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Abstract

Early-stage estrogen receptor-positive (ER+) breast cancer (BCa) is the most common type of BCa 

in the United States. One critical question with these tumors is identifying which patients will 

receive added benefit from adjuvant chemotherapy. Nuclear pleomorphism (variance in nuclear 

shape and morphology) is an important constituent of breast grading schemes, and in ER+ cases, 

the grade is highly correlated with disease outcome. This study aimed to investigate whether 

quantitative computer-extracted image features of nuclear shape and orientation on digitized 

images of hematoxylin-stained and eosinstained tissue of lymph node-negative (LN−), ER+ BCa 

could help stratify patients into discrete (<10 years short-term vs. >10 years long-term survival) 

outcome groups independent of standard clinical and pathological parameters. We considered a 

tissue microarray (TMA) cohort of 276 ER+, LN− patients comprising 150 patients with long-

term and 126 patients with short-term overall survival, wherein 177 randomly chosen cases formed 

the modeling set, and 99 remaining cases the test set. Segmentation of individual nuclei was 

performed using multiresolution watershed; subsequently, 615 features relating to nuclear shape/

texture and orientation disorder were extracted from each TMA spot. The Wilcoxon’s rank-sum 
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test identified the 15 most prognostic quantitative histomorphometric features within the modeling 

set. These features were then subsequently combined via a linear discriminant analysis classifier 

and evaluated on the test set to assign a probability of long-term vs. short-term disease-specific 

survival. In univariate survival analysis, patients identified by the image classifier as high risk had 

significantly poorer survival outcome: hazard ratio (95% confident interval) = 2.91(1.23–6.92), p = 

0.02786. Multivariate analysis controlling for T-stage, histology grade, and nuclear grade showed 

the classifier to be independently predictive of poorer survival: hazard ratio (95% confident 

interval) = 3.17(0.33–30.46), p = 0.01039. Our results suggest that quantitative histomorphometric 

features of nuclear shape and orientation are strongly and independently predictive of patient 

survival in ER+, LN− BCa.

Introduction

Breast cancer is the most frequently diagnosed cancer in women and is also the second 

leading cause of cancer related deaths in women in the United States. Hormone receptor-

positive breast cancers (estrogen receptor-positive (ER+) and/or progesterone receptor (PR

+)) make up almost 70–75% of invasive breast cancers [1]. In these cases, axillary lymph 

node (LN) status is the most important prognostic predictor of survival [2]. While it is 

standard clinical practice to offer adjuvant therapy to patients who have evidence of 

metastatic disease in axillary lymph nodes, clinical trials have demonstrated that LN− 

patients may benefit as well [3]. However, the overall effect is small and likely only a small 

proportion of ER+, LN-negative (LN−) patients have measurable benefit from adjuvant 

chemotherapy. Specific prognosis and treatment options (choice of hormonal therapy alone 

or hormonal + chemotherapy) are typically determined by molecular assays such as 

Oncotype DX [4], in which measurement of mRNA expression of a set of genes, dominated 

by estrogen signaling genes and proliferation genes, can identify tumors likely to do well 

with hormonal therapy alone and have no further benefit from chemotherapy. However, these 

assays tend to be expensive and tissue destructive. Interestingly, histological tumor grade has 

also been shown to be correlated with disease recurrence and patient outcome in LN−, ER+ 

breast cancer [5]. Unfortunately, breast cancer grading is subjective and hence suffers from 

low inter-observer concordance [6, 7], especially with respect to grade 2 tumors.

With the digitization of pathology slides, there has been substantial interest from many 

groups in developing and applying histomorphometric image analysis approaches for 

quantitative characterization and classification of tissue images of cancers [8]. A number of 

these approaches have focused on breast cancer grading, risk stratification, and outcome 

prediction. Basavanhally et al. [9] showed that the global arrangement of nuclei, as 

quantified by graph features, is useful in stratifying breast cancer patients into low and high 

risk of recurrence groups. Tambasco et al. [10] reported that the morphologic complexity of 

nuclear architecture in the epithelium was predictive of disease-specific survival for patients 

with invasive breast cancer. Beck et al. [11] showed that nuclear morphologic features within 

the stroma was significantly associated with survival in breast cancer. Yuan and colleagues 

[12] showed that quantitative measurements of the extent and density of lymphocytic 

infiltration was predictive of risk of recurrence following endocrine therapy in ER+ breast 

cancers. More recently, Romo-Bucheli et al. [13, 14] showed that quantitative estimation of 
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mitotic activity and tubular formation in ER+ breast cancer histology images via machine 

learning and image analysis approaches was strongly correlated with the corresponding 

Oncotype DX risk categories.

Nuclear pleomorphism, a term employed in cancer grading, refers to the degree of variability 

in shape, size, and morphology of cell nuclei. For example, Lu et al. [15] found that the local 

cellular diversity in terms of nuclear shape, size, and texture are prognostic in the context of 

oral cavity squamous cell carcinomas. In addition to variability in size and shape, some 

researchers have observed differences in nuclear polarity between more and less aggressive 

breast cancers. For instance, in certain more aggressive cancers, the nuclei tend to be 

vesicular, often have prominent nucleoli, and occasionally manifest in the form of large and 

aberrant presentations. It stands to reason then that computer-extracted measurements 

relating to differential nuclear polarity may provide a measurable surrogate for the 

underlying biological aggressiveness of a tumor. Dalla et al. [16] showed that nuclear 

polarity was helpful in distinguishing grades of bladder cancer. Kararizou et al. [17] found 

that the mean value of nuclear orientation was associated with the degree of malignancy of 

human gliomas. Noy et al. [18] reported that the nuclear orientation was highly correlated to 

the recurrence of meningiomas. In prostate cancer, Lee et al. [19] found that the extent of 

disorder in nuclear orientation was strongly associated with likelihood of biochemical 

recurrence following surgery. In the context of breast cancer diagnosis, Herrera-Espiñeira et 

al. [20] found that computerized measurements of nuclear shape, orientation, and texture 

disorder could discriminate benign and malignant breast lesions with an accuracy of over 

95% from hematoxylin and eosin (H&E) images alone.

In this work, we seek to evaluate whether computer extracted measurement of nuclear 

orientation combined with features relating to nuclear shape and texture are predictive of 

aggressiveness and prognosis in early-stage ER+, LN− breast cancers. A set of 177 patients 

was used as the modeling set and their corresponding H&E stained tissue microarray (TMA) 

images were employed for feature discovery and classifier construction. Following the 

application of a nuclear segmentation algorithms on the TMA images, a total of 615 nuclear 

shape, texture, and nuclear orientation features were extracted from the regions 

corresponding to the segmented nuclei. The top discriminative features that were most 

predictive of overall survival were identified via a five-fold crossvalidation based feature 

selection method on the modeling set. These features were then used to train an image-based 

machine learning classifier of overall survival. We then applied the image classifier to an 

independent test set (n = 99) to predict overall survival. Finally, we analyzed if the predicted 

labels generated by the image classifier were independently correlated with overall patient 

outcome.

Figure 1 illustrates the overall workflow for the construction and evaluation of the image-

based classifier.
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Materials and methods

Patient selection

With approval from the Human Investigation Committee at Yale University (protocol 

#9505008219), patients with early-stage breast cancer (diagnosed with invasive ductal 

carcinoma) were serially retrospectively collected from the Yale Pathology archives. With 

approval from the Institutional Review Board of Yale University (“Digital whole slide 

imaging for the detection of breast cancer and metastasis in lymph nodes”), patients with 

early-stage breast cancer were identified. Two 2 mm punches from each tumor were 

obtained to construct the array. All early-stage breast cancer patients with ER+ LN− breast 

cancer with a sufficient amount of tissue, that is, >60% of the area, available in the digitized 

TMA were selected for our study. These inclusion criteria resulted in a total of 276 patients 

being identified with corresponding tissue images for analysis. The TMA cores were divided 

into two groups corresponding to patients who passed away after the hormonal therapy 

within 10 years (short-term survival) and those who passed away after the treatment >10 

years (long-term survival). The total number of non-censored long-term survival patients 

was 65 out of 150. A set of 177 randomly chosen cases (73 short-term vs. 104 long-term 

survival) were used as a modeling set to train the classifier. The remaining 99 cases (53 

short-term vs. 46 long-term survival) were used as a test set for independent validation. 

Table 1 summarizes the modeling set and test set. All TMA cores were digitized at ×40 

magnification (0.25 μm/pixel spatial resolution) using a digital whole-slide scanner (Aperio 

Scanscope XT) (Fig. 2).

Image analysis

Nuclear detection and segmentation—Individual nuclei were automatically 

segmented from the background using a watershed-based nuclear segmentation method [21–

23] at ×40 magnification (0.25 μm/pixel resolution). The automated segmentation takes into 

account the intensity/gradient data for each nucleus so that cell boundaries can be extracted 

for subsequent feature extraction (Figs. 1 and 4).

Feature extraction—Two different categories of quantitative histomorphometric features 

were extracted. The features are related to nuclear shape/texture and local nuclear 

orientation disorder as described below:

• Nuclear orientation disorder [19] (13 descriptors): This class of features includes 

a set of 13 local nuclear orientation-based features which were extracted in an 

attempt to quantify the disorder of nuclear orientations in local regions [24] 

(Figs. 1 and 4c, f show examples).

• Nuclear shape/texture (45 descriptors): This set of features were focused on 

quantifying nuclear morphology using different measurements including: area to 

perimeter ratio, smoothness of boundary, invariant moments, Fourier descriptors 

of boundary, area, major/minor axis of the best fit eclipse, mean intensity, 

intensity range, and so on. These nuclear shape/texture features are intended to 

capture the disorder of nuclear shape and texture, attributes that have been 

previously shown to be implicated in tumor aggressiveness [25].
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First-order summary statistic descriptors (mean, median, standard deviation, skewness, and 

kurtosis) were calculated for each TMA spot for both nuclear shape/texture, and nuclear 

orientation (with six configurations of local cell clusters) features, resulting in a total of 615 

features for each spot. Additional mathematical and technical details pertaining to the 

approach are described in the Supplementary material section.

Feature selection

Three different feature selection methods, (1) minimum redundancy maximum relevance 

[26], (2) Wilcoxon’s rank-sum test, and (3) Random Forest [27], were used to identify the 

best features that maximally distinguished the two classes (short-term and long-term 

survival) within the modeling set. The approaches were implemented in conjunction with a 

five-fold crossvalidation scheme and run over 100 iterations. The most frequently selected 

features were identified and were quantitatively evaluated using box and whisker plots to 

compare feature expression between the short-term and long-term survival patients. We 

limited the number of features for inclusion in the machine learning classifier to 15 in order 

to avoid model overfitting and the curse of dimensionality problem, an issue relating to the 

generalizability of the classifier when there are too many features with respect to the number 

of training exemplars.

Classifier construction

Four different machine learning classifiers, linear discriminant analysis, quadratic 

discriminant analysis, support vector machine, and Random Forest classifier were 

implemented in conjunction with the top selected features provided by the feature selection 

methods. The machine learning classifiers were evaluated across 100 iterations of five-fold 

cross-validation within the modeling set. We then identified the top-performing combination 

of feature selection scheme and machine learning classifier (from among a total of 12 

different combinations) based on the area under the receiver operating characteristic curve 

(AUC) obtained across all images within the modeling set. This classifier was then locked 

down as the one to be validated on the test set.

Survival analysis

The survival analysis was performed on the test dataset only. Each test set image was 

assigned a probability of survival by the locked down machine learning classifier. For AUC 

computation, a threshold was then applied to this probability at different levels from 0 to 1 

with an increment of 0.01. Thus, each test instance was assigned to either the long-term or 

short-term survival categories for each threshold. The predicted labels for each classifier 

were then compared to the ground truth labels (actual follow-up outcome information) to 

evaluate the performance of the classifier.

Associations between the binary image classifier results and the other categorical clinical 

and pathologic variables were determined by two-sided Fisher’s exact tests. Welch’s unequal 

variance t test was used for age. Overall survival was defined as the time interval between 

the date of hormonal therapy and the date of death. The Kaplan–Meier product-limit method 

was used to estimate empirical survival probabilities as illustrated by Kaplan–Meier curves. 

Log-rank tests were applied to examine survival differences, indicating the significance of a 
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categorical variable being prognostic for a survival endpoint. Multivariate Cox proportional 

hazard models were also used to investigate the independent prognostic ability of variables 

after accounting for the other clinical and pathologic variables. Hazard ratios, associated 

95% confidence intervals, and P values were reported. All tests were two sided, with the 

significance level set at 0.05.

Results

Clinicopathological features of the patient cohorts

Clinical and pathologic features of the modeling and test sets are provided in Table 1. 

Patients were primarily in their late 50s, and the majority of patients (>84%) were white. 

Around 9% were treated with chemotherapy and about 10% of the tumors were graded 

higher than T1. Approximately 60% of the tumors were well or moderately differentiated. 

The modeling set contains 73 short-term survival patients (41.2%) and the test set contains 

53 short-term survival patients (54.5%), with a threshold of 10 years applied on the patient 

followed up date until death.

Discriminative features

In the modeling set, the nuclear orientation feature dominates the top 15 discriminative 

features that were used to construct the image classifier (12 out of 15 features were nuclear 

orientation-related features, for more details refer to Supplementary materials Table S1). The 

nuclear orientation features aim to measure the disorder in the orientation of adjacent nuclei. 

Figure 3 shows the top three discriminative features identified within the modeling set. 

These top three features are all related to the nuclear orientations, which are range of tensor 

information_measure1 with two different cell cluster graphs density (a = 0.42 and a = 0.43), 

and standard deviation of tensor information_measure1_a = 0.42. These features reflecting 

the degree of disorder in terms of local nuclear orientation.

The nuclear segmentation and corresponding nuclear orientation feature maps are shown in 

Fig. 4, for representative long-term and short-term survival cases. The first to the fourth 

columns show H&E-stained images of tumors from short-term and long-term survival 

patient groups, the segmented nuclear contours, the nuclear orientation feature maps, and 

zoomed regions, respectively. The third column in Fig. 4 illustrates the differences of nuclear 

orientation feature map between short-term and long-term survival patients. For the short-

term survival patients, there is a greater variation in nuclear orientation, as evidenced by the 

arrows and pre-segmented nuclear contour colors (Fig. 4c, in which different nuclear 

contour colors represent different nuclear orientations). By contrast, for the patients in the 

long-term survival group, the nuclear orientations appear to be more uniform locally (Fig. 

4f).

Classifier evaluation

The performance of the 12 combinations of feature selection and classifier schemes, with 

respect to four different feature families, in terms of classification performance on the 

modeling set are summarized in Table 2. Note that since the combination of Wilcoxon’s 

rank-sum test and linear discriminant analysis yielded the best performance in distinguishing 
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two patient groups on the modeling set (AUC =0.67 ± 0.03), we settled on a combination of 

these two analytical tools for constructing the locked down image classifier. The LDA 

classifier yielded an AUC of 0.64 in differentiating the long-term vs. short-term survival 

patients on the independent test set. By applying a threshold of 0.5 to the output of the image 

classifier, a corresponding accuracy = 65%, specificity = 73.91%, and sensitivity =57.41% 

was obtained.

Survival analysis

Patients were followed for an average of 129 months (range 7–334 months). Table 3 

provides results of univariate logrank survival analysis for the major clinical/pathologic 

variables and for the image classifiers on the test set. Positive patients obtained by the image 

classifier (i.e., patients identified by the image classifier to have poor prognosis) had 

statistically significantly worse survival in univariate analysis (Table 3). As seen in Table 3, 

among the other major clinical and pathological variables, the binary label generated by the 

image classifier was a predictive feature that significantly correlated to the survival outcome 

with follow-up (hazard ratio = 2.91, 95% confident interval = 2.91(1.23–6.92), p = 0.02786). 

Kaplan–Meier survival curves for the image classifier are presented in Fig. 5. Multivariate 

survival analysis controlling for the effects of the major prognostic variables is presented in 

Table 4. The predicted labels obtained by the image classifier still correlated with worse 

survival independent of the other variables (hazard ratio = 3.17, 95% confident interval 

=0.33–30.46, p = 0. 01039).

Discussion

One of the most difficult current dilemmas for clinicians surrounds the identification of 

patients who will benefit most from chemotherapy in the ER+, LN− setting. There are 

significant risks associated with chemotherapy, and the need to identify patients who are 

unlikely to benefit from it is paramount. Standard clinical and histopathologic features alone 

cannot reliably answer this question. Currently, molecular tests such as Oncotype DX, 

Mammaprint, and PAM50 (and many others) are routinely performed in the clinic. These 

tests are all tissue destructive and costly. However, utilization of quantitative 

histomorphology may represent a reliable alternative to these molecular methods. Given the 

histologic features of any tumor represent the phenotype of all of the genomic alterations 

that occur, it is reasonable to infer that the extraction of features by quantitative 

histomorphology may shed important light upon the underlying biological pathways that 

drive tumorigenesis and can, in turn, predict the most appropriate therapy.

In this work, we evaluated digitized H&E-stained histology images corresponding to ER+, 

LN− breast cancers patients, and creating a prognostic classifier for predicting patient 

overall survival. Specifically, an image analysis-based classifier was constructed that utilizes 

computer-extracted quantitative image features relating to the nuclear orientation, shape, and 

texture from digitized H&E-stained slides with breast cancer microarray tumor sections. Our 

aim was to evaluate the correlation of nuclear shape and orientation disorder with prognosis 

in early-stage ER+, LN− breast cancers.
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In the modeling set, features relating to heterogeneity of nuclear orientation using second-

order statistics were found to be overexpressed in short-term survival patients (worse 

prognosis tumors) compared to the ones with better prognosis, that is, long-term survival 

patients. This is intuitive since in the aggressive tumors, tissue structures become poorly 

differentiated as a result of rapid disorganized cell growth, encouraging the nuclei in these 

structures to form highly irregular organizational patterns. While nuclear orientation and 

shape disorder has been shown to be important for urothelial cancers including bladder and 

prostate [16, 19, 28], our study is the first to quantitatively assess the role of disorder in 

nuclear polarity in predicting short-term vs. long-term survival in ER+, LN− breast cancers.

In addition to nuclear orientation disorder, we also looked at measurements relating to 

nuclear shape and texture (5 first-order statistics on 45 features = 225). The three most 

prognostic features were the intensity range of the nuclear surface, standard deviation of the 

Fractal Dimension [29] of the nuclear boundary, and range of nuclear solidity. The 

discriminating nuclear shape and texture features also suggest a trend that the higher range/

variance of the nuclear shape and texture are associated with a worse prognostic outcome 

(an explanation of the discriminating features along with corresponding boxplots is shown in 

the Supplementary materials appendix). Variance in nuclear shape and orientation are 

hallmarks of nuclear pleomorphism in the context of breast cancer and computer-extracted 

features of nuclear shape and texture appear to be capturing this aspect of breast cancer 

grading. These findings corroborate the studies of Basavanhally et al. [30] and Tambasco et 

al. [10] who both reported that global nuclear architecture features were correlated to cancer 

grade and patient survival. Our findings are also in alignment with those of Beck et al. [11], 

who found that appearance and shape measurements of stromal nuclei were important for 

predicting survival in breast cancer patients, independent of molecular subtype.

Our study did have its limitations since it leveraged TMAs, which notably contain a much 

smaller snapshot of the overall tumor characteristics as compared to whole-slide biopsies. In 

the future, we intend to extend this approach to whole-slide images as they may provide a 

more comprehensive view of the tumors. Also, since the patient image data originated from 

a single facility as opposed to multiple facilities, typical confounding variables such as tissue 

staining quality differences and differing patient population characteristics were not 

considered. This batch effect could potentially affect the image and feature analysis steps 

and will need to be rigorously investigated in future work [31]. Another limitation was that 

we did not explicitly distinguish cancer cells from tumor-infiltrating lymphocytes (TILs). 

The partition of cells into cancer and TILs could potentially have enabled the development 

of an even more sophisticated classifier by considering the individual contributions of the 

tumor as well as its habitat and associated immune response [32].

In summary, this study models and validates the independent prognostic value of a 

computerized H&E image based classifier of nuclear morphology in a cohort of 276 early-

stage ER+, LN− breast cancer patients. The separation of early-stage ER+ and LN− breast 

cancer into short-term and long-term survival cohorts holds special prognostic significance 

as prior knowledge of the risk of immediate recurrence (<10 years) will help in treatment 

planning. We believe this is a critical first step in being able to develop a predictive image-
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based classifier to identify which LN−, ER+ breast cancer patients stand to gain additional 

benefit from adjuvant chemotherapy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Overall workflow of construction and validation of image classifier

Lu et al. Page 12

Lab Invest. Author manuscript; available in PMC 2018 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Inclusion and exclusion criteria for patient selection for the modeling and test sets
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Fig. 3. 
Top three discriminative features identified within the modeling set (1 = Orientation: range 

tensor information_measure1_a = 0.42; 2 = Orientation:range tensor 

information_measure1_a = 0.43; 3 = Orientation:standard deviation tensor 

information_measure1_a = 0.42). They are entropy-related measurement capering the degree 

of disorder of nuclear orientation locally (for more feature explanation please refer to the 

Supplementary Materials Appendix). Higher feature values reflect more disorder in 

orientations of adjacent nuclei. The p values were calculated via the paired Student’s t test
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Fig. 4. 
Representative H&E-stained TMA spot images for a short-term survival and d long-term 

survival patient. b, e Zoomed region with pre-segmented nuclear contour, from which the 

nuclear shape and orientation measurement are extracted. c, f The nuclear orientation map, 

in which the nuclear contours with different colors indicate different nuclear orientations; 

the nuclear orientation is also demonstrated by arrows. The long-term survival patient, 

shown in f, tends to have uniform distribution of nuclear shape (similar in nuclear shape/size 

in e than that in b) and nuclear orientation (similar colors/orientation in f than that in c), 

compared to that of short-term survival patient
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Fig. 5. 
Kaplan–Meier survival curve of a T-stage (T1 vs. T2), b histology grade (poorly vs. well/

moderately differentiated), c histology grade (well vs. moderately/poorly differentiated), d 
nuclear grade (1 vs. 2/3), e nuclear grade (1/2 vs. 3), and f predicted labels generated bythe 

image classifier trained on the test set for predicting overall survival
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Table 1

Summary of clinical and pathological features of the studied early-stage ER+, LN− breast cancer cohorts

All data sets, N (%) Modeling set, N (%) Test set, N (%) P value*

No. of patients 276 177 99

Age 59.0±11.9 60.4±11.2 56.5±12.2 ϒ
0.0105

Race <0.0001

 White 259 (93.8) 175 (98.9) 84 (84.9)

 Other 17 (6.2) 2(1.1) 15 (15.1)

Histology grade 1

 Well/moderately differentiated 39 (60.9) 1 (50.0) 38 (61.3)

 Poorly differentiated 25 (39.1) 1 (50.0) 24 (38.7)

Histology grade

 Well differentiated 8 (12.5) 1 (50.0) 7 (11.3) 0.2361

 Moderately/poorly differentiated 56 (87.5) 1 (50.0) 55 (88.7)

Nuclear grade 0.0056

 1/2 197 (89.9) 132 (86.3) 65 (98.5)

 3 22 (10.1) 21 (13.7) 1 (1.5)

Nuclear grade 0.4091

 1 60 (27.4) 39 (25.5) 21 (31.8)

 2/3 159 (72.6) 114 (74.5) 45 (68.2)

T-stage <0.0001

 T1 248 (89.9) 172 (97.2) 76 (76.8)

 T2 28 (10.1) 5 (2.8) 23 (23.2)

Her2 status 0.0336

 Positive 94 (34.4) 69 (39.0) 25 (26.0)

 Negative 179 (65.6) 108 (61.0) 71 (74.0)

Chemotherapy <0.0001

 Yes 25 (9.1) 0 (0.0) 25 (25.3)

 No 251 (90.9) 177 (100.0) 74 (74.7)

Survival status 0.0588

 Long term (≥10 years) 150 (54.4) 104 (58.8) 46 (46.5)

 Short term (<10 years) 126 (45.6) 73 (41.2) 53 (54.5)

*
P values were calculated from two-sided Fisher’s exact test.

ϒ
P value was calculated from Welch two sample t test. P values are computed between the modeling and test set. Values in bold are statistically 

significant, p < 0.05
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Table 2

Performance of four different classifiers with three different feature selection methods in the modeling set

Classifier Feature selection AUC Accuracy Specificity Sensitivity

LDA WRST 0.67 ±0.03 0.70 ±0.02 0.81 ±0.11 0.53 ±0.07

MRMR 0.64 ±0.03 0.67 ± 0.02 0.76 ±0.11 0.55 ± 0.07

RF 0.63 ± 0.03 0.66 ±0.02 0.80±0.15 0.45 ± 0.09

QDA WRST 0.54 ±0.04 0.63 ± 0.02 0.88 ±0.14 0.27 ± 0.08

MRMR 0.56 ±0.03 0.64 ±0.02 0.86 ±0.11 0.31 ±0.07

RF 0.54 ±0.03 0.62 ±0.02 0.89 ±0.13 0.24 ± 0.08

RF WRST 0.63 ± 0.03 0.61 ±0.03 0.73 ±0.04 0.45 ± 0.04

MRMR 0.66 ±0.04 0.63 ± 0.03 0.77 ± 0.06 0.44 ±0.04

RF 0.63 ± 0.03 0.62 ±0.03 0.72 ±0.05 0.46 ± 0.04

SVM WRST 0.67 ±0.02 0.64 ±0.02 0.85 ±0.06 0.33 ±0.03

MRMR 0.66 ±0.04 0.63 ± 0.03 0.86 ±0.07 0.28 ±0.04

RF 0.67 ±0.03 0.61 ±0.02 0.83 ±0.05 0.30 ±0.04

AUC area under the receptor operating curve, LDA/QDA linear/quadratic discriminant analysis, SVM support vector machine, RF Random Forest 
classifier, MRMR minimum redundancy, maximum relevance feature selection method, WRST Wilcoxon’s rank-sum test, RF Random Forest 
feature selection method

The best performance in each metric/column is shown in bold
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Table 3

Univariate log-rank analysis for overall survival on the test set

Variable Disease-specific survival, HR (95% CI) P value

Age

≤55 vs. >55 1.40 (0.60–3.29) 0.57664

Race

Nonwhite vs. white 0.28 (0.08–0.98) 0.09464

T-stage

T1 vs. T2 1.94 (0.72–5.20) 0.28845

Histology grade

Well/moderately differentiated vs. poorly differentiated 1.74 (0.56–5.39) 0.50248

Histology grade

Well differentiated vs. moderately/poorly differentiated 3.50 (0.74–16.58) 0.23464

Nuclear grade

1 vs. 2/3 1.23 (0.46–3.28) 0.87899

1/2 vs. 3 74.02 (0.80–6854.43) 0.47902

Tubule formation

1 vs. 2/3 1.82 (0.66–5.03) 0.36692

1/2 vs. 3 1.68 (0.37–7.65) 0.77774

Nuclear pleomorphism

1 vs. 2/3 2.29 (0.16–33.57) 0.93666

1/2 vs. 3 0.30 (0.06–1.68) 0.35288

Mitotic count

1 vs. 2/3 74.02 (0.80–6854.43) 0.47902

Her2 status

Positive vs. negative 1.72 (0.65–4.52) 0.39566

Chemotherapy

Yes vs. no 0.55 (0.22–1.40) 0.30872

Image classifier

Positive vs. negative 2.91 (1.23–6.92) 0.02786

CI confidence interval, HR Mantel–Haenszel hazard ratio

Values in bold are statistically significant, p < 0.05
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Table 4

Multivariate Cox proportional hazard model analysis controlling for major prognostic variables on the test set

Variable P value Hazard ratio (95% Confidence interval)

T-stage

T1 vs. T2 0.18069 1.84 (0.56–6.13)

Histology grade

Well differentiated vs. moderately/poorly differentiated 0.31457 1.58 (0.64–3.90)

Nuclear grade

1 vs. 2/3 0.59577 1.32 (0.77–2.27)

Image classifier

Positive vs. negative 0.01039 3.17 (0.33–30.46)
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