Skip to main content
. Author manuscript; available in PMC: 2018 Nov 2.
Published in final edited form as: Lab Invest. 2018 Jun 29;98(11):1438–1448. doi: 10.1038/s41374-018-0095-7

Table 2.

Performance of four different classifiers with three different feature selection methods in the modeling set

Classifier Feature selection AUC Accuracy Specificity Sensitivity
LDA WRST 0.67 ±0.03 0.70 ±0.02 0.81 ±0.11 0.53 ±0.07
MRMR 0.64 ±0.03 0.67 ± 0.02 0.76 ±0.11 0.55 ± 0.07
RF 0.63 ± 0.03 0.66 ±0.02 0.80±0.15 0.45 ± 0.09
QDA WRST 0.54 ±0.04 0.63 ± 0.02 0.88 ±0.14 0.27 ± 0.08
MRMR 0.56 ±0.03 0.64 ±0.02 0.86 ±0.11 0.31 ±0.07
RF 0.54 ±0.03 0.62 ±0.02 0.89 ±0.13 0.24 ± 0.08
RF WRST 0.63 ± 0.03 0.61 ±0.03 0.73 ±0.04 0.45 ± 0.04
MRMR 0.66 ±0.04 0.63 ± 0.03 0.77 ± 0.06 0.44 ±0.04
RF 0.63 ± 0.03 0.62 ±0.03 0.72 ±0.05 0.46 ± 0.04
SVM WRST 0.67 ±0.02 0.64 ±0.02 0.85 ±0.06 0.33 ±0.03
MRMR 0.66 ±0.04 0.63 ± 0.03 0.86 ±0.07 0.28 ±0.04
RF 0.67 ±0.03 0.61 ±0.02 0.83 ±0.05 0.30 ±0.04

AUC area under the receptor operating curve, LDA/QDA linear/quadratic discriminant analysis, SVM support vector machine, RF Random Forest classifier, MRMR minimum redundancy, maximum relevance feature selection method, WRST Wilcoxon’s rank-sum test, RF Random Forest feature selection method

The best performance in each metric/column is shown in bold