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Abstract

The neutrophil-to-lymphocyte ratio (NLR) is a biomarker that indicates systemic inflammation 

and can be estimated using array-based DNA methylation data as methylation-derived NLR 

(mdNLR). We assessed the relationship between pre-diagnosis mdNLR and lung cancer risk in a 

nested case-control study in the β-Carotene and Retinol Efficacy Trial (CARET) of individuals at 

high risk for lung cancer due to heavy smoking or substantial occupational asbestos exposure. We 

matched 319 incident lung cancer cases to controls based on age at blood draw, smoking, sex, 

race, asbestos, enrollment year, and time at risk. We computed mdNLR using the ratio of predicted 

granulocyte and lymphocyte proportions derived from DNA methylation signatures in whole blood 

collected prior to diagnosis (median 4.4 years in cases). Mean mdNLR was higher in cases than 

controls (2.06 vs 1.86, p=0.03). Conditional logistic regression models adjusted for potential 

confounders revealed a 21% increased risk of lung cancer per unit increase in mdNLR (Odds Ratio 

(OR) 1.21, 95% Confidence Interval (CI) 1.01–1.45). A 30% increased risk of non-small cell lung 

cancer (NSCLC) was observed for each unit increase in mdNLR (n=240 pairs; OR 1.30, 95% CI 

1.03–1.63), and there was no statistically significant association between mdNLR and small cell 
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lung cancer risk. The mdNLR-NSCLC association was most pronounced in those with asbestos 

exposure (n=42 male pairs; OR 3.39, 95% CI 1.32–8.67). A better understanding of the role of 

mdNLR in lung cancer etiology may improve prevention and detection of lung cancer.

Introduction

Inflammation is an established characteristic and hallmark of cancer development and 

progression (1). White blood cell distributions, such as increased neutrophil counts and 

decreased lymphocyte counts, are markers of systemic inflammation that are associated with 

morbidity and mortality in cancer patients (2,3). The neutrophil-to-lymphocyte ratio (NLR) 

is computed as the ratio of the respective whole-blood proportions of neutrophils and 

lymphocytes, and therefore reflects the balance between the innate immune response and 

adaptive immune response (4). Elevated pre-treatment NLR is an emerging biomarker of 

cancer prognosis, as it has been associated with worse outcomes for various tumor types 

including lung cancer (2,3,5–13). Investigations of NLR and cancer risk are limited (14–16), 

and only one study to date has evaluated the association between NLR and lung cancer risk 

(15).

White blood cell distributions are easily determined from peripheral blood in routine clinical 

care; however, the assessment of these parameters becomes unstable in stored blood after as 

little as 24 hours (17), which makes their examination in biorepository collections 

challenging. Blood cells originate from hematopoietic stem cells, and the lineage of each 

blood cell is dependent on epigenetic differentiation signatures including methylation (18). 

Obtaining blood cell distribution estimates from methylation data measured in archival 

blood using deconvolution algorithms has been described and validated (19–22). Recent 

work has highlighted the utility of these methods for estimating NLR, denoted methylation-

derived NLR (mdNLR), and in utilizing these estimates to examine associations with cancer 

risk and outcomes (16,21,23). The lifetime probability that a smoker will develop lung 

cancer is estimated to be <15% (24). Thus, there is a great need for biomarkers to 

differentiate between smokers who will and will not develop lung cancer, especially in the 

context of lung cancer screening, which generates a large proportion of false positives. We 

evaluated whether increased levels of inflammation as indicated by higher mdNLR values 

are associated with lung cancer risk in a case-control study nested in the β-Carotene and 

Retinol Efficacy Trial (CARET) of heavy smokers at high risk for lung cancer. The CARET 

population is primarily composed of individuals who would have been eligible for lung 

cancer screening at blood draw based on the current guidelines from various organizations 

including the U.S. Preventive Task Force (e.g., ages 55–80, 30+ pack year smoking history, 

current smokers or former smokers who quit less than 15 years ago) (25).

Materials and methods

Study population

Participants in this study were drawn from the multicenter β-Carotene and Retinol Efficacy 

Trial (CARET) (26). CARET was a randomized, double-blinded, placebo-controlled 

chemoprevention trial designed to assess the safety and efficacy of daily supplementation 

Grieshober et al. Page 2

Cancer Prev Res (Phila). Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



with β-carotene and retinyl palmitate among individuals at high risk of developing lung 

cancer (27–29). Men and women ages 50–69 years were eligible for the trial if they were 

current or former smokers (quit at most six years prior to enrollment) with a heavy cigarette 

smoking history of ≥20 pack-years (n=14,254). Additionally, men ages 45–69 years with 

occupational asbestos exposure who were current or former heavy smokers (quit at most 

fifteen years prior to enrollment) were included (n=4,060). Extensive information about 

smoking history and other risk factors was collected through annual questionnaires. Whole 

blood was collected after enrollment at participant visits between 1994 and 1997. Due to 

higher lung cancer incidence and overall mortality rates in the intervention versus placebo 

arm, the intervention was stopped in 1996.

The present study includes individuals selected for a nested case-control study based on 

endpoint information collected from 1985 to 2005, during active participant follow-up, as 

described previously (26). Briefly, all participants who provided a blood specimen and who 

were free of lung cancer at the time of blood collection were eligible to be matched in a 2:1 

ratio to 793 lung cancer cases. Matching factors included age at enrollment (±4 years), sex, 

race/ethnicity, enrollment year (±2 years), smoking status at enrollment (current or former), 

history of occupational asbestos exposure, and length of follow-up. For our study, we 

selected those with known histotype to the extent possible (240 NSCLC, 68 SCLC, 11 

unknown). We matched controls to the 319 cases in a 1:1 ratio using age at blood draw (±5 

years), sex, race/ethnicity, enrollment year (±2 years), smoking status at blood draw (current 

or former), history of occupational asbestos exposure, and length of follow-up. The 

Institutional Review Boards for each of the participating CARET institutions approved all 

study protocols, which were in accordance with recognized ethical guidelines, and written 

informed consent was obtained from all participants.

Methylation array, Quality Control, Preprocessing and Normalization of Methylation Data

We assessed DNA methylation in whole blood using the Illumina HumanMethylation850 

BeadArray platform at the University of Southern California Epigenomics Core Facility, 

following standardized protocols described by the manufacturer (Illumina, Inc). Quality 

control, preprocessing, and normalization of Illumina HumanMethylation850 BeadArray 

methylation data was performed using both minfi and wateRmelon Bioconductor packages 

(30,31). To ensure high-quality methylation data, we utilized the within-array normalization 

combination of Noob+β-mixture quantile (BMIQ), as this processing combination has been 

previously demonstrated to result in improved signal intensity compared to competing 

approaches (32). Within-array correction for background fluorescence and dye biases were 

performed using the Noob methodology via the function “preprocessNoob” in the minfi 
Bioconductor package (30). Following application of the Noob, we identified and removed 

poor quality samples and probes. Samples were excluded if >20% of their probes had 

detection p-values >1×10−5 or if they exhibited irregularities in the distribution of their 

control probes (33). In addition, probes with a median detection p-value >0.05 were 

removed and excluded from subsequent statistical analyses. After sample- and probe-level 

quality control, we corrected the type II probe bias to make the methylation distribution of 

type II features comparable to the distribution of type I features using the BMIQ dilation 

methodology (34), implemented using the function “BMIQ” in the wateRmelon 
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Bioconductor package. For each sample, BMIQ involves fitting a three-class β-mixture 

model (class 1=un-methylated, class 2=hemi-methylated, and class 3=methylated probes) to 

the type I and type II probes separately. Probes are assigned to the class with the highest 

posterior predictive probability (i.e., probability of class membership conditional on the 

observed data). β-values for the type II features are then normalized by class to the 

distributions for the same class estimated in type I features. Following the Noob+BMIQ 

processing combination, the presence of batch-effects and/or other technical sources of 

variation were inspected by first performing a principal components analysis (PCA) on the 

normalized methylation data, followed by an examination of the association between the top 

K principal components (K determined using random matrix theory (35) and plate, 

beadchip, and chip position). We observed only mild associations between these technical 

features and the top K principal components, and concluded that a formal batch-effect 

correction was not required for these data.

Estimation of the methylation-derived neutrophil-to-lymphocyte ratio (mdNLR)

We used a recently developed method by Koestler et al. to estimate the mdNLR for each of 

the study samples from blood-derived DNA methylation data (16). We first applied 

reference-based cell-mixture deconvolution to estimate the proportion of leukocyte subtypes 

(i.e., CD4T, CD8T, natural killer cells, B cells, monocytes, and granulocytes) for each 

sample using the “estimateCellCounts” function in the minfi Bioconductor package. In total, 

600 leukocyte discriminating cytosine-phosphate-guanine (CpG) sites were used as the basis 

for cell composition estimation (36). The mdNLR was computed for each sample by taking 

the ratio of its predicted granulocyte and lymphocyte fractions (the sum of the predicted 

fraction of lymphocyte subtypes) (16).

Of the 600 CpGs used to estimate cell composition (36), 96 CpGs overlapped with the 

18,760 false discovery rate-significant CpGs identified in the 2016 Joehanes et al. meta-

analysis of differential DNA methylation between current and never smokers (37). We 

performed permutation testing to assess whether there was significant enrichment of 

smoking-associated CpGs among those used to deconvolute cell composition. We also 

compared cell type proportion estimates, and the resultant mdNLR, obtained before (600 

CpGs) and after removing the 96 smoking-associated CpGs (504 CpGs) in our population 

(n=638) by computing the Pearson correlations and root mean squared error (RMSE).

Statistical analysis

Given the nested case-control study design with 1:1 case-control matching, a series of 

conditional logistic regression models were used to examine the association between 

continuous mdNLR and lung cancer risk. Models were fit using the “clogit” function in the 

survival R package with the following matching factors: age at blood draw (±5 years), sex, 

race/ethnicity, enrollment year, smoking status at blood draw, history of occupational 

asbestos exposure, and length of follow-up, and were adjusted for potential confounding 

factors, including: age (continuous), pack years of smoking, cigarettes per day, and body 

mass index (BMI), all at blood draw. Adjustment for continuous age and smoking variables 

help to control for any existing residual confounding in the corresponding matching factors. 

We selected potential confounders based on biologic plausibility and the impact of addition 
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to crude conditional logistic regression models, i.e. met or exceeded a 10% change in the 

mdNLR coefficient.

Conditional logistic regression models were fit to estimate the relationship between mdNLR 

and lung cancer risk overall, as well as the association between mdNLR and risk by lung 

cancer histotype (NSCLC, SCLC), race (white, non-white), sex (male, female), study 

(asbestos exposure, heavy smoking only), smoking status at blood draw (yes, no), and 

intervention arm (placebo, active). NSCLC cases were defined as those with a diagnosis of 

lung adenocarcinoma, squamous cell carcinoma, and not otherwise specified (NOS) 

NSCLC. Because the time between blood draw and diagnosis varied considerably across 

cases (0.1 years to 10.1 years, median=4.4 years), conditional logistic regression models 

stratified by the median length of time between blood draw and diagnosis (<4.4 years and 

≥4.4 years) were fit as a means to gain insight into whether the association between mdNLR 

and risk varies by the proximity to the time of diagnosis.

Results

Characteristics of the cases (all, NSCLC, and SCLC) and controls are presented in Table 1. 

Briefly, both cases and controls were approximately 64.0 years of age at blood draw and the 

majority were white (97%), male (66%), and current smokers at blood draw (65%). Cases 

were generally diagnosed at late stage, with 73% presenting with stage III or IV lung cancer. 

Compared to controls, mean mdNLR was higher for cases (mean, standard deviation (SD) 

for controls versus cases: 1.86 (0.90) versus 2.06 (1.31), p=0.03) and was higher for NSCLC 

than SCLC (mean, SD: 2.07, 1.31 and 1.88, 1.21, respectively).

Permutation-based testing indicated statistically significant enrichment of smoking-

associated CpGs (37) among the 600 CpGs used to estimate white blood cell proportions 

(permutation p<0.0001) (36). However, cell type estimates for our population (n=638) 

obtained with and without the removal of the 96 smoking-associated CpGs were highly 

correlated (Pearson r≥0.99 across all cell types). The average difference between estimates 

obtained with and without the removal of smoking-associated CpGs was less than 2% in 

absolute percentage points (e.g., RMSE≤2 for all cell types) and less than 1% in 4 out of the 

6 cell types. Importantly, mdNLR estimates were highly consistent (Pearson r=1.00, 

RMSE=0.11).

Higher mdNLR values were associated with risk of lung cancer, especially NSCLC, in our 

study. After controlling for age, pack years, cigarettes per day, and BMI, all at blood draw, 

each unit increase in mdNLR was associated with a 21% increased risk of lung cancer (95% 

CI: 1.01–1.44; Table 2). For NSCLC, we observed a 30% increased risk of lung cancer (95% 

CI: 1.03–1.63) for each unit increase in mdNLR. Associations with mdNLR were similar for 

adenocarcinoma and squamous cell carcinoma. We did not observe statistically significant 

associations between mdNLR and SCLC, which may have been due to a smaller sample size 

(68 pairs; Table 2).

Subgroup analyses revealed that lung cancer risk associations were most notable in males 

(OR, 95% CI: 1.30, 1.04–1.63), those with a history of asbestos exposure (OR, 95% CI: 
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2.13, 1.12–4.05), and those assigned to the trial’s active intervention arm (OR, 95% CI: 

1.70, 1.12–2.58). As in the overall analyses, associations were larger when restricted to 

NSCLC pairs for males (OR, 95% CI: 1.34, 1.02–1.75) and asbestos exposure (OR, 95% CI: 

3.39, 1.32–8.67), but the NSCLC association for the active intervention arm was not 

statistically significant (OR, 95% CI: 1.53, 0.89–2.62). We observed associations of similar 

magnitude for early (I/II) and late (III/IV) stage lung cancers, although the late stage odds 

ratios were statistically significant for overall and NSCLC (Table 2). Associations were 

similar though no longer statistically significant in strata of smoking status or time at risk.

Discussion

We observed that elevated pre-diagnosis mdNLR is associated with an increased risk of lung 

cancer in a population of heavy smokers at high risk for lung cancer. Our findings are 

compelling, as blood was collected prior to diagnosis (median 4.4 years) and lung cancer 

cases and controls share a history of heavy smoking. Smoking has been reported to be 

associated with blood methylation signatures (38–40) and immune profiles (41). We 

observed that the residual effects due to smoking on the 600 CpGs used for white blood cell 

deconvolution have a minimal effect on cell composition estimates and therefore on mdNLR 

estimation. Nevertheless, smokers tend to have higher NLR values than non-smokers (42) 

and both smoking and nicotine are reportedly immunosuppressive (43). Observing an 

association between mdNLR and lung cancer risk after rigorous control for smoking history 

through matching and model adjustment implies that there are other factors, intrinsic or 

extrinsic, that are likely contributing to the relationship between mdNLR and lung cancer 

risk. Identifying a biomarker for lung cancer risk among those at highest risk is a salient 

issue, as <25% of smokers will develop lung cancer during their lifetime assuming they 

survive competing causes of death, or <15% without conditioning on competing causes of 

death (24). Successfully distinguishing between those who ultimately will develop lung 

cancer among those eligible for screening could improve lung cancer screening by limiting 

false-positives and overdiagnosis, two of the major concerns about lung cancer screening 

(44).

The strongest subgroup association between mdNLR and lung cancer risk was observed in 

those with occupational asbestos exposure. Asbestos dysregulates the immune response both 

alone (45,46) and in combination with cigarette smoke (47,48). In our study, cases and 

controls were matched on asbestos and smoking exposure prior to lung cancer diagnosis; 

even after controlling for these well-recognized risk factors for lung cancer, we still 

observed that mdNLR was associated with lung cancer risk. We note that all asbestos 

exposed workers included in our study were male, and that NSCLC associations for male 

(OR, 95% CI: 1.15, 0.88–1.51) and female (OR, 95% CI: 1.22, 0.75–1.98) participants 

without asbestos exposure were similar. Therefore, we attribute the strengthened association 

among men to the subset of men with occupational asbestos exposure. We postulate that 

elevated pre-diagnosis mdNLR in asbestos-exposed lung cancer cases may be indicative of 

an altered inflammatory profile induced by asbestos exposure that is permissive to the 

development of lung cancer.
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Previous work has established the relationship between systemic inflammation and cancer, 

which includes tumor development, angiogenesis, and inhibition of apoptosis (49). Thus it is 

plausible that the high inflammatory profile reflected by elevated NLR (i.e., high neutrophil 

counts and/or low lymphocyte counts) may be more favorable for cancer development, 

tumor growth, tumor initiation, or early tumor progression. Specifically, lymphocytes act as 

tumor defense by inducing cytotoxic cell death and inhibiting proliferation and migration 

(49), while neutrophils have been shown to inhibit the activity of lymphocytes such as T-

cells (4). Our findings parallel research in circulating immune markers and lung cancer risk 

(43,46) that have helped to establish roles for inflammation in the initiation and promotion 

of lung cancer (50).

Research on the possible relationship between elevated NLR or mdNLR and cancer risk is 

limited, and the only other lung cancer study reported a null association between NLR and 

lung cancer risk (15). The Sanchez-Salcedo study (15) included 135 participants from an 

LCDT lung cancer screening cohort, 32 of whom developed lung cancer during 4 to 10 years 

of follow-up, with the majority (72%) of cases diagnosed at early stage (I or II). This is in 

contrast to our study, where the majority (73%) of participants were diagnosed with late 

stage (III or IV) lung cancers and were diagnosed prior to use of lung cancer screening. In 

addition, the enrollment criteria for the Sanchez-Salcedo study (15) was relaxed in 

comparison to the U.S. Preventive Task Force guidelines for lung cancer screening eligibility 

(25), as participants were enrolled and screened as young as 40 years with a minimum 

smoking history of 10 pack years. Therefore, participants screened in the Sanchez-Salcedo 

study would not have been eligible for lung cancer screening in the U.S. We note that the 

majority (76%) of CARET case-control pairs included in this study meet the eligibility 

criteria for screening in the U.S., but were not screened since enrollment occurred long 

before lung cancer screening was implemented in the U.S. (44). Regarding other cancer 

types, a study of NLR and breast cancer risk observed that elevated NLR was associated 

with increased risk (14), which was confirmed in a study of mdNLR (16). In that study, 

elevated mdNLR was also observed to be associated with risk of head and neck squamous 

cell carcinoma and ovarian cancer, but there was no association with bladder cancer (16).

Despite our careful control of confounders in our study, this work is not without limitations. 

Our study sample consisted solely of heavy smokers who elected to participate in the 

CARET clinical trial, and therefore our results may have limited generalizability. Since 

heavy smokers are at the highest risk for lung cancer, and because the majority of smokers 

will not develop lung cancer during their lifetimes (24), this is an ideal population in which 

to investigate features that can differentiate between smokers who go on to develop lung 

cancer from those who will not. Based on our results, it is possible that mdNLR may be able 

to differentiate lung cancer risk in individuals at high enough risk to be eligible for 

screening. Additional work is needed to clarify whether mdNLR in screening-eligible 

populations can be leveraged to identify lung cancer at earlier stages among those who are 

screened. Small sample sizes for subgroups may have limited our statistical power to detect 

associations. We did not have cytological NLR measurements for the participants in our 

study. Nevertheless, previous work has validated that mdNLR is highly correlated with 

cytological NLR (R2=0.99) (16), and our estimated mdNLR aligns with the mean 

cytological NLR of 2.15 reported for a nationally representative sample of over 9,000 
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individuals from the National Health and Nutrition Examination Survey (NHANES) (42). 

Finally, our results have not yet been replicated in an external validation data set.

Our results demonstrate the utility of DNA methylation profiling for NLR estimation (e.g., 

mdNLR) for prospective analyses using archival samples. NLR determined from complete 

blood count measures assessed for standard clinical care are inexpensive and reproducible 

(6), and mdNLR is a validated proxy for NLR in archival blood samples (16). Thus, there is 

broad potential for mdNLR approaches to be used to improve biomarker discovery for risk 

prediction in other prospective studies of cancer.

We posit that NLR may convey information about both lung cancer risk and etiology among 

heavy smokers, especially those with a history of asbestos exposure. A deeper understanding 

of the mechanisms and pathways reflected by elevated NLR in lung cancer development will 

inform whether this potential marker has clinical utility in prevention and/or early detection, 

especially in high-risk populations who are actively undergoing (or have undergone) 

screening for lung cancer.
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Table 1.

Participant characteristics

Controls
(n=319)

Cases

All
a
 lung

cancers
(n=319)

Non-small
cell lung

cancer
b

(n=240)

Small cell
lung

cancer
(n=68)

Matching variables

Age at blood draw, mean years (SD) 63.5 (5.7) 64.5 (5.6) 64.5 (5.5) 64.5 (5.8)

 45–54, n (%) 21 (7) 21 (7) 16 (7) 4 (6)

 55–59, n (%) 77 (24) 42 (13) 31 (13) 9 (13)

 60–64, n (%) 86 (27) 101 (32) 77 (32) 23 (34)

 65–74, n (%) 135 (42) 155 (49) 116 (48) 32 (47)

Sex, n (%) female 109 (34) 109 (34) 78 (33) 28 (41)

Enrollment year, n (%)

13 (4)
13 (4)
79 (25)
146 (46)
68 (21)

15 (5)
14 (4)
78 (24)
144 (45)
68 (21)

13 (5)
9 (4)

57 (24)
107 (45)
54 (22)

2 (3)
4 (6)

16 (24)
33 (49)
13 (19)

 1985–1986

 1987–1988

 1989–1990

 1991–1992

 1993–1994

Asbestos exposure, n (%) 53 (17) 52 (16) 42 (18) 9 (13)

Current smoker at blood draw, n (%) 205 (64) 206 (65) 155 (65) 41 (60)

Other characteristics at blood draw

Stage III/IVc, n (%) - 197 (73) 143 (67) 53 (95)

Cigarettes per day, lifetime mean (SD) 14.0 (13.3) 15.5 (15.0) 15.0 (14.7) 15.7 (15.7)

Pack-years, mean (SD) 53.8 (23.7) 59.3 (22.5) 58.5 (22.2) 60.1 (22.9)

Years since quit smoking, mean (SD) 2.4 (5.0) 2.3 (4.3) 2.4 (4.3) 2.5 (4.3)

BMI (kg/m2), mean (SD) 28.1 (5.6) 27.7 (4.9) 27.6 (4.8) 28.1 (5.4)

 <18.5 (%) 4 (1) 2 (1) 2 (1) --

 18.5–24.9 (%) 85 (27) 92 (29) 69 (29) 19 (28)

 25.0–29.9 (%) 130 (41) 136 (43) 101 (42) 30 (44)

 ≥30.0 (%) 100 (31) 89 (28) 68 (28) 19 (28)

Intervention arm, n (%) assigned to active 168 (53) 166 (52) 123 (51) 39 (57)

mdNLR at blood draw

Mean (SD) 1.86 (0.90) 2.06 (1.31) 2.07 (1.31) 1.88 (1.21)

Abbreviations: SD = Standard Deviation; BMI = Body Mass Index.

a
”All lung cancers” includes adenocarcinoma, squamous cell carcinoma, and small cell lung cancer as well as cases for whom histotype was not 

otherwise specified non-small cell lung cancer (NOS; n=9) or missing (n=11).

b
The “Non-small cell lung cancer” category includes adenocarcinoma, squamous cell carcinoma, and not otherwise specified non-small cell lung 

cancer (NOS; n=9).

c
Stage information was not available for 50 lung cancer cases (28 NSCLC, 12 SCLC, and 10 missing histotype).
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Table 2.

Continuous methylation-derived neutrophil-to-lymphocyte ratio and lung cancer risk overall and by sex, 

asbestos exposure, smoking status, intervention arm, and median time at risk.

All
a
 lung cancers

Non-small cell lung
cancer

Small cell lung
cancer

OR
b (95% CI) OR

b (95% CI) OR
b (95% CI)

Continuous mdNLR 1.21 (1.01, 1.44) 1.30 (1.03, 1.63) 1.06 (0.77, 1.47)

Sex

Male 1.30 (1.04, 1.63) 1.34 (1.02, 1.75) 1.24 (0.79, 1.93)

Female 1.05 (0.76, 1.45) 1.22 (0.75, 1.98) 0.94 (0.53, 1.66)

Asbestos exposure

Yes 2.13 (1.12, 4.05) 3.39 (1.32, 8.67) 1.27 (0.54, 2.95)

No 1.09 (0.90, 1.32) 1.15 (0.92, 1.45) 0.96 (0.61, 1.52)

Smoking status

Never/former 1.26 (0.98, 1.63) 1.24 (0.92, 1.68) 1.52 (0.80, 2.90)

Current 1.16 (0.91, 1.47) 1.40 (0.98, 2.00) 0.76 (0.44, 1.34)

Stage

Early (I/II) 1.30 (0.79, 2.13) 1.29 (0.79, 2.12) -- --

Late (III/IV) 1.35 (1.08, 1.70) 1.44 (1.08, 1.92) 1.19 (0.81, 1.74)

Intervention arm

Placebo 1.11 (0.78, 1.59) 1.32 (0.86, 2.02) 0.70 (0.26, 1.87)

Active 1.70 (1.12, 2.58) 1.53 (0.89, 2.62) 2.47 (0.79, 7.73)

Time at risk (median in cases = 4.4 years)

<4.4 years 1.25 (0.99, 1.58) 1.34 (0.99, 1.80) 1.20 (0.81, 1.76)

≥4.4 years 1.18 (0.89, 1.57) 1.27 (0.88, 1.84) 0.80 (0.37, 1.71)

Abbreviations: OR = odds ratio; CI = confidence interval; mdNLR = methylation-derived neutrophil-to-lymphocyte ratio; BMI = body mass index.

a
”All lung cancers” includes non-small cell lung cancer pairs (N=240) and small cell lung cancer pairs (N=68), as well as pairs for whom case 

histotype was missing (N=11).

b
Conditional logistic regression models adjusted for age, pack years, cigarettes per day, and BMI at blood draw.

Bold OR and CI indicate statistical significance.
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