture of intracranial aneurysms.

Different nAChR subtypes can have opposing effects.10 For example, inhibition or 

knockdown of α1*-nAChR is reported to reduce aortic plaque development.2, 36 α4β2-

nAChR is reported to have anti-inflammatory effects in vitro.10, 33 While it is possible that 

other nAChR subtypes may contribute to different aspects of the pathophysiology of 

intracranial aneurysms, our data indicate a critical role of α7*-nAChR on vascular smooth 

muscle cells in mediating nicotine’s effects. Further studies using other nAChR subtype-

specific knockout mice or inhibitors will elucidate the roles of other nAChRs in the 

pathophysiology of intracranial aneurysm.

Different doses of nicotine can lead to activation or desensitization of nAChR function and 

do so at different concentration ranges for different nAChR subtypes.37 The dose of nicotine 

used in this study approximates levels previously reported in heavy smokers.22, 38 This dose 

has been widely used to study deleterious effects of nicotine in various animal models.22, 38 

However, future studies could investigate whether low doses of nicotine experienced as 

second-hand smoke affect intracranial aneurysmal rupture.

Finally, as an initial step to study roles of nicotine and α7*-nAChR in the pathophysiology 

of intracranial aneurysms, we used only male mice in this study. Our previous studies 

showed that the incidence of aneurysm formation and rupture rates are higher in 

ovariectomized female mice than male mice and sham-ovariectomized female mice, 

indicating protective effects of estrogen against the formation and rupture of intracranial 

aneurysms.21, 39 The baseline differences in the incidence of aneurysm formations and 

aneurysmal ruptures among male, non-ovariectomized female, and ovariectomized female 

mice make the inclusion and comparison of these groups would make the experimental 

design far more complex and highly expansive. While this proof-of-concept study started 

with experiments using male animals, roles of sex differences and sex steroids should be 

carefully examined in future studies.

Conclusions

This study using a mouse model of intracranial aneurysm shows that nicotine exposure 

increases aneurysmal rupture through actions on α7*-nAChR on VSMCs and via promotion 
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of sustained angiogenesis and inflammation. α7*-nAChR may serve as a potential 

therapeutic target for the prevention of intracranial aneurysmal rupture.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A, Nicotine exposure promotes the development of aneurysm rupture in male wild-type 

mice. Representative pictures of intracranial aneurysm. B, No aneurysm. C, Unruptured 

aneurysm. D, Ruptured aneurysm. VC indicates vehicle control. *P < 0.01 vs VC and †P < 

0.05 vs VC.
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Figure 2. 
A, An α7*-nicotinic acetylcholine receptor (α7*-nAChR) agonist (AR-R17779) promotes 

aneurysm rupture in male wild-type mice. B, Co-exposure to nicotine plus an α7*-nAChR 

antagonist (methyllycaconitine) abolishes aneurysm rupture in male wild-type mice. VC 

indicates vehicle control. *P < 0.05 vs VC and †P < 0.01 vs VC.

Kamio et al. Page 13

Stroke. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Nicotine’s promotion of aneurysm rupture requires α7*-nicotinic acetylcholine receptors. A, 

Incidence of aneurysms. B, Rupture rate. C, Symptom-free curve (Kaplan-Meier analysis 

curve). VC and α7 KO indicates vehicle control and nAChR α7 subunit knockout. *P < 0.05 

vs WT + nicotine.
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Figure 4. 
A, Effects of nicotine exposure on mRNA levels of growth factors. B, Effects of nicotine 

treatment on mRNA levels of inflammatory cytokines. *P < 0.01 vs VC, †P < 0.01 vs 

nicotine, and ‡P < 0.05 vs VC (two-way ANOVA). C, Effects of α7*-nicotinic acetylcholine 

receptor activation by nicotine on the infiltration of macrophages. CD68 positive cell 

numbers were significantly lower in the collected tissue from nicotine-treated α7 knockout 

(α7nAChRKO) mice than in nicotine-treated wild-type mice. *P < 0.01 vs wild-type + 

nicotine. D, Representative immunohistochemistry images comparing nicotine-treated α7 

KO mice with nicotine-treated wild-type mice. HPF indicates high-power field. VC indicates 

vehicle control; α7 antagonist, α7*-nAChR antagonist.
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Figure 5. 
Nicotine’s promotion of aneurysm rupture requires α7*-nicotinic acetylcholine receptors 

(α7*-nAChR) expressed on smooth muscle cells. A, α7f/f SM22Cre+ treated with nicotine 

and α7f/f treated with nicotine. B, α7f/f LysMCre+ treated with nicotine and α7f/f treated 

with nicotine. C, α7f/f Tie2Cre+ treated with nicotine and α7f/f treated with nicotine. *P < 

0.01 vs α7f/f + Nicotine.
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Figure 6. 
A, Effect of VSMC α7*-nAChR modulation on mRNA levels of growth factors. Expression 

of VEGF, PDGF-B, and FGF2 in cerebral arteries was significantly lower in α7f/fSM22Cre+ 

mice treated with nicotine than in α7f/f mice treated with nicotine. *P < 0.01 vs α7f/f + 

nicotine.

Kamio et al. Page 17

Stroke. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Methods
	Statistical Analysis
	Results
	Nicotine exposure promotes aneurysmal rupture in a mouse model of intracranial aneurysm.
	Effects of α7*-nAChR agonist or antagonist exposure on the development of intracranial aneurysm rupture
	Aneurysmal rupture in global nAChR α7 subunit knockout mice
	Nicotine promotes the expression of growth factors and inflammation in the cerebral arteries.
	Nicotine promotes aneurysmal rupture via the activation of VSMC α7*-nAChR.

	Discussion
	Conclusions
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.

