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Abstract

The pathogenesis of alcoholic liver disease (ALD) remains poorly understood but is likely a multi-

hit pathophysiological process. Here, we propose a hypothesis of how early mitochondrial 

adaptations for alcohol metabolism lead to ALD pathogenesis. Acutely, ethanol feeding causes a 

near doubling of hepatic ethanol metabolism and oxygen consumption within 2–3 h. This Swift 

Increase in Alcohol Metabolism (SIAM) is an adaptive response to hasten metabolic elimination 

of both ethanol and its more toxic metabolite, acetaldehyde (AcAld). In association with SIAM, 

ethanol causes wide-spread hepatic mitochondrial depolarization (mtDepo), which stimulates 

oxygen consumption. In parallel, voltage dependent anion channels (VDAC) in the mitochondrial 

outer membrane close. Together, VDAC closure and respiratory stimulation promote selective and 

more rapid oxidation of ethanol first to AcAld in the cytosol and then to non-toxic acetate in 

mitochondria, since membrane-permeant AcAld does not require VDAC to enter mitochondria. 

VDAC closure also inhibits mitochondrial fatty acid oxidation and ATP release, promoting 

steatosis and a decrease of cytosolic ATP. After acute ethanol, these changes revert as ethanol is 

eliminated with little hepatocellular cytolethality. mtDepo also stimulates mitochondrial autophagy 

(mitophagy). After chronic high ethanol exposure, the capacity to process depolarized 

mitochondria by mitophagy becomes compromised, leading to intra- and extracellular release of 

damaged mitochondria, mitophagosomes and/or autolysosomes containing mitochondrial damage-

associated molecular pattern (mtDAMP) molecules. mtDAMPs cause inflammasome activation 

and promote inflammatory and profibrogenic responses, causing hepatitis and fibrosis. We propose 

that persistence of mitochondrial responses to ethanol metabolism becomes a tipping point, which 

links initial adaptive ethanol metabolism to maladaptive changes initiating onset and progression 

of ALD.

Keywords

ethanol metabolism; inflammation; fibrosis; mitochondria; VDAC

Address correspondence to: Dr. Zhi Zhong, Department of Drug Discovery & Biomedical Sciences, Medical University of South 
Carolina, MSC140, 280 Calhoun Street, Charleston, SC 29425; Phone: 843-792-2163; Zhong@musc.edu. 

CONFLICT OF INTERESTS
The authors have no conflict of interest to declare.

HHS Public Access
Author manuscript
Alcohol Clin Exp Res. Author manuscript; available in PMC 2019 November 01.

Published in final edited form as:
Alcohol Clin Exp Res. 2018 November ; 42(11): 2072–2089. doi:10.1111/acer.13877.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1. Introduction

Alcohol is consumed worldwide, and excessive alcohol consumption leads to alcoholic liver 

disease (ALD) (Rehm, et al., 2013). In the U.S., approximately two-thirds of adults drink 

alcohol, and more than 2.5 million people have ALD (Kim, et al., 2002;Chacko and Reinus, 

2016). The major pathological features of human ALD are steatosis, hepatitis, and fibrosis/

cirrhosis, which often co-exist and eventually progress to end-stage liver disease and/or liver 

cancer (Ishak, et al., 1991;Bataller and Gao, 2015;Chacko and Reinus, 2016). ALD accounts 

for about half of global mortality due to cirrhosis (Rehm, et al., 2013;Gao and Bataller, 

2011). In severe alcoholic hepatitis (AH), mortality is 30–50% and exceeds 50% in patients 

with cirrhosis (Fung and Pyrsopoulos, 2017;Beier, et al., 2011). Estimated alcohol-related 

health-care costs in the United States are more than $26 billion (Kim, et al., 2002). 

Therefore, ALD remains a major concern for public health and medicine.

ALD is a multistage disease with a pathogenesis generally recognized to be mediated by 

multiple-hit mechanisms (Tsukamoto, et al., 2009;Szabo and Petrasek, 2017). In recent 

years, proinflammatory gut microbiome-liver interactions, adipose tissue dysfunction, 

genetic polyphorphisms, epigenetic changes, perturbation of methionine metabolism, 

endoplasmic reticulum (ER) stress, and various mitochondrial alterations have all been 

proposed to contribute to ALD pathogenesis (Garcia-Ruiz, et al., 2013;Williams, et al., 

2014;Xu, et al., 2017;Szabo and Petrasek, 2017;Wang, et al., 2016a;Wang, et al., 2016b). 

Despite extensive study, mechanisms by which ethanol initiates hepatic damage and 

promotes ALD progression remain incompletely understood.

Many early studies have shown mitochondrial alterations in ALD (Ishak, et al., 1991;Hoek, 

et al., 2002;Hoek and Pastorino, 2004;Mansouri, et al., 2018). Mitochondrial morphological 

changes, such as megamitochondria, are an early and constant finding in ALD patients 

(Matsuhashi, et al., 1998;Hoek, et al., 2002;Ishak, et al., 1991). Moreover, adaptive alcohol 

metabolism leads to a mitochondrial respiratory burst, an effect that depends on Kupffer cell 

activation (Thurman, et al., 1982;Yuki and Thurman, 1980b;Rivera, et al., 1998;Forman, et 

al., 1988;Bradford and Rusyn, 2005). Deletions of mitochondrial DNA (mtDNA) are also 

common in ALD patients (Larosche, et al., 2010;Fromenty, et al., 1995). Thus, 

mitochondrial stress and damage are likely important early events in the “multi-hit” 

pathogenesis of ALD. This article presents a unifying hypothesis of how mitochondrial 

adaptations that acutely augment alcohol metabolism and detoxification also promote the 

pathological features of chronic ALD, including steatosis, inflammation and fibrosis.

2. Adaptive alcohol metabolism-related mitochondrial alterations

2a) Hepatic ethanol metabolism

Ethanol undergoes two-step oxidation to acetaldehyde (AcAld) and then to acetate, a process 

occurring predominantly in the liver (Fig. 1). Alcohol dehydrogenase (ADH) in the cytosol, 

cytochrome P450 2E1 (CYP2E1) of the microsomal ethanol-oxidizing system (MEOS) in 

the endoplasmic reticulum (ER), and catalase in peroxisomes catalyze the first oxidation 

step, which converts ethanol to acetaldehyde (AcAld), a toxic and reactive ethanol 

Zhong and Lemasters Page 2

Alcohol Clin Exp Res. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



metabolite. ADH is quantitatively the most important first step enzyme, whereas CYP2E1 

has a higher Km for ethanol than ADH. Thus, the relative contribution of CYP2E1 to overall 

ethanol metabolism increases with increasing blood ethanol concentration (Gonzalez, et al., 

1991;Lu and Cederbaum, 2008;Leung and Nieto, 2013).

Aldehyde dehydrogenase (ALDH) further oxidizes AcAld to acetate. Of 19 ALDH isoforms, 

ALDH2 in the mitochondrial matrix is most important for AcAld oxidation, and thus AcAld 

must enter mitochondria to be oxidized to acetate (Lieber, 2005). Together, ADH and ALDH 

form two moles of NADH for each mole of ethanol oxidized to acetate. In the cytosol, ADH 

increases the NADH/NAD+ ratio, and NAD+ supply becomes rate-limiting for the ADH 

reaction. Reducing equivalents of NADH formed by ADH enter mitochondria via the 

malate-aspartate or other shuttle for oxidation by the mitochondrial respiratory chain with 

regeneration of NAD+ (Lieber, 2005). Mitochondrial NADH formed after AcAld oxidation 

by ALDH2 must also be oxidized by the respiratory chain for ethanol oxidation to continue.

2b) Swift increase in alcohol metabolism

The liver is the major organ eliminating ethanol and its toxic metabolic AcAld to protect 

other organs, especially the central nervous system, after alcohol ingestion. Exposure to 

ethanol leads to an adaptive increase of ethanol metabolism in both rodent and human livers 

(Thurman, et al., 1982;Yuki and Thurman, 1980b;Videla and Israel, 1970). Occurring within 

2–3 h after ethanol treatment, this phenomenon is named Swift Increase in Alcohol 

Metabolism (SIAM) and is defined experimentally as a rapid increase in hepatic alcohol 

metabolism and mitochondrial respiration after a single bolus dose of alcohol (e.g., 5 g/kg), 

but even small doses (1 g/kg) can produce SIAM (Thurman, et al., 1982;Yuki and Thurman, 

1980b;Shimamoto, et al., 2010). SIAM also occurs in human subjects after alcohol 

consumption of 0.85 g/kg (Thurman, et al., 1989).

Although increased respiration should in theory lead to increased ATP generation, ethanol 

treatment actually decreases hepatic ATP by 50–60% (El-Assal, et al., 2004;Bailey, et al., 

1999;Zhong, et al., 2014). Overall, the respiratory burst in SIAM is an adaptive response to 

oxidize toxic AcAld more rapidly by increasing NAD+ supply for ADH- and ALDH-

dependent ethanol metabolism. This hepatic hypermetabolism persists during chronic 

ethanol exposure and was first described in a chronic ethanol feeding model (Videla, et al., 

1973;Israel, et al., 1975a;Israel, et al., 1973;Israel, et al., 1975b;Ribiere, et al., 1994;Han, et 

al., 2012;Han, et al., 2017). The mechanisms of SIAM are not well understood but most 

likely are multifactorial.

Occurrence of SIAM requires ethanol oxidation to AcAld (Bradford and Rusyn, 2005). 

Neither MEOS nor hepatic ADH activity is altered when SIAM first develops after acute 

ethanol (Yuki and Thurman, 1980b). However, ADH deficiency and inhibition, and to a 

lesser extent, cytochrome P450 inhibition, block SIAM (Yuki and Thurman, 1980a;Wendell 

and Thurman, 1979;Glassman, et al., 1985). Other studies suggest that catalase also plays a 

role in SIAM (Bradford, et al., 1999).

Zhong and Lemasters Page 3

Alcohol Clin Exp Res. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2c) Ethanol-induced VDAC closure

The voltage dependent anion channel (VDAC) is a highly conserved 30 kDa mitochondrial 

outer membrane protein with three isoforms in mice and humans – VDAC1, 2 and 3 

(Shoshan-Barmatz and Gincel, 2003;Neumann, et al., 2010). VDAC forms a barrel 

comprised of a transmembrane alpha helix and 19 transmembrane beta strands enclosing a 

~2.5 nm aqueous channel, which in the open state allows passage of non-electrolytes up to 5 

kDa in size, although electrostatic profile is also an important determinant of channel 

permeance (Bayrhuber, et al., 2008;Colombini, 2012). Except for a relatively few 

membrane-permeant lipophilic compounds, metabolites that enter and leave mitochondria 

must cross the outer membrane through VDAC (Shoshan-Barmatz and Gincel, 

2003;Colombini, 2012). In the open state, anions are somewhat favored over cations. 

Membrane potential (ΔΨ) closes VDAC symmetrically with half maximal closure at ±50 

mV. VDAC closure effectively blocks movement of most organic anions, including 

respiratory substrates, acyl-CoA, ATP, ADP and Pi (Shoshan-Barmatz and Gincel, 

2003;Vander Heiden, et al., 2000;Lemasters, 2017).

VDAC is generally assumed to be open during mitochondrial metabolism, but more recent 

data suggest that VDAC can close and inhibit metabolite exchange (Das, et al., 

2008;Holmuhamedov and Lemasters, 2009;Lemasters and Holmuhamedov, 2006;Vander 

Heiden, et al., 2000). Various degrees of VDAC closure modulate substrate supply for 

respiration, exchange of ADP and Pi for ATP during oxidative phosphorylation (OXPHOS), 

and other mitochondrial functions. In this way, VDAC acts as a dynamic limiter, or 

‘governator’, of global mitochondrial function (Lemasters and Holmuhamedov, 

2006;Lemasters, 2017;Maldonado and Lemasters, 2012).

As noted above, hepatic ATP paradoxically decreases after acute ethanol despite increased 

mitochondrial respiration and without activation of an identifiable ATPase. Moreover, 

steatosis occurs, indicative of inhibition of mitochondrial β-oxidation (Zhong, et al., 2014). 

However, rats fed triglycerides containing short to medium chain fatty acids have less 

steatosis after ethanol treatment than rats fed triglycerides containing long chain fatty acids, 

indicating that mitochondria continue to metabolize shorter chain fatty acids after ethanol 

(Nanji, 2004). To explain these phenomena, closure of VDAC was proposed to occur 

(Lemasters and Holmuhamedov, 2006). In this way, VDAC becomes rate-limiting for both 

release of mitochondrial ATP and uptake of fatty acyl-CoA to explain hepatic ATP depletion 

and steatosis. However, VDAC closure does not block mitochondrial oxidation of short 

chain fatty acids and AcAld that pass directly through membrane lipid bilayers. Nonetheless, 

simple permeance of AcAld is insufficient to stimulate mitochondrial respiration over that 

supported by other respiratory substrates, because the respiration-driven protonmotive force 

across the inner membrane comprised predominantly of ΔΨ inhibits respiration, the well-

known phenomenon of respiratory control. Thus, it was further hypothesized that 

mitochondrial uncoupling and depolarization must also occur to stimulate respiration during 

SIAM (see below) (Lemasters and Holmuhamedov, 2006).

Subsequent studies showed that outer membranes of hepatocellular mitochondria do indeed 

become less permeable to adenine nucleotides and low molecular weight dextrans after 

ethanol and AcAld exposure (Holmuhamedov and Lemasters, 2009). Ureagenesis requires 
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extensive exchange of different metabolites through VDAC. Both ethanol and AcAld 

suppress respiration stimulated by ureagenic substrates in cultured rat hepatocytes, and urea 

formation declines proportionately (Holmuhamedov, et al., 2012). For AcAld, the 50% 

inhibitory concentration (IC50) is 125 μM. Inhibitors of AcAld-forming ADH, Cyp2E1, and 

catalase partially restore ureagenic respiration inhibited after ethanol treatment. By contrast, 

inhibition of ALDH exacerbates suppression of ureagenic respiration by ethanol. 

Additionally in plasma membrane-permeabilized rat hepatocytes, AcAld suppresses entry of 

3-kDa rhodamine-conjugated dextran into the mitochondrial intermembrane space, 

indicative of VDAC closure (Fig. 2) (Holmuhamedov, et al., 2012). These findings support 

the conclusion that AcAld underlies ethanol-induced inhibition of ureagenesis through 

closure of VDAC.

VDAC closure after ethanol becomes sufficient to be rate-limiting for passage of anionic 

metabolites across the outer membrane. Such closure need not be complete. Moreover, in the 

‘closed’ state, VDAC becomes a cation selective pore of 1.8 nm in diameter that still 

conducts small anions like Cl- (Rostovtseva and Colombini, 1997;Tan and Colombini, 

2007). The mechanisms of ethanol-induced VDAC closure remain unknown. In cancer cells, 

free dimeric α,β-tubulin inhibits VDAC isoforms 1 and 2 but not the minor isoform VDAC3 

(Maldonado, et al., 2010;Maldonado, et al., 2013). α-Tubulin is a major target of adduct 

formation by AcAld, and adduction drastically impairs microtubule polymerization, which 

might increase free tubulin (Tuma, et al., 1991;Jennett, et al., 1980;Groebner and Tuma, 

2015). Kinase cascades may also be involved, since phosphorylation of VDAC by cAMP-

dependent protein kinase A (PKA) or glycogen synthase kinase-3β (GSK3β) enhances 

tubulin closure of VDAC reconstituted into bilayers (Sheldon, et al., 2011), whereas 

experiments in intact cells indicate that the PKA and GSK3β pathways increase and 

decrease, respectively, VDAC conductance (Maldonado, et al., 2010;Das, et al., 2008). 

Phosphorylation by c-Jun N-terminal kinase-3 also decreases VDAC conductance (Gupta 

and Ghosh, 2015;Gupta, 2017).

2d) Ethanol-induced mitochondrial depolarization in vivo

To examine whether mitochondrial uncoupling occurs to stimulate respiration during SIAM, 

mitochondrial polarization in vivo after ethanol treatment was assessed by intravital 

confocal/multiphoton microscopy, a technology that allows direct visualization of 

mitochondrial structure and function in living animals. If the process of OXPHOS remains 

intact during SIAM, mitochondrial ΔΨ should be preserved as respiration increases. 

Alternatively, if increased mitochondrial respiration is due to uncoupling, then ΔΨ should 

decrease sharply. What was observed is virtually complete mitochondrial depolarization 

(mtDepo), as assessed by the absence of mitochondrial uptake of ΔΨ-indicating cationic 

fluorophores like rhodamine 123 (Zhong, et al., 2014). This mtDepo occurs in an all-or-

nothing fashion within individual hepatocytes. The percentage of hepatocytes with 

depolarized mitochondria increases in a dose- and time-dependent fashion and peaks at 6 to 

12 h after single intragastric ethanol feeding (1–6 g/kg) (Fig. 3). At maximum ethanol (~6 g/

kg), mtDepo occurs in ~90% of hepatocytes. At 1g/kg ethanol, a dose causing a peak blood 

alcohol approximating the legal limit for operation of motor vehicles in the U.S., mtDepo 
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occurs in 10–15% of hepatocytes. mtDepo largely reverses after 24 h as ethanol is 

metabolically eliminated and is virtually absent after 72 h (Fig. 3) (Zhong, et al., 2014).

High demand for O2 during SIAM leads to zones of hypoxia, especially in pericentral 

(centrilobular) regions of liver lobules, which may contribute to liver injury (Ji, et al., 

1982b;Ji, et al., 1982a;Ji, et al., 1983;Arteel, et al., 1996). Nonetheless, ethanol-induced 

mtDepo is not secondary to anoxia, because NAD(P)H autofluorescence in depolarized 

mitochondria sharply decreases in comparison to adjacent hepatocytes with polarized 

mitochondria, whereas in anoxia NAD(P)H increases maximally. mtDepo in combination 

with NAD(P)H oxidation and increased respiration (SIAM) are the hallmarks of uncoupling 

(Zhong, et al., 2014;Sies, et al., 1974;Nieminen, et al., 1997). In support of an uncoupling 

mechanism, hepatic ATP decreases ~60% after acute ethanol (6 g/kg)(Zhong, et al., 2014). 

By increasing mitochondrial respiration, uncoupling is an adaptive response to promote 

NAD+ regeneration in support ADH and ALDH2-dependent alcohol metabolism.

Decreased entry into mitochondria of normal NAD+-linked substrates (pyruvate, acyl-CoA, 

etc.) cannot account for mtDepo and mitochondrial NADH oxidation, since hepatic oxygen 

consumption does not decrease but instead nearly doubles during SIAM. Rather, oxidation 

of membrane-permeant AcAld replaces oxidation of other anionic respiratory substrates 

whose entry into mitochondria is blocked by closure of VDAC after ethanol/AcAld 

exposure. Several mechanisms for mtDepo are possible, such as futile cycling of H+, Ca2+, 

K+ or other ion, but the specific mechanism remains unknown.

The mitochondrial permeability transition (MPT) is not responsible for ethanol-induced 

mtDepo in vivo, since the MPT blocker CsA did not block ethanol-induced mtDepo, calcein 

did not re-distribute from cytosol into the depolarized mitochondria, and mtDepo was 

reversible after acute ethanol (Zhong, et al., 2014). Simple activation of an ATPase to cause 

futile ATP hydrolysis seems unlikely, since mitochondrial ΔΨ falls by a relatively small 

amount during maximal ADP-stimulated State 3 respiration compared to the virtually 

complete mtDepo after ethanol (Nicholas and Ferguson, 2013).

Uncoupling proteins (UCP) depolarize mitochondria and stimulate respiration (Diehl and 

Hoek, 1999;Bouillaud, et al., 2016). In obesity, steatosis and various pathological conditions, 

liver expresses UCP2 that promotes injury, but UCP2 protein and mRNA are virtually 

undetectable in normal lean livers (Demori, et al., 2008;Chavin, et al., 1999;Evans, et al., 

2008). Thus, UCP2 upregulation seems unlikely to account for mtDepo, since mtDepo 

begins at a very early time point (1 h) after ethanol and because ethanol-induced mtDepo is 

not blocked in the livers of UCP2 deficient mice (Zhong et al. 2014 and unpublished).

Interestingly, mtDepo in vivo also occurs after chronic ethanol treatment, although the 

percentage of hepatocytes exhibiting mtDepo is less than after high dose acute ethanol 

treatment (Rehman, et al., 2015). Thus, mitochondrial uncoupling also occurs after chronic 

alcohol consumption. In support of such mitochondrial uncoupling in humans, energy 

expenditure increases whereas metabolic efficiency decreases in both acute and chronic 

drinkers (Suter, et al., 1994;Levine, et al., 2000;Jhangiani, et al., 1986).
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In vivo, ethanol-induced mtDepo depends on AcAld formation (Zhong, et al., 2014). 

Deficiency of ADH, the major ethanol-metabolizing enzyme, decreases mtDepo after acute 

ethanol by ~70%. Deficiency of CYP2E1 and pharmacological cytochrome P450 inhibition 

each decrease mtDepo after acute ethanol by ~20%, indicating that ADH plays a greater role 

than CYP2E1 in mtDepo in vivo. Alda-1, an activator of ALDH2, also decreases mtDepo 

after acute ethanol, whereas inhibition of ALDH activity with disulfiram increases mtDepo 

(Zhong, et al., 2014). Alda-1 also decreases mtDepo after chronic ethanol treatment 

(Rehman, et al., 2015). Thus, increased AcAld levels during ethanol metabolism promote 

mtDepo after both acute and chronic ethanol exposure. Overall, increased intrahepatic 

AcAld after ethanol may act as a signal triggering multiple mitochondrial alterations to 

accelerate alcohol metabolism.

Because small neutral aldehydes like AcAld do not need VDAC or other carrier to cross the 

outer and inner membranes of mitochondria, VDAC closure and respiratory stimulation by 

mtDepo together promote rapid and selective oxidation of membrane-permeant AcAld while 

simultaneously inhibiting oxidation of competing substrates that require VDAC to enter 

mitochondria. VDAC closure also prevents futile hydrolysis of cytosolic ATP by uncoupled 

mitochondria, such that tissue ATP levels can be partially maintained by glycolysis 

(Lemasters and Holmuhamedov, 2006;Lemasters, 2017;Zhong, et al., 2014). Nonetheless, 

some anion flux across the outer membrane must persist for electron transfer from cytosolic 

NADH to mitochondrial NAD+ by the malate-aspartate or α-glycerol phosphate shuttle. 

This flux may be through incompletely closed VDAC or previously unrecognized exchange 

pathways in the outer membrane.

Similar mechanisms may also play a role in nonalcoholic steatohepatitis in which oxidative 

stress is an important pathogenic mechanisms, since lipid peroxidation chain reactions 

generate small aldehydes like malondialdehyde that close VDAC even more potently than 

AcAld (Holmuhamedov, et al., 2011;Holmuhamedov, et al., 2012). Although adaptive in 

promoting faster detoxification of aldehydes, VDAC closure and the associated 

mitochondrial uncoupling may become maladaptive hits in the multi-hit pathogenesis of 

ALD and possibly other forms of liver disease, such as non-alcoholic steatohepatitic 

(NASH) and vinyl chloride-related toxicant-associated steatohepatitis (TASH) (Cave, et al., 

2010;Anders, et al., 2016), as further discussed below.

2e) Mitophagy and ethanol-induced mitochondrial remodeling

Mitochondrial autophagy, or mitophagy, is a process leading to lysosomal degradation of 

mitochondria in response to nutrient deprivation, mitochondrial damage and the need for 

cytoplasmic remodeling as bioenergetic demands change (Kim, et al., 2007;Lemasters, 

2014). Deficient mitophagy is associated with mitochondrial dysfunction and the 

pathogenesis of many diseases (Jin and Youle, 2012;Redmann, et al., 2014;Zhang, et al., 

2018;Chistiakov, et al., 2017), whereas overactive mitophagy can produce mitochondrial 

depletion and a bioenergetic deficit, as described for cadmium hepatotoxicity (Pi, et al., 

2013).

Different signaling pathways initiate mitophagy. In Type 1 mitophagy, Vps34 (Class III 

phosphoinositide 3-kinase [PI3K]), beclin-1, and other proteins initiate formation of cup-
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shaped phagophores that wrap around individual mitochondria and fuse to form 

mitophagosomes. Type 1 mitophagy often occurs coordinately with mitochondrial fission 

(Lemasters, 2014). Type 1 mitophagy is typical of nutrient deprivation and cytoplasmic 

remodeling and is completely blocked by PI3K inhibitors like 3-methyladenine and 

wortmannin. In Type 1 mitophagy, the outer compartment of mitophagosomes (space 

between the inner and outer autophagosomal membranes) acidifies, and then mtDepo occurs 

(Fig. 4A). Subsequently, mitophagosomes fuse with lysosomes (or late endosomes) to form 

autolysosomes in which hydrolytic digestion of mitochondria occurs within about 15 min 

(Lemasters, 2014;Eid, et al., 2013). Thus, Type 1 mitophagy removes functional 

mitochondria to provide metabolic precursors during nutrient deprivation or that are in 

excess of metabolic needs (Rodriguez-Enriquez, et al., 2009;Lemasters, 2014).

In Type 2 mitophagy, mtDepo initiates autophagic sequestration. After mtDepo, Pink1 

accumulates on mitochondria to promote Parkin binding. Parkin is an E3 ligase, and 

ubiqitination of mitochondrial proteins recruits autophagy receptor proteins like p62/

SQSTM-1, followed by association of LC3-containing membranes that appear to fuse to 

form an autophagosome enveloping the target mitochondrion (Lemasters, 2014). By contrast 

to Type 1 mitophagy of polarized mitochondria, PI3K inhibitors do not block Type 2 

mitophagy of depolarized mitochondria (Fig. 4A). Moreover, cup-shaped phagophores and 

mitochondrial fission are typically absent in Type 2 mitophagy (Lemasters, 2014;Pickles, et 

al., 2018). Other autophagy receptors, including BCL2/adenovirus E1B 19-kDa protein-

interacting protein 3 (Bnip3), Nix, optineurin and double FYVE-containing protein 1 

(DFCP1) also associate with depolarized mitochondria to promote LC3 binding and 

autophagic sequestration (Schweers, et al., 2007;Kubli and Gustafsson, 2012;Wong and 

Holzbaur, 2014;Wong and Holzbaur, 2015). In a third type of mitophagy, mitochondria-

derived vesicles (MDVs) enriched in oxidized mitochondrial proteins bud off from 

mitochondria and transit to multivesicular bodies. Topologically, internalization of such 

MDVs by invagination of multivesicular bodies followed by vesicle scission into the lumen 

is a form of microautophagy. Such Type 3 micromitophagy is also Pink1/parkin-dependent 

(Soubannier, et al., 2012;McLelland, et al., 2014).

Acute ethanol stimulates mitophagy, and this autophagy decreases acute ethanol-induced 

hepatotoxicity and steatosis in mice in a parkin-dependent fashion (Ding, et al., 

2010;Williams, et al., 2015). Ethanol also causes oxidative mtDNA damage and depletion 

(Mansouri, et al., 2001;Eid, et al., 2016). The effects of chronic ethanol on autophagy/

mitophagy are somewhat controversial. Some studies show enhanced autophagic flux and 

increased autophagosome numbers, whereas others indicate that chronic ethanol disrupts 

autophagosomal processing and lysosomal function, leading to autophagosome 

accumulation (Eid, et al., 2013;Lin, et al., 2013;Kharbanda, et al., 1995;Thomes, et al., 

2015). Nuclear translocation of transcription factor EB (TFEB), the master regulator of 

lysosomal biogenesis, increases after acute ethanol but decreases after chronic ethanol in 

mice and in patients with alcoholic hepatitis, implying suppressed lysosomal biogenesis and 

autophagy after chronic ethanol (Thomes, et al., 2015;Chao, et al., 2018). TFEB over-

expression decreases chronic ethanol plus binge drinking-induced liver injury (Chao, et al., 

2018).
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mtDepo triggers Type 2 mitophagy (Narendra, et al., 2008;Hariharan, et al., 2011;Kim, et 

al., 2008;Lemasters, 2014). Thus, mtDepo after ethanol likely initiates hepatocellular 

mitophagy. In confirmation, experiments in LC3-GFP transgenic mice show that LC3-GFP 

mitophagic puncta appear predominantly in hepatocytes with depolarized mitochondria after 

acute ethanol, implicating strongly that ethanol-induced mtDepo induces mitophagy (Fig. 5). 

PINK1 also increases after chronic ethanol, indicating PINK1 stabilization on depolarized 

mitochondria, whereas blunting of mtDepo by Alda-1 decreases PINK1 accumulation 

(Rehman, et al., 2015). Other studies also show that PINK1 and parkin mediate 

mitochondrial autophagy after acute and chronic-binge ethanol (Williams, et al., 2015;Eid, 

et al., 2016). MPT inhibitors like cyclosporin A (CsA) and NIM811 can inhibit 

hepatocellular autophagy, and deficiency of cyclophilin D, a regulator of MPT pores, 

impairs autophagy and decreases the sensitivity to the MPT in mitochondria from mice after 

chronic alcohol treatment, implicating a possible role of the MPT in triggering autophagy 

(Elmore, et al., 2001;Rodriguez-Enriquez, et al., 2009;King, et al., 2014). VDAC isoforms 

may serve as the docking sites to recruit parkin onto damaged mitochondria and are the 

target of parkin-dependent ubiquitination, thus enhancing mitophagy (Geisler, et al., 

2010;Sun, et al., 2012). By decreasing mitochondrial release of ATP, VDAC closure after 

ethanol might also trigger some degree of nutrient deprivation-dependent Type 1 mitophagy.

To maintain mitochondrial homeostasis after mitophagy, loss of mitochondria must be 

matched by mitochondrial biogenesis. In support of enhanced mitochondrial biogenesis, 

intragastric alcohol feeding increases PGC-1α, the master regulator of mitochondrial 

biogenesis, and mitochondrial transcription factor A (TFAM), an activator of mitochondrial 

DNA transcription and participant in mtDNA replication (Han, et al., 2012;Han, et al., 

2017). Nonetheless, alterations of PGC-1α, sirtuins, the deacetylases that regulate PGC-1α 
activity, and OXPHOS proteins after chronic ethanol treatment are inconsistent between 

studies (Han, et al., 2012;Han, et al., 2017;Lieber, et al., 2008b;Lieber, et al., 2008a). Taken 

together, alterations of mitochondrial structure, function, mitophagy and biogenesis indicate 

that mitochondrial remodeling occurs after chronic alcohol, which may represent repair and 

regeneration responses or contribute to ALD pathogenesis.

3. Linkage of hepatic adaptations for ethanol metabolism to extrahepatic 

events

The gut-liver axis plays an important role in both adaptive ethanol metabolism and the 

pathogenesis of ALD (Szabo and Petrasek, 2017;Scarpellini, et al., 2016;Xu, et al., 

2017;Thurman, et al., 1998). Alcohol consumption changes the gut microbiome, causing 

bacterial over-growth and increasing formation of toxic/proinflammatory products (Yan, et 

al., 2011;Mutlu, et al., 2012;Engen, et al., 2015). Alcohol also increases intestinal 

permeability, possibly by altering expression of tight junction-associated proteins (Wang, et 

al., 2014;Thurman, et al., 1998;Rivera, et al., 1998;Enomoto, et al., 2001). As a result, 

bacterial components (e.g., endotoxin [lipopolysaccharide] and bacterial CpG-containing 

DNA) increase in portal blood after acute and chronic ethanol exposure in humans and 

experimental animals (Bode, et al., 1987;Rivera, et al., 1998;Fukui, et al., 1991;Bala, et al., 

2014;Enomoto, et al., 2000a).
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The gut-liver axis also modulates SIAM (Bradford, et al., 1993). Gut sterilization and an 

endotoxin antagonist block SIAM, whereas portal endotoxin infusion mimics the stimulation 

by ethanol of hepatic oxygen uptake. This latter effect is blocked by the Kupffer cell toxicant 

GdCl3 (Rivera, et al., 1998;Bradford, et al., 1995). Endotoxin activates Kupffer cells via toll-

like receptor 4 (TLR4), which stimulates release of reactive mediators, including 

proinflammatory and profibrotic cytokines/chemokines (e.g., tumor necrosis factor [TNFα], 

interleukins, monocyte chemoattractant protein 1 [MCP-1]), and reactive oxygen and 

nitrogen species (ROS and RNS) (Nolan, 2010;Thurman, et al., 1995;Wheeler, et al., 

2001a;Enomoto, et al., 2000b;Xu, et al., 2017). Endotoxin in combination with ethanol 

feeding causes overt liver injury, but endotoxin alone does not or only causes mild 

steatohepatitis (Bhagwandeen, et al., 1987;Kong, et al., 2017). Moreover, diseases that 

release endotoxin into the portal blood, such as Crohn’s disease, ulcerative colitis and celiac 

disease, do not manifest the hepatic histopathology of ALD (Rubio-Tapia and Murray, 

2008;Rojas-Feria, et al., 2013). Thus, endotoxin is not a sole or sufficient etiological agent 

in ALD and somehow must act in a synergistic fashion with other ethanol-induced changes.

Kupffer cells also release eicosanoids like prostaglandin E2 (PGE2). Kupffer cells isolated 

from rats receiving ethanol in vivo produce PGE2, and conditioned medium from these cells 

stimulates hepatocyte oxygen uptake by activating cAMP-dependent pathways (Qu, et al., 

1996). PGE2 increases in blood after acute ethanol (Rivera, et al., 1998;Enomoto, et al., 

2000c). Thus, endotoxin activation of Kupffer cells causes PGE2 production, an effect that 

is, at least in part, responsible for SIAM. Although SIAM seems linked to mtDepo, how the 

gut-liver axis and Kupffer cell activation may promote mtDepo remains to be determined.

Hormones are also linked to SIAM. Alcohol increases adrenergic hormone release, and 

adrenalectomy and adrenergic blockers suppress SIAM (Forman, et al., 1988;Yuki, et al., 

1980). Thyroidectomy and hypophysectomy also blunt the hypermetabolic state after 

ethanol (Israel, et al., 1975a;Bernstein, et al., 1975). Females are more vulnerable to ALD 

than males, and estrogen enhances sensitivity of Kupffer cells to endotoxin and worsens 

ethanol-induced liver injury, possibly by increasing expression of CD14 (a co-receptor for 

LPS) and LPS-binding protein (Ikejima, et al., 1998;Kono, et al., 2002;Enomoto, et al., 

2002). By contrast, fasting blunts SIAM, implicating potential roles for increased glucagon 

or decreased insulin in suppressing SIAM (Thurman and Scholz, 1977). Adipose-derived 

leptin, a hunger-inhibiting hormone, also increases after ethanol consumption and 

upregulates Kupffer cell CD14 expression, which could increase sensitivity of Kupffer cells 

to LPS and therefore possibly SIAM (Imajo, et al., 2012;Roth, et al., 2003).

4. Adaptive alcohol metabolism and oxidative stress

Ethanol consumption also promotes hepatic ROS and RNS formation (Yin, et al., 

2001;Wheeler, et al., 2001b;Hoek and Pastorino, 2004). Ethanol increases CYP2E1, largely 

by a posttranscriptional mechanism involving stabilization against proteolysis (Gonzalez, et 

al., 1991;Lu and Cederbaum, 2008). CYP2E1generates superoxide (O2
•-), which then forms 

highly reactive peroxynitrite (ONOO-) by reaction with NO, and hydroxyl radical (•OH) by 

the Fenton reaction (Jaeschke, et al., 2002;Lemasters, 2004). In the presence of ethanol, 1-

hydroxyethyl radical is also formed (Thurman, et al., 1998). Therefore, ROS, RNS and other 
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radical species all increase after ethanol. These radicals attack and damage proteins, lipids 

and DNA, induce onset of the mitochondrial permeability transition (MPT), cause cell death, 

and trigger inflammatory processes (e.g., by inflammasome activation) (Jaeschke, et al., 

2002;Hughes and O’Neill, 2018). In particular, lipid peroxidation downstream to •OH 

formation generates toxic aldehydes like malondialdehyde and 4-hydroxynonenal that 

promote VDAC closure and possibly ethanol-induced mtDepo. Steatosis resulting from 

VDAC closure and consequent inhibition of beta-oxidation may then increase the 

vulnerability to lipid peroxidation, creating a vicious cycle.

During mitochondrial metabolism, electrons can escape from 11 identified ubiquinone and 

flavoquinone-interacting respiratory complexes and dehydrogenases to form O2
•- and H2O2 

(Young, et al., 2002;Kovacic, et al., 2005;Bunik and Brand, 2018;Brand, 2016). SIAM 

accelerates NADH oxidation by the respiratory chain, promoting mitochondrial production 

of ROS, although decreased ΔΨ in the absence of other mitochondrial perturbations 

suppresses ROS formation (Bailey and Cunningham, 2002;Zhong, et al., 2014;Garcia-Ruiz, 

et al., 2013;Han, et al., 2017;Korshunov, et al., 1997;Starkov and Fiskum, 2003). Ethanol 

also increases CYP2E1 expression in mitochondria (Anandatheerthavarada, et al., 

1997;Bansal, et al., 2010;Robin, et al., 2005).

Cu/Zn superoxide dismutase (SOD1) in the cytosol and Mn SOD2 in the mitochondrial 

matrix scavenge O2
•−. Various reports show increased, decreased, and unchanged Mn-SOD 

after ethanol treatment (Koch OR, 1994;Nanji, et al., 1995). In the intermembrane space, 

cytochrome c can scavenge O2
•- forming ferrocytochrome c. Glutathione-linked anti-oxidant 

defenses also reside in mitochondria, including GSH peroxidase-1, peroxiredoxin-III, 

thioredoxin-2 and glutathione reductase. Alcohol consumption selectively depletes 

mitochondrial GSH, thus increasing mitochondrial oxidative stress (Fernandez-Checa and 

Kaplowitz, 2005). AcAld aggravates oxidative stress by binding to GSH and promoting 

GSH leakage (Lieber, 2004). Since GSH, like other metabolites, must pass through VDAC 

to be taken up into mitochondria, alcohol-induced VDAC closure may also contribute to 

decreased mitochondrial GSH. Increased consumption of mitochondrial GSH during 

antioxidant defense causes further depletion.

Oxidative stress also stimulates ER stress. Moreover, ethanol causes ER stress through 

disturbance of one carbon metabolism, increased homocysteine and activation of acid 

sphingomyelinase (ASMase) (Ji and Kaplowitz, 2003;Fernandez, et al., 2013). ATP 

depletion during SIAM may also promote ER stress. ER stress increases expression of 

StARD1, a mitochondrial cholesterol transporting polypeptide, leading to mitochondrial 

cholesterol accumulation, which reportedly inhibits mitochondrial GSH transport to 

exacerbate mitochondrial GSH depletion and promote ROS production, thus forming a 

vicious cycle (Mari, et al., 2008;Anuka, et al., 2013).

Zhong and Lemasters Page 11

Alcohol Clin Exp Res. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



5. Relation of ethanol-induced mitochondrial alterations to pathogenesis 

of alcoholic liver disease

5a) Adaptive ethanol metabolism and steatosis

Steatosis is a virtually universal feature of ALD except in advanced alcoholic cirrhosis 

(Magdaleno, et al., 2017). After chronic ethanol, decreased adiponectin, suppressed 

expression/activation of hepatic PPAR-α and AMPK, disrupted Sirt-1/SREBP-1/lipin-1 

signaling, and ER stress inhibit fatty acid oxidation and increase fatty acid esterification 

(Song, et al., 2008;Ajmo, et al., 2008;Garcia-Villafranca, et al., 2008;Yin, et al., 

2012;Correnti, et al., 2014;Ji and Kaplowitz, 2006). Alcohol also activates adipose hormone 

sensitive lipase (HSL) activity, which increases lipolysis in adipose tissue and mobilizes free 

fatty acids to other organs, including the liver. In this way, the liver faces an increased fatty 

acid burden (Zhong, et al., 2012;Dou, et al., 2014;Wood, et al., 1993).

Steatosis develops very quickly after acute ethanol treatment and in parallel with SIAM. 

Thus, adaptive mitochondria alterations for alcohol metabolism likely play an early role in 

development of steatosis. Intravital microscopy shows that steatosis occurs principally in 

hepatocytes with depolarized mitochondria after acute ethanol treatment, strongly implying 

that steatosis is a response to mtDepo (Zhong, et al., 2014) (Fig. 6). VDAC closure linked to 

adaptive alcohol metabolism also inhibits entry of fatty acyl-CoA into the matrix space to 

prevent beta-oxidation, thus promoting steatosis. Similarly, hepatotoxicants that suppress 

mitochondrial fatty acid entry, inhibit beta-oxidation enzymes, or impair OXPHOS all 

induce marked hepatic steatosis quite acutely (Fromenty and Pessayre, 1995;Pessayre, et al., 

2012;Lemasters, 2013).

Additionally, pericentral hypoxia associated with SIAM upregulates hypoxia-inducible 

factor-1α (HIF1α) (Ji, et al., 1982a;Arteel, et al., 1996;Zhong, et al., 2014). HIF1α protein 

induces expression of adipocyte differentiation-related protein (ADRP), which increases 

triglyceride accumulation and prevents secretion of triglycerides/VLDL in cultured 

hepatocytes (Nath, et al., 2011;Magnusson, et al., 2006). Hepatocyte specific HIF-1α 
knockout blocks chronic alcohol-induced ADRP expression in the liver and decreases 

steatosis (Nath, et al., 2011). Therefore, adaptive mitochondria alterations for alcohol 

metabolism not only inhibit fatty acid degradation but also prevent triglyceride exportation.

5b) Ethanol-induced mitochondrial alterations and cell death

After high acute ethanol, cell death in liver is actually quite small at about 2%, which makes 

this phenomenon difficult to study (Zhong, et al., 2014). In chronic ALD, loss of 

hepatocellular mass is progressive and eventually leads to liver failure (Wang, et al., 

2016a;Magdaleno, et al., 2017). Apoptosis and necrosis both occur (Ishak, et al., 1991;Gao 

and Bataller, 2011;Tsukamoto, et al., 1985). Acute and chronic alcohol treatment causes 

oxidative modifications of mtDNA, which may trigger apoptosis (Hoek, et al., 2002). AcAld 

also causes mtDNA damage, and mtDNA deletions occur in >60% of patients with alcoholic 

steatosis (Fromenty, et al., 1995). Progressive loss of hepatocytes signifies a failure of 

hepatocellular regeneration, which is otherwise extraordinary in liver, an effect that may be 

due to AcAld-mediated G2/M cell cycle arrest (Diehl, 2005;Scheer, et al., 2016). 
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Compromised bioenergetics in hepatocytes with mtDepo may also contribute to failure of 

regeneration.

Oxidative stress also triggers onset of the MPT (Nieminen, et al., 1995;Hoek, et al., 

2002;Malhi, et al., 2006). In cultured hepatocytes, ethanol causes formation of ROS, the 

MPT and apoptosis (Adachi and Ishii, 2002). However, the MPT is not responsible for 

ethanol-induced mtDepo in vivo, as discussed above (Section 2d) (Zhong, et al., 2014). 

Nonetheless, mitochondria isolated from rats chronically treated with ethanol show 

increased susceptibility to MPT onset, which may increase vulnerability to other co-existing 

risk factors and lead to exacerbation/progression of ALD (King, et al., 2014). High 

cholesterol intake, which further increases ER stress and mitochondrial ROS production, 

causes more necrosis and apoptosis after chronic alcohol feeding in mice (Krishnasamy, et 

al., 2016).

VDAC closes relatively early in the evolution of apoptosis with the consequence that 

mitochondria no longer release ATP to the cytosol or take up ADP, Pi and respiratory 

substrates (Shoshan-Barmatz and Golan, 2012;Vander Heiden, et al., 2000). Ethanol-induced 

oxidative stress promotes Bax translocation to mitochondria, forming a complex with VDAC 

(Adachi, et al., 2004). VDAC manifests higher permeability to Ca2+ in the closed state, 

favoring Ca2+ flux into mitochondria, which is a signal for cell death (Tan and Colombini, 

2007). Nonetheless, the specific relationship of mitochondrial metabolic adaptations for 

ethanol metabolism (VDAC closure and mtDepo) to hepatocellular killing remains to be 

determined.

5c) Relation of ethanol-induced mitochondrial damage/dysfunction to inflammation and 
fibrosis: role of inflammasomes and mitochondrial damage-associated molecular pattern 
molecules

Inflammasome activation.—Inflammasomes are large inflammatory signaling platforms 

localized to both mitochondria and ER, which are composed of NOD-like receptor proteins 

(NLRP), caspase-1, and apoptosis-associated speck-like CARD-domain-containing (ASC) 

protein (Schroder, et al., 2010;Zhou, et al., 2011;Gurung, et al., 2015). In response to 

‘danger signals’, NLRP activates caspase-1, also called interleukin-1 (IL-1) converting 

enzyme (ICE), which proteolytically cleaves precursors of proinflammatory cytokines like 

IL-1β, IL-18 and the pyroptosis inducer gasdermin D to yield active mature peptides 

(Gurung, et al., 2015;Yu and Finlay, 2008). AH patients have high IL-1 in blood and 

increased hepatic NLRP3, caspase-1 and activated gasdermin D (McClain, et al., 1986;Peng, 

et al., 2014;Tilg, et al., 2016;Khanova, et al., 2018). NLRP3 and caspase-1 deficiency and 

IL-1β receptor blockade decrease alcohol-induced liver inflammation and damage (Petrasek, 

et al., 2015;Petrasek, et al., 2012;Tilg, et al., 2016). These findings support a role of 

inflammasome activation in AH.

Danger signals from mitochondria, such as ROS, mtDNA and cardiolipin externalization to 

the outer membrane, promote NLRP3 inflammasome formation and sterile inflammation 

(Zhou, et al., 2011;Gurung, et al., 2015;Iyer, et al., 2013;Shimada, et al., 2012). Ethanol 

exposure induces acetylation of α-tubulin, which then could promote association of ASC on 

mitochondria with NLRP3 on ER, leading to NLRP3 activation (Shepard and Tuma, 
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2009;Misawa, et al., 2013). In human subjects, ethanol consumption increases serum uric 

acid and ATP, two strong inflammasome stimulators (Petrasek, et al., 2015;Stiburkova, et al., 

2014;Lieber, et al., 1962). ATP activates inflammasomes by binding to purinergic receptor 

P2X7 (P2X7R). P2X7R deficiency decreases ethanol-induced inflammasome activation and 

steatohepatitis (Iracheta-Vellve, et al., 2015). Uric acid depletion by uricase overexpression 

also decreases ethanol-induced inflammasome activation (Iracheta-Vellve, et al., 2015). Our 

recent findings show that chronic ethanol treatment increases NLRP3 inflammasome 

activation in mice and that blockade of mtDepo by Alda-1 attenuates NLRP3 activation and 

liver inflammation (Rehman, et al., 2015). Thus, adaptive ethanol metabolism may be 

upstream of inflammasome activation after ethanol.

NLRP3 activation not only mediates inflammation but also stimulates fibrosis. Mice with 

constitutively activated NLRP3 exhibit increased HSC activation with collagen deposition, 

whereas mice lacking NLRP3 and ASC protein show decreased CCl4- and TAA-induced 

liver fibrosis (Wree, et al., 2014;Watanabe, et al., 2009). IL-1β directly induces fibrogenic 

responses in HSCs, and deficiency and inhibition of IL-1 receptor decrease steatohepatitis 

and fibrosis in a NASH model (Miura, et al., 2010;Wree, et al., 2014).

Mitochondrial damage-associated molecular pattern molecules.—Mitochondrial 

stress and damage lead to the release into the cytosol and/or extracellular space of 

mitochondrial damage-associated molecular pattern molecules (mtDAMPs), including 

mtDNA, ATP, formyl peptides, cardiolipin, cytochrome c, succinate, and mitochondrial 

transcription factor A (TFAM), which activate immune responses (Arnoult, et al., 

2011;Nakahira, et al., 2015;Raoof, et al., 2010). We propose that mtDepo associated with 

adaptive ethanol metabolism triggers mitophagy. As autophagic processing of depolarized 

mitochondria and mitophagosomes becomes compromised during chronic ethanol exposure, 

mtDAMPs leak to the cytosol and are released extracellularly by exosome formation or 

fusion of depolarized mitochondria, mitophagosomes or autolysosomes with the plasma 

membrane (Fig. 4). In immune cells, insufficiency or discoordination of autophagy leads to 

release of autophagosomal/autolysosomal contents as inflammatory mediators 

(Bhattacharya, et al., 2014;Lapaquette, et al., 2015;Fesus, et al., 2011). If after ethanol a 

markedly increased autophagic burden overwhelms the lysosomal processing capacity, or if 

normal processing of autophagosomes is suppressed, then release of mtDAMPs is likely to 

occur. Indeed, chronic ethanol disrupts autophagosomal processing and lysosomal function 

(Kharbanda, et al., 1995;Thomes, et al., 2015;Chao, et al., 2018). Moreover, mtDAMPs 

increase after ethanol (Rehman, et al., 2015;Petrasek, et al., 2015;Rolla, et al., 2001). For 

example, after chronic ethanol treatment in mice, we found that mtDNA increases in serum, 

an event associated with mtDepo (Rehman, et al., 2015). mtDNA stimulates TLR9, which in 

turn activates p38-MAPK in neutrophils (Zhang, et al., 2010b;West, et al., 2011;Zhang, et 

al., 2010a). mtDAMPs upregulate MyD88 and NF-κB, increase cytokines TNFα, IL-1, IL-6 

and IL-10, and induce cell death (Hu, et al., 2015;Miura, et al., 2010). IgG recognizing 

oxidized cardiolipin also increases in ALD patients (Rolla, et al., 2001). Overall, 

mitochondrial stress/dysfunction associated with ethanol exposure appears to exacerbate 

inflammation through mtDAMP release and inflammasome activation.
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mtDAMPs may also stimulate fibrosis. In a zebrafish alcoholic fatty liver model, the 

mtDAMP succinate is released, and succinate activates HSC through G-protein coupled 

receptor-91 (GPR91) (Jang, et al., 2012;Li, et al., 2015). Another mtDAMP, mtDNA, binds 

to TLR9. TLR9 is expressed in HSC, and activation of TLR9 directly causes HSC activation 

and fibrosis (Gabele, et al., 2008;Aoyama, et al., 2010). Nonetheless, information regarding 

the profile and time course of mtDAMP release in ALD, the relation of mtDAMPs to ALD 

severity, and which mtDAMPs are most critical for ALD pathogenesis is currently very 

limited.

In addition to mtDAMP release and inflammasome activation, some other events related to 

mitochondrial alterations due to adaptive alcohol metabolism may also contribute to fibrosis. 

Oxidative stress and mitochondrial dysfunction stimulate expression of osteopontin (OPN), a 

multifunctional protein that can induce activation, migration and collagen production by 

HSCs (Wen, et al., 2016;Riew, et al., 2017;Zhang, et al., 2017). Expression of OPN and its 

receptors increases in animals and cells treated with ethanol and in patients with ALD (Seth, 

et al., 2006;Morales-Ibanez, et al., 2013;Apte, et al., 2005;Seth, et al., 2014). Oxidative 

stress also promotes formation of profibrogenic TGFβ (Barnard, et al., 1990;Yue and 

Mulder, 2001). HIF-1α, which is upregulated after ethanol consumption due to hypoxia, 

induces expression of profibrogenic genes (Higgins, et al., 2008). Together, persistence of 

mitochondrial responses to ethanol links adaptive ethanol metabolism to maladaptive pro-

inflammatory and pro-fibrotic changes initiating onset and progression of ALD.

6. Conclusions and future directions

After ethanol consumption, a respiratory burst occurs due to mtDepo in the liver. Such 

mitochondrial uncoupling after ethanol treatment occurs coordinately with VDAC closure 

(Fig. 7). These alterations promote more rapid and selective oxidation of toxic AcAld by 

inhibiting oxidation of competing respiratory substrates, including fatty acyl-CoA, and by 

more rapidly regenerating NAD+ needed for ethanol oxidation to acetate. VDAC closure 

also limits futile mitochondrial ATP hydrolysis that would otherwise occur after uncoupling. 

Depolarization in turn activates mitophagy that may have the function of removing 

mitochondria damaged by ethanol-dependent oxidative stress, an apparent protective 

mechanism. Mitochondrial remodeling and biogenesis subsequently occur to restore 

mitochondrial homeostasis.

After chronic alcohol, an excessive mitophagic burden leads to dysfunctional autophagic 

processing and release of mtDAMPs intracellularly and extracellularly to activate 

inflammasomes and other receptors that mediate inflammatory/profibrotic responses. We 

propose that such mtDAMP release is a primary pro-inflammatory/pro-fibrotic event in ALD 

(Fig. 7). mtDAMPs then synergize with a variety of other pro-inflammatory/profibrotic 

events, especially in relation to endotoxin uptake from the gut. Although adaptive alcohol 

metabolism is a response to remove ethanol and its toxic metabolites more rapidly, the same 

adaptation occurring chronically appears to promote mitochondrial and autophagic 

dysfunction. Such dysfunction may then act as a tipping point from adaptation to 

maladaptation, leading to other pathogenic consequences in ALD including: 1) steatosis due 

to inhibited beta-oxidation, 2) mitochondrial glutathione depletion, 3) oxidative stress, 4) ER 
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stress, and 5) cell death. Perhaps most importantly, mtDAMP release enhances other 

inflammatory and profibrogenic responses to ethanol, thus exacerbating hepatitis and 

leading to fibrosis (Fig. 7). In this way, adaptive mitochondrial alterations for alcohol 

metabolism constitute an initial “hit” in the multi-hit pathogenesis of ALD that converges 

and synergizes with other ethanol-dependent events in the gut, endocrine system and adipose 

tissue to promote development and progression of ALD.

Future studies are needed to elucidate further the mechanisms and pathogenic effects of 

adaptive alcohol metabolism/mitochondrial alterations in ALD, including: 1) Determining 

how ethanol causes mtDepo. For example, do Kupffer cells release mediators like PGE2 to 

cause heterogeneous mtDepo in nearby hepatocytes? 2) Identifying the uncoupling circuit in 

mitochondria that causes ethanol-induced mtDepo. Multiple depolarizing mitochondrial ion 

channels and transporters, such as the mitochondrial ATP-sensitive potassium channel 

(mitoKATP), adenine nucleotide transporter (ANT), Ca2+ transporters, and the FO portion of 

ATP synthase might underlie mtDepo. 3) Elucidating the mechanism of ethanol-induced 

VDAC closure. How do phosphorylation, acetylation and acetaldehyde adduct formation 

modify VDAC conductances after ethanol? 4) Better characterizing the relation of mtDepo, 

mitophagy and mtDAMP release, particularly the mechanisms by which chronic ethanol 

impairs lysosomal processing and leads to mtDAMP release, 5) Identifying which specific 

mtDAMPs are most important in promoting ALD and how these mtDAMP act on effector 

cells of inflammation and fibrosis. 6) Clarifying the role of mitochondrial biogenesis and 

remodeling in repair and regeneration processes in ALD. Such new information potential 

will lead to useful new biomarkers to monitoring ALD development/severity (e.g., 

mtDAMPs) and novel therapeutic strategies (e.g., mtDepo blockade, enhancing 

mitophagosome processing, antagonists of mtDAMPs).
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Fig. 1. Alcohol metabolism.
See text for details.
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Fig. 2. Acetaldehyde suppression of rhodamine dextran entry into the mitochondrial 
intermembrane space of permeabilized rat hepatocytes.
Digitonin-permeabilized rat hepatocytes were briefly incubated with 3-kDa rhodamine 

dextran (RhDex) to allow the red-fluorescing marker to enter the mitochondrial 

intermembrane space through VDAC. The VDAC inhibitor, 4, 4-

diisothiocyanatostilbene-2,2-disulfonic acid (DIDS), was added afterwards to “lock in” 

RhDex after subsequent RhDex washout. Green-fluorescing MitoTracker Green (MTG) 

marked the mitochondrial matrix. In comparison to untreated cells, pretreatment with AcAld 

(500 μM) decreased RhDex uptake. Nuclei are unspecifically stained by RhDex. Adapted 

from (Holmuhamedov, et al., 2012).
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Fig. 3. Acute ethanol causes reversible mitochondrial depolarization in vivo in a time- and dose-
dependent manner.
Mice were gavaged with one dose of ethanol (0–6 g/kg), and mitochondrial polarization was 

detected by intravital multiphoton microscopy of green-fluorescing rhodamine 123 at 0 to 24 

h after treatment. Representative images after treatment with 6 g/kg ethanol are shown in A–

C. Bar is 10 μm. D and E show, respectively, the time course of mtDepo after 6 g/kg ethanol 

and the dose-dependency of mtDepo after 6 h. Values are means ± SEM (n = 4–5 per group). 

*, p<0.05 vs no ethanol. Adapted from (Zhong, et al., 2014).
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Fig. 4. Mitophagy types and the progression of ethanol-induced mitochondrial depolarization to 
mitophagy to release of mitochondrial damage-associated molecular pattern molecules in the 
pathogenesis of alcoholic liver disease.
A: In Type 1 mitophagy, PI3K, beclin-1 and other proteins initiate formation of cup-shaped 

LC3-containing sequestration membranes (phagophores) that fuse around individual 

mitochondria to form mitophagosomes, often with coordinated mitochondrial fission. PI3K 

inhibitors like 3-methyladenine (3-MA) and wortmannin block Type 1 mitophagy. In Type 1 

mitophagy, mtDepo does not occur until after sequestration and acidification of 

mitophagosome outer compartments (space between the inner and outer autophagosomal 
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membranes). Subsequently mitophagosomes fuse with lysosomes to form autolysosomes in 

which mitochondrial digestion is complete within about 15 min. Type 1 mitophagy is typical 

of nutrient deprivation and removal of unneeded mitochondria. In Type 2 mitophagy, 

mtDepo initiates autophagic sequestration through association of Pink1 and Parkin and 

subsequent ubiquitination of mitochondrial proteins to recruit autophagy receptor proteins 

like p62/SQSTM-1. LC3-containing membrane vesicles then associate with the depolarized 

mitochondria and fuse to form autophagosomes. By contrast to Type 1 mitophagy, PI3K 

inhibitors do not block Type 2 mitophagy, and cup-shaped phagophores and mitochondrial 

fission are absent. B: We propose the hypothesis that ethanol-induced mtDepo stimulates 

Type 2 mitophagy. After high dose binge drinking, extensive mtDepo likely overwhelms 

cellular capacity to form mitophagosomes, whereas after chronic ethanol, capability for 

subsequent autophagic processing (delivery of mitophagosomes to lysosomes) becomes 

compromised. Such dysregulation of autophagy leads to extracellular release of damaged 

mitochondria, mitophagosomes and/or autolysosomes by fusion with the plasma membrane 

or exosome formation. mtDAMPs released in this way then promote liver injury, 

inflammation and fibrosis. mtDAMPs are also likely released internally to activate 

intracellular inflammasomes (not illustrated).
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Fig. 5. Mitophagy is associated with mitochondrial depolarization after acute ethanol treatment.
Male LC3-GFP transgenic mice were gavaged with ethanol (4 g/kg) or saline, and intravital 

multiphoton microscopy was performed after 4 h of red-fluorescing TMRM, which 

accumulates into polarized mitochondria, and green-fluorescing LC3-GFP, a marker of 

forming and newly formed autophagosomes. After ethanol, note an increase of green LC3-

GFP puncta in hepatocytes with mtDepo. Bar is 10 μm (Zhong, et al., 2016).
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Fig. 6. Ethanol causes steatosis in hepatocytes with depolarized mitochondria.
Mice were gavaged with saline or ethanol (6 g/kg), and intravital microscopy of TMRM 

(red) and the lipid droplet-labeling fluorophore, BODIPY 493/503 (green), was performed 

after 2 h. Note presence of lipid droplets predominantly in hepatocytes with mtDepo. Bar is 

10 μm. Adapted from (Zhong, et al., 2014).

Zhong and Lemasters Page 36

Alcohol Clin Exp Res. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. Working hypothesis for how ethanol metabolism-associated mitochondrial alterations 
contribute to development of alcoholic liver disease
After ethanol consumption, a respiratory burst (↑J02) develops due to mitochondrial 

uncoupling and mtDepo (↓ΔΨ) in the liver, and VDAC closure occurs. AcAld and gut-

derived endotoxin acting through Kupffer cells and possibly PGE2 promote mtDepo, 

whereas VDAC closure is promoted by AcAld. VDAC blocks uptake of fatty acyl-CoA for 

β-oxidation, which leads to acute steatosis. These adaptive mitochondrial alterations 

promote more rapid and selective oxidation of toxic AcAld by inhibiting oxidation of 

competing respiratory substrates and by more rapidly regenerating NAD+ needed for ethanol 

oxidation to acetate. Depolarization in turn activates mitophagy. Although adaptive alcohol 

metabolism detoxifies ethanol more rapidly, the same metabolism occurring chronically 

becomes a tipping point from adaptation to maladaptation, leading to the pathogenic 

consequences of ALD. With chronic ethanol, excessive mitophagic burden leads to 

dysfunctional autophagic processing and release of mtDAMPs intracellularly and 
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extracellularly. VDAC closure also blocks mitochondrial glutathione uptake, leading to 

oxidative and ER stress. Decreased ATP also promotes ER stress and possibly impaired 

hepatic regeneration. Together these maladapative changes culminate inflammation, 

steatohepatitis, cell death and fibrosis.
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