Table 2.
Classifier | Feature selection | AUC | Accuracy | Specificity | Sensitivity |
---|---|---|---|---|---|
LDA | WRST | 0.67 ±0.03 | 0.70 ±0.02 | 0.81 ±0.11 | 0.53 ±0.07 |
MRMR | 0.64 ±0.03 | 0.67 ± 0.02 | 0.76 ±0.11 | 0.55 ± 0.07 | |
RF | 0.63 ± 0.03 | 0.66 ±0.02 | 0.80±0.15 | 0.45 ± 0.09 | |
QDA | WRST | 0.54 ±0.04 | 0.63 ± 0.02 | 0.88 ±0.14 | 0.27 ± 0.08 |
MRMR | 0.56 ±0.03 | 0.64 ±0.02 | 0.86 ±0.11 | 0.31 ±0.07 | |
RF | 0.54 ±0.03 | 0.62 ±0.02 | 0.89 ±0.13 | 0.24 ± 0.08 | |
RF | WRST | 0.63 ± 0.03 | 0.61 ±0.03 | 0.73 ±0.04 | 0.45 ± 0.04 |
MRMR | 0.66 ±0.04 | 0.63 ± 0.03 | 0.77 ± 0.06 | 0.44 ±0.04 | |
RF | 0.63 ± 0.03 | 0.62 ±0.03 | 0.72 ±0.05 | 0.46 ± 0.04 | |
SVM | WRST | 0.67 ±0.02 | 0.64 ±0.02 | 0.85 ±0.06 | 0.33 ±0.03 |
MRMR | 0.66 ±0.04 | 0.63 ± 0.03 | 0.86 ±0.07 | 0.28 ±0.04 | |
RF | 0.67 ±0.03 | 0.61 ±0.02 | 0.83 ±0.05 | 0.30 ±0.04 |
AUC area under the receptor operating curve, LDA/QDA linear/quadratic discriminant analysis, SVM support vector machine, RF Random Forest classifier, MRMR minimum redundancy, maximum relevance feature selection method, WRST Wilcoxon’s rank-sum test, RF Random Forest feature selection method
The best performance in each metric/column is shown in bold